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Appendix A. Proofs

A.1. Proof of Theorem 5

Proof
We denote a = eϵ1

eϵ1+d−1 and b = eϵ2
1+eϵ2 . Let x0 = (g0, v0) and x1 = (g1, v1) be two

different inputs and y = (g′, v′) be an output of the mechanism. From the mechanism’s
definition, we have that for an arbitrary input x = (g, v),

Pr[y | x] =


a(1+(2b−1)v′v)

2 if g′ = g

1−a
2(d−1) if g′ ̸= g

We prove it for d = 2 as that is what we use in most of our evaluation, and leave the
case d > 2 for future work.

Since v ∈ [−1, 1] and v′ ∈ {−1, 1}, an upper bound of Pr[y | x] when g′ = g is

Pr[y | x] ≤ ab (2)

and a lower bound is
Pr[y | x] ≥ a(1− b) (3)

Now, we bound Pr[y | x0]/Pr[y | x1], where x0 and x1 differ in either group or value.
If they have the same group but may (or may not) differ in value, we consider two cases:
g′ = g and g′ ̸= g (where g = g0 = g1).

Case 1: g′ = g. Using the upper and lower bounds, we obtain:

Pr[y | x0]
Pr[y | x1]

≤ ab

a(1− b)
= eϵ2 (4)

Case 2: g′ ̸= g. Using the probability of Pr[y | x1] when g′ ̸= g:

Pr[y | x0]
Pr[y | x1]

= 1 ≤ eϵ2 , as ϵ2 ∈ [0,+∞) (5)

This shows that if the inputs have the same group, the differential privacy guarantee
boils down to the guarantee of the value-perturbing GRR mechanism.

If x0 and x1 differ in group, we again break down the analysis into two cases: g′ = g0 ̸= g1
and g′ = g1 ̸= g0.

Case 1: g′ = g0 ̸= g1. Using the upper bound and taking e2 = 0 as the minimum value
for the denominator, we obtain:

Pr[y | x0]
Pr[y | x1]

≤ 2ab

1− a
=

2eϵ2+ϵ1

1 + eϵ2
≤ eϵ1 (6)

Case 2: g′ = g1 ̸= g0. Using the lower bound and that 1 ≤ eϵ2 , we have:

Pr[y | x0]
Pr[y | x1]

≤ 1− a

2a(1− b)
=

1 + eϵ2

2eϵ1
≤ 2eϵ2

2eϵ1
= eϵ2−ϵ1 (7)

Combining the equations above, we conclude thatMR is ϵ-DP with ϵ = max{ϵ1, ϵ2, ϵ2−ϵ1} =
max{ϵ1, ϵ2} and, thus, the optimal budget allocation is ϵ1 = ϵ2 = ϵ.
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A.2. Proof of Theorem 6

Proof This proof is for k = 2. Let x0 = (g0, v0) and x1 = (g1, v1) be two different inputs
and y = (g′, v′) be an output of the mechanism. Because ML perturbs the values with
Laplacian noise, we have that for an arbitrary input x = (g, v),

Pr[y | x] =


eϵ1

eϵ1+d−1 fLap(0, 2
ϵ2

)(v
′ − v) if g′ = g

1
eϵ1+d−1 fLap(0, 2

ϵ2
)(v

′) if g′ ̸= g

This is because when the mechanism preserves the group, v′ = v+Y where Y ∼ Lap(0, 2
ϵ2
),

hence the probability of the new value is the probability of sampling v′− v from the Laplace
distribution with zero mean and scale of 2

ϵ2
. When the group is flipped, the mechanism sets

v to zero therefore in that case it is the probability of sampling v′ from Lap(0, 2
ϵ2
).

As in the proof of Theorem 5, we follow a case-based reasoning. If x0 and x1 have the
same group but differ in value, we consider two cases: g′ = g and g′ ̸= g.

Case 1: g′ = g.

Pr[y | x0]
Pr[y | x1]

=
fLap(0, 2

ϵ2
)(v

′ − v0)

fLap(0, 2
ϵ2

)(v
′ − v1)

= eϵ2(
|v′−v1|

2
− |v′−v0|

2
) ≤ eϵ2 (8)

Case 2: g′ ̸= g.

Pr[y | x0]
Pr[y | x1]

=
fLap(0, 2

ϵ2
)(v

′)

fLap(0, 2
ϵ2

)(v
′)

= 1 (9)

If x0 and x1 differ in group, we again consider two cases: g′ = g0 ̸= g1 and g′ = g1 ̸= g0.

Case 1: g′ = g0 ̸= g1.

Pr[y | x0]
Pr[y | x1]

=

eϵ1
eϵ1+d−1fLap(0, 2

ϵ2
)(v

′ − v0)

1
eϵ1+d−1fLap(0, 2

ϵ2
)(v

′)
= eϵ1+ϵ2(

|v′|
2

− |v′−v0|
2

) ≤ eϵ1+
ϵ2
2

The last inequality follows from |v′|
2 −

|v′−v0|
2 ≤ 1

2 .

Case 2: g′ = g1 ̸= g0.

Pr[y | x0]
Pr[y | x1]

= eϵ2(
|v′−v1|

2
− |v′|

2
)−ϵ1 ≤ e

ϵ2
2
−ϵ1 (10)

The last inequality follows from the triangle inequality: |v′−v1|
2 − |v′|

2 ≤
|v1|
2 ≤

1
2 .

Finally, combining all the inequalities above, we obtain the ϵ in the bound of the
probability ratio

ϵ = max
{
ϵ2,

ϵ2
2
− ϵ1,

ϵ2
2

+ ϵ1

}
= max

{
ϵ2,

ϵ2
2

+ ϵ1

}

Thus, the optimal budget allocation for mechanismML with k = 2 is ϵ2 = ϵ and ϵ1 = ϵ
2 .
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A.3. Proof of Theorem 8

Proof We prove that m̂L
G is unbiased. The proof for the unbiasedness of m̂R

G is analogous.
We model the values in G after applyingML with the following mutually independent

random variables

Vi = Bi(vi + Yi), i = 1, . . . , n, (11)

V̄j = B̄j(0 + Ȳj) = B̄j Ȳj , j = 1, . . . , K − n (12)

where Vi and V̄j are the final, perturbed values in group G that originate from group G and
Ḡ, respectively. In our notation, the bar denotes that the random variable relates to group
Ḡ, the complement of G. The random variables Bi ∼ Bernoulli(a) and B̄j ∼ Bernoulli(1−a)
modelMRR, and Yi ∼ Lap(0, 2/ϵ2) and Ȳj ∼ Lap(0, k/ϵ2) modelMLap. Thus, the expected
value of the estimator is

E[m̂L
G] =

1

an

 n∑
i=1

E [Vi] +

K−n∑
j=1

E[V̄j ]

 Linearity of E (13)

=
1

an

n∑
i=1

E[Bi(vi + Yi)] E[V̄j ] = 0 (14)

=
1

an

n∑
i=1

E[Bi](vi + E[Yi]) Mutual independence (15)

=
1

an

n∑
i=1

E[Bi]vi E[Yi] = 0 (16)

=
a

an

n∑
i=1

vi E[Bi] = a (17)

= mG (18)

We used that E[V̄j ] = 0 because E[Ȳj ] = 0 and that the random variables are mutually
independent.

A.4. Closed-form expressions of Variance

Using the probabilistic model defined in Appendix A.3, we can write the variance of the
estimator m̂L

G as

Var[m̂L
G] =

1

a2n2
Var

 n∑
i=1

(vi + Yi)Bi +

K−n∑
j=1

ȲjB̄j

 .

Note that the noise terms have positive variance and therefore do not cancel out. We can
use the fact that the variables are mutually independent to write the variance of the sum as
the sum of variances. We will then obtain variances of products and will use the well-known
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formula for the variance of the product of two independent random variables. Rearranging
the terms gives the closed expression of the variance:

Var[m̂L
G] =

1

n

(
ν2e−ϵ1 +

(
1 + e−ϵ1

)(
σ2
L +

K − n

n
σ̄2
Le

−ϵ1

))
(19)

where ν2 = 1
n

∑n
i=1 v

2
i , and σ2

L, σ̄
2
L are the variances of the Laplace noise distributions

(functions of ϵ2), for clients who do not swap and those who do, respectively. The lower and
upper bounds shown in Fig. 1 are taken using that 0 ≤ ν2 ≤ 1.

The closed-form expression of m̂R
G’s variance can be obtained similarly, and is

Var[m̂R
G] =

1

a(2b− 1)2n

(
1− a(2b− 1)2ν2 +

K − n

n

1− a

a

)
(20)

Recall that a and b are functions of the privacy budgets.

A.5. Proof outline for Theorem 9

First, we prove the unbiasedness of ∆m̂∗. Due to Theorem 8 and the linearity of expectation,
the expected value of ∆m̂∗ is ∆m. Assuming that G is the advantaged group and thus
m̂∗

G ≥ m̂∗
Ḡ
, we have that E[|m̂∗

G − m̂∗
Ḡ
|] = |mG −mḠ|.

To show that the variance of ∆m̂∗ is the sum of the variance of the mean group
value estimators, it suffices to show that Cov(m̂∗

G, m̂
∗
Ḡ
) = 0, which is true if, and only if,

E[m̂∗
Gm̂

∗
Ḡ
] = mGmḠ. Calculating the value of that expectation explicitly, we observe that

many of its terms have an independent Laplace r.v. as a factor and, consequently, these
terms are zero. Finally, we can apply Bienaymé’s identity to obtain the result of the theorem.

The proof forMR is similar, as the expected value of clients with the group perturbed
is zero.

Appendix B. Allocating the privacy budget for the ML mechanism

In Eq. (19), we see that the variance of the unbiased estimator forML is dominated by ϵ2.
Therefore, since ϵ1, ϵ2, and k must satisfy Eq. (1), we minimize the MSE by first setting
ϵ2 = ϵ and, then, finding the k that maximizes ϵ1 under the LDP constraint in Eq. (1).

If we take ϵ2 = ϵ in Eq. (1) of Theorem 6, we obtain bounds for ϵ1

ln(
2

k
)− ϵ

2
≤ ϵ1 ≤ ln(

2

k
) +

ϵ

2
λ(k), (21)

where λ(k) = 2
(
1− 1

k

)
. Thus, this inequality holds iff 2

3 ≤ k.

To find the k that maximizes ϵ1, we consider two cases: 0 < ϵ < 2/3, and 2/3 ≤ ϵ.

If 2/3 ≤ ϵ, we write ϵ1 as the upper bound of ϵ in Eq. (21), a function of k, and find that
k = ϵ is a maximum for a constant ϵ. However, for 0 < k < 2/3, Eq. (21) does not hold and
hence k = ϵ would not satisfy ϵ-LDP. When 0 < ϵ < 2/3, we take k = 2/3, the minimum k
that satisfies ϵ-LDP, as that minimizes the scale of the Laplace noise. In that case, ϵ1 is
equal to the upper and lower bounds in Eq. (21).

Thus, the maximum ϵ1 as a function of ϵ is
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Figure 3: Contour plot of the MSE of ∆m̂L for k = 2 (left) and k = 2
3 (right), as a function

of ϵ1 and ϵ2. The colored area is the region where the parameters satisfy ϵ-LDP
for ϵ = ϵ2. The curves represent the optimal allocations when k = 2 (dotted) and
k = 2

3 (dashed).

ϵ1 =

ln(2ϵ ) + ϵ− 1 if 2
3 ≤ ϵ

ln(3)− ϵ
2 if 0 < ϵ < 2

3

Fig. 3 shows the allocations of the privacy budgets that satisfy the LDP constraint
(colored area). The dashed and dotted borders of the areas show the allocations that
minimize the MSE for a total privacy budget of ϵ = ϵ2 ∈ (0, 2] for k = 2 and k=2/3,
respectively. A closer look at the MSE contour lines reveals that the mechanism with
k = 2/3 achieves lower MSE values than for k = 2 when ϵ < 2/3.

Appendix C. Empirical Validation

We have run experiments to validate the correctness of our expressions of the variance of
the estimators. In the experiments, we initialize two groups with 10 clients each with fixed
performance values. Then, we run the mechanisms a number of times to obtain sets of
perturbed tuples and calculate the performance gap estimates. The empirical MSE is the
average of the squared differences between these estimates and the true performance gap.
We plot the empirical and theoretical MSE for mechanismMR in Fig. 4. We observe that,
as we increase the number of runs, the empirical MSE converges to the theoretical MSE,
validating our results.

The source code for reproducing these experiments is publicly available (Juarez and
Korolova, 2022).

Appendix D. Empirical Evaluation

We now describe the experiments to evaluate the error of the mechanisms. Since we are
not aware of public datasets with sufficient data to model a real-world deployment of DFL,
we synthesize a dataset by fitting the marginal probability distributions of the protected
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Figure 4: The theoretical upper bound of the MSE of m̂R
G as derived from Theorem 9, and

its empirical MSE over different runs ofMR, for nG = nḠ = 10.

attribute on a real-world dataset. Our results show that the error of the mechanisms in
the synthetic data is orders of magnitude lower than the Chebyshev bounds obtained in
the previous section, indicating that an operator who uses the Chebyshev bounds might be
overly conservative in their privacy risk assessment.

Data Generation Our data generation model is based on the activity detection dataset
collected by Shinmoto Torres et al. (2016). The dataset comprises the sensor readings for
14 subjects who were instructed to perform a number of scripted daily activities in two
different rooms. The features include the sensor’s readings of time, accelerometer position,
and radio signal’s strength, frequency, and phase. The labels describe one of these activities:
sitting, lying down, or ambulating. We binarized the detection task by relabeling the data
to whether or not the subject was lying down.

We define “sex” as the protected attribute in the data. Although the sex of the subject
was annotated per each trial—25 male and 62 female—there is no mapping between trials
and subjects. Thus, we assume that each recorded session represents a different FL client,
with each client having an average of 864 samples. We stratify the data ensuring that all
clients have the same data distribution between training and test sets (70% of the samples
for training and 30% for testing).

We simulated the federated learning of a model by training a logistic regression model.
We assume that this is the global model trained with the data of all clients. Since the
performance of the model was nearly perfect, resulting in almost all the clients having a
zero false positive rate, we have dropped some of the accelerometer features to increase the
difficulty of the learning task. The global model’s hold-out average test accuracy for 10 runs
is 84.37%, with a false positive rate (FPR) of 10.69%, and a true positive rate (TPR) of
82.05% (all SD values are smaller than 1%). Then, we independently test the global model
on each client’s test set, resulting in two performance values for each client. We take the
TPR and the FPR as performance metrics: the mean TPRs are 89.01% and 71.77% and
the mean FPRs are 15.26% and 24.90% for males and females, respectively. We observe a
significant performance gap on both metrics: ∆TPR = 17.33% and ∆FPR = 9.63%.

Regression model implementation We implemented the evaluation of the logistic
regression model with Python 3.7.6 and sklearn 0.22.1.
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Table 2: Comparison of the Chebyshev bounds with the empirical mean error for 10 runs of
the mechanisms on the synthetic dataset with K = 107 clients. The first column is
the privacy budget, followed by the mean error (and standard deviation) of the
estimates on the data and the 0.99-probability Chebyshev’s bounds (α) for each
mechanism.

MR opt. ML opt.

ϵ |∆m̂R −∆m| α |∆m̂L −∆m| α

0.01 0.1241(±0.1410) 1.2586 0.0504(±0.0337) 1.0525
0.10 0.0082(±0.0059) 0.1206 0.0046(±0.0040) 0.1060
1.00 0.0008(±0.0006) 0.0094 0.0008(±0.0005) 0.0118

10.00 0.0001(±0.0000) 0.0032 0.0001(±0.0000) 0.0009

We use Elastic-Net loss (with a 0.99 L1 component) and SAGA as the algorithm to
minimize it. To balance the classes, we adjust class weights inversely proportional to
class frequency. To find these hyperparameters we do not optimize for best generalization
performance, as we are interested in inducing an disparate performance between the groups.

We evaluated the model selection by 10 runs of hold-out cross-validation (70–30% as the
random training–testing split). We fix the PRNG seed and release the source code included
in the supplementary material.

We published the data and the source code to reproduce these experiments (Juarez and
Korolova, 2022).

Error of the DP mechanism To generate synthetic data for the global model’s perfor-
mance on new clients, we model the marginal distribution of sex to have the same mean
and ν2 as the observations. For the purpose of evaluating the error of the mechanisms, the
exact distribution that we fit is not important, thus we draw samples with replacement from
the set of observations. This sampling methodology ensures that the relevant statistics are
preserved and we generate enough data to represent a realistic DFL deployment.

Table 2 compares the empirical error with the 0.99-probability bounds (α) obtained with
the procedure explained in the previous section, for a range of privacy budgets (ϵ). The
bounds are one order of magnitude larger than the actual error. This means that the budget
that the operator would need to allocate to satisfy a certain α for 107 clients is substantially
lower than the ones shown in Table 1. As a consequence, following the Chebyshev bounds
from the previous section would result in an overly conservative measurement with respect
to the privacy of the users, and operators with small privacy budgets could afford more
accurate measurements without an impact on user privacy.
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