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Abstract
We introduce dynamic probability kinematics (DPK), a
method for an agent to mechanically update subjective
beliefs in the presence of partial information. We
then generalize DPK to dynamic imprecise probability
kinematics (DIPK), which allows the agent to express
their initial beliefs via a set of probabilities in order
to further take ambiguity into account. Examples are
provided to illustrate how the methods work.
Keywords: subjective probability, Jeffrey’s updating,
imprecise probabilities, probability kinematics, Bayes’
rule

1. Introduction

Updating an opinion on the likelihood of an event when
new data becomes available is one of the most natural tasks
we perform daily. The goal of this paper is to introduce a
method to update mechanically the subjective beliefs of an
agent that faces ambiguity and who is only able to collect
partial information.
With the former, we mean that a single probability mea-

sure is not enough to encapsulate the agent’s initial beliefs,
a very common and well documented situation [32, Section
1.1.4]; we inspect ambiguity in Section 1.1. Partial infor-
mation means that the agent cannot collect crisp evidence;
rather, they gather information whose nature is probabilistic.
Our updating mechanism is based on probability kinematics
(PK), an updating rule expressly conceived to deal with
partial information. We inspect probability kinematics and
its relation with the procedure we present in Section 1.2.
We call the method we propose dynamic imprecise prob-

ability kinematics (DIPK). It is framed within the credal
sets theory paradigm [22]. In this field, a set of proba-
bility measures (called a credal set) is used to capture
either the ambiguity initially faced by the agent, or incon-
sistency/imprecision in the process of collecting data. To
derive DIPK, we first assume that the agent does not face
ambiguity. We come up with a simpler updating technique
that we call dynamic probability kinematics (DPK), and
then we generalize it by requiring the agent to specify a set
P of probability measures representing their initial beliefs.

DIPK is especially useful because it allows the update to
be performed mechanically: the agent only needs to specify
P. To the best of our knowledge, this is the first time a PK-
rooted mechanical procedure to update subjective beliefs in
the presence of ambiguity and partial information within
the credal sets theory paradigm is presented.

1.1. Ambiguity

Precise probabilities are widely employed as the central
vocabulary of many modes of uncertainty reasoning, nearly
exclusively so in statistical inference, for example. In the
subjective probability literature, the agent’s initial beliefs
about an event 𝐴 ⊂ 𝛺 are usually encapsulated in a single
probability measure, that is then refined once new informa-
tion in the form of data become available. As Walley points
out in [32, Section 1.1.4], though, missing information and
bounded rationality may prevent the agent from assessing
probabilities precisely in practice, even if doing so is possi-
ble in principle. This may be due to the lack of information
on how likely events of interest are, lack of computational
time or ability, or because it is extremely difficult to analyze
a complex body of evidence. We call this condition faced by
the agent ambiguity [13]. Oftentimes agents do not realize
they face ambiguity, as observed in [3] and in the de Finetti
lecture delivered at ISBA 2021. There, Berger points out
how most people tend to under-report variance; the folklore
says by a factor of 3. People simply think that they know
more than they actually do.
In the presence of ambiguity, the agent may only be

able to specify a set P of probability measures that seem
“plausible” or “fit” to express their initial opinion on the
events of interest. Generally speaking, the farther apart (e.g.
in the total variation distance) the “boundary elements” ofP
(i.e. its infimum and supremum), the higher the ambiguity
faced by the agent. This way of proceeding, called the
sensitivity analysis approach, is further examined in Section
6.1.
As Section 6 will discuss, the infima of the sets updated

according to our DIPK procedure – that, as we shall see,
are called lower probabilities – completely characterize the
sets. That is why in [7, Section 7] the authors give lower and
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upper bounds for the updated lower and upper probabilities
(the conjugate of lower probabilities), respectively, and
in [7, Section 8] they study the behavior of the updated
sets (contraction, dilation, sure loss) by giving sufficient
conditions involving lower (and upper) probabilities.

1.2. Probability Kinematics

DPK and DIPK are rooted in probability kinematics (PK),
also known as Jeffrey’s rule of updating. PK can be seen
as a generalization of Bayesian updating, the most famous
and widely used technique to describe updating of beliefs.
This latter prescribes the scholar to form an initial opinion
on the plausibility of the event 𝐴 of interest, where 𝐴 is a
subset of the state space 𝛺, and to express it by specifying
a probability measure 𝑃, so that 𝑃(𝐴) can be quantified.
Once some data 𝐸 is collected, the Bayesian updating
mechanism revises the initial opinion by applying the Bayes’
rule 𝑃★(𝐴) ≡ 𝑃(𝐴 | 𝐸) = 𝑃(𝐴 ∩ 𝐸)/𝑃(𝐸) = [𝑃(𝐸 |
𝐴)𝑃(𝐴)]/𝑃(𝐸) ∝ 𝑃(𝐸 | 𝐴)𝑃(𝐴), provided that 𝑃(𝐸) ≠
0.1 In [18, 19, 20], Richard Jeffrey makes a compelling case
that Bayes’ rule is not the only reasonable way of updating.
Its use presupposes that both 𝑃(𝐸) and 𝑃(𝐴∩𝐸) have been
quantified before event 𝐸 takes place: this can be a very
challenging task, for instance when 𝐸 is not anticipated.
Jeffrey points out that evidence is not always propositional
(i.e. it may not be possible to represent it as a crisp subset);
rather, it is oftentimes uncertain or partial.2
Bayes’ rule is not well-suited for the agent who possesses

partial information. The following example illustrates a
situation in which Bayes’ rule is not directly applicable to
compute the updated probability of an event (we would
need to enlarge the state space), but Jeffrey’s rule is.

Example 1 [11, Section 1.1] Three trials of a new
surgical procedure are to be conducted at a hospi-
tal. Let 1 denote a successful outcome, and 0 an un-
successful one. The state space has the form 𝛺 =

{000, 001, 010, 011, 100, 101, 110, 111}. A colleague in-
forms us that another hospital performed this type of proce-
dure 100 times, registering 80 successful outcomes. This
information is relevant and should influence our opinion
about the outcome of the three trials, but it cannot be put in
direct terms of the occurrence of an event in the original 𝛺,
thus Bayes’ rule is not directly applicable.

Since the description contains no information about the
order of the three trials, our initial opinion 𝑃 assumes
that they are exchangeable. That is, consider the partition

1Conditioning on a zero probability event is technically possible,
see e.g. literature on lexicographic probability [6] and layers of zero
probabilities [10]. We will consider this eventuality in future work.

2Notice that when introducing PK, Jeffrey was not concerned about
probabilities being precise: this is one of themain reasonswhywe introduce
DIPK in Section 6.

{𝐸0, 𝐸1, 𝐸2, 𝐸3} of 𝛺 where 𝐸 𝑗 is the set of all outcomes
with exactly 𝑗 successes, exchangeability implies that we
assign equal probabilities to atomic events within each par-
tition. In other words, 𝑃({001}) = 𝑃({100}) = 𝑃({010})
and 𝑃({110}) = 𝑃({101}) = 𝑃({011}).

The success rate at the other hospital informs our opinion
over the partition {𝐸 𝑗 } only, and nothing more. In relation
to our old opinion 𝑃, our updated opinion 𝑃★ satisfies
𝑃(𝐴 | 𝐸 𝑗 ) = 𝑃★(𝐴 | 𝐸 𝑗 ) for all 𝐴 ⊂ 𝛺 and all 𝑗 ∈
{0, 1, 2, 3}. Upon specifying a new subjective assessment
of the 𝑃★(𝐸 𝑗 )’s, the updated probability measure 𝑃★ can
be fully reassessed by the relation 𝑃★(𝐴) = ∑3

𝑗=0 𝑃
★(𝐴 |

𝐸 𝑗 )𝑃★(𝐸 𝑗 ) =
∑3

𝑗=0 𝑃(𝐴 | 𝐸 𝑗 )𝑃★(𝐸 𝑗 ). It is within our
liberty to reassess the 𝑃★(𝐸 𝑗 )’s. We may, for example,
regard the three trials as a random subsample of size
three from those of the other hospital. This would equate
𝑃★(𝐸 𝑗 ) to the probability of obtaining 𝑗 successes from a
Hypergeometric(100, 80, 3) distribution. 4

The rule 𝑃★(𝐴) = ∑
𝐸 𝑗 ∈E 𝑃(𝐴 | 𝐸 𝑗 )𝑃★(𝐸 𝑗 ) is known

as Jeffrey’s rule of conditioning. It is valid when there is
a partition E of the state space 𝛺 such that 𝑃★(𝐴 | 𝐸 𝑗 ) =
𝑃(𝐴 | 𝐸 𝑗 ), for all 𝐴 ⊂ 𝛺 and all 𝐸 𝑗 ∈ E. Under this
assumption, if E is finite Jeffrey’s rule is a consequence
of coherence [32, Section 6.11.8]. It is useful when new
evidence cannot be identified with the occurrence of an
event, but has the effect of changing the probabilities we
assign to the events in partition E. It has the practical
advantage of reducing the assessment of 𝑃★ to the simpler
task of assessing 𝑃★(𝐸 𝑗 ), for all 𝐸 𝑗 ∈ E. In the above
example, instead of a full reassessment of probabilities on
𝛺, the agent only needs to deliberate new assessment of
the four probabilities 𝑃★(𝐸0) through 𝑃★(𝐸3) based on the
given information.
To see that Jeffrey’s rule of conditioning is a generaliza-

tion of Bayes’ rule, consider partition {𝐸, 𝐸𝑐} for some
𝐸 ⊂ 𝛺. If 𝑃★(𝐸) = 1, we have that 𝑃★(𝐴) = 𝑃(𝐴 |
𝐸)𝑃★(𝐸) +𝑃(𝐴 | 𝐸𝑐)𝑃★(𝐸𝑐) = 𝑃(𝐴 | 𝐸), which is Bayes’
rule. Unlike Bayesian conditionalization, however, if we
are given the pair {𝑃, 𝑃★} of probability measures, we can
always reconstruct a partition {𝐸 𝑗 } for which {𝑃, 𝑃★} could
have arisen via Jeffrey’s rule [11, Section 2].
Let us nowdiscuss the relation betweenDPKand Jeffrey’s

updating. The three main tasks in PK are: (1) collecting
a partition E of state space 𝛺; (2) subjectively assess the
probability 𝑃★(𝐸) to attach to the elements 𝐸 of partition E;
(3) compute the update 𝑃★(𝐴) = ∑

𝐸 ∈E 𝑃(𝐴 | 𝐸)𝑃★(𝐸).
In DPK, we: (1’) collect data points belonging to a generic
set X that induce a partition E of state space 𝛺; (2’)
mechanically attach probabilities to the elements of the
induced partition; (3’) compute the update as in “regular”
PK. We allow the evidence observed by the agent to belong
to a general setX; data points are regarded as the realization
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of a random variable 𝑋 : 𝛺 → X. Notice that if the
distribution 𝑃𝑋 of 𝑋 were to be known, the elements of X
would induce a unique partition E = {𝐸 𝑗 } of 𝛺, where 𝐸 𝑗 =

{𝜔 ∈ 𝛺 : 𝑋 (𝜔) = 𝑥 𝑗 } and𝑃★(𝐸 𝑗 ) = 𝑃𝑋 ({𝑥 𝑗 }), for all 𝑥 𝑗 ∈
X. Instead, to further capture the idea of partial information,
we consider the case where 𝑃𝑋 is unknown. As we shall see,
given data points 𝑥1, . . . , 𝑥𝑛 ∈ X, they induce a partition
E = {𝐸 𝑗 }𝑚+1

𝑗=1 , 𝑚 ≤ 𝑛, where 𝑚 is the number of unique
elements in {𝑥1, . . . , 𝑥𝑛}, 𝐸 𝑗 = {𝜔 ∈ 𝛺 : 𝑋 (𝜔) = 𝑥 𝑗 }
for 𝑗 ∈ {1, . . . , 𝑚}, and 𝐸𝑚+1 = (∪𝑚

𝑗=1𝐸 𝑗 )𝑐 . The relative
frequency of 𝑥1, . . . , 𝑥𝑛 will induce the probability that the
agent assigns to the elements of E, making the update from
𝑃 to 𝑃★ mechanical.

1.3. Structure of the Paper

The paper is organized as follows. In Section 2, we discuss
the connection between our work and three important pa-
pers. Further related literature is inspected in Appendix A.
Sections 3 and 4 introduce dynamic probability kinematics
(DPK). In Section 5, we explain how to subsequently up-
date probability measure 𝑃 as more and more data become
available. Section 6 presents dynamic imprecise probability
kinematics (DIPK), and Section 7 presents two examples
that illustrate how to implement DPK and DIPK. Section 8
concludes, and Section 9 contains the proofs of our results.

2. Related Literature

In [26], the authors generalize Jeffrey’s rule to credal sets
theory; they introduce imaginary kinematics [26, Definition
7]. They combine Jeffrey’s rule with Lewis’ imaging [23]
for credal sets to be able to update beliefs when possibly
inconsistent probabilistic evidence is gathered. Evidence
on some variables is called inconsistent when it contradicts
certainty (or impossibility) in the agent’s knowledge base.
There are two main differences between our work and
[26]. First, we consider an agent facing ambiguity who
specifies a set of probabilitymeasures that encapsulates their
initial beliefs, while [26] do not. Second, [26] considers
the instance in which gathered evidence is partial and
possibly inconsistent, while we only deal with the former.
In the future we will generalize DIPK by relaxing the (tacit)
assumption that the gathered evidence is consistent.
In [8] the authors provide an ergodic theory for the

limit of a sequence of successive DIPK updates of a set
representing the initial beliefs of an agent. As a consequence,
they formulate a strong law of large numbers. These results
are instrumental to increase the applicability of DIPK;
for example, they underpin generalizations of classical
Markov Chain Monte Carlo procedures that allow for DIPK
updating.

We conclude this Section by mentioning the remarkable
work by Diaconis and Zabell [11]. Their paper inspired our
effort to derive a mechanical version of PK. In particular, on
top of borrowing Example 1, we adapt their results to show
that DPK is not commutative, and that DPK updates can
be obtained by Bayesian updating in a larger space 𝛺′ ⊃ 𝛺

(see Section 5).

3. A New Way of Updating Subjective Beliefs
In this and in the next Sections, we describe a new way of
updating subjective beliefs based on Jeffrey’s rule of condi-
tioning [11, 18, 19, 20], which we call dynamic probability
kinematics (DPK). Let 𝛺 be the state space of interest, and
assume it is at most countable. The version of DPK with
uncountable 𝛺 will be the subject of a future work. Suppose
that 𝑃 is a finitely additive probability measure on (𝛺, F )
representing an agent’s initial beliefs around the elements of
F = 2𝛺 , and that we want to update it after collecting some
data.3 We work with finitely additive probabilities because,
as we shall see in Section 6, when we introduce ambiguity
into the picture they allow us to retrieve some interesting
results from [32]. The agent observes data points 𝑥1, . . . , 𝑥𝑛
that are realizations of a random quantity 𝑋 : 𝛺 → X
whose distribution 𝑃𝑋 is unknown.4 Call 𝐹𝑋 its cdf, and
assume X is finite.5 Notice that collecting 𝑥1, . . . , 𝑥𝑛 is
equivalent to observing 𝜔1, . . . , 𝜔𝑛 ∈ 𝛺, and then comput-
ing 𝑋 (𝜔𝑖) = 𝑥𝑖 . Consider now the collection E ′ := (𝐸𝑖)𝑛𝑖=1,
where 𝐸𝑖 ≡ 𝑋−1 (𝑥𝑖) := {𝜔 ∈ 𝛺 : 𝑋 (𝜔) = 𝑥𝑖}. It in-
duces partition E = {𝐸 𝑗 }𝑚+1

𝑗=1 of 𝛺, 𝑚 ≤ 𝑛. Here, with a
slight abuse of notation, we denote the unique elements of
E ′ by 𝐸1, . . . , 𝐸𝑚, and the complement of their union by
𝐸𝑚+1 = (∪𝑚

𝑗=1𝐸 𝑗 )𝑐 = 𝛺 \ ∪𝑚
𝑗=1𝐸 𝑗 .

As an update to 𝑃, we propose 𝑃E : F → [0, 1], 𝐴 ↦→
𝑃E (𝐴) :=

∑
𝐸 𝑗 ∈E 𝑃(𝐴 | 𝐸 𝑗 )𝑃E (𝐸 𝑗 ), such that 𝑃E (𝐸 𝑗 ) ≥

0, for all 𝐸 𝑗 ∈ E, and ∑𝐸 𝑗 ∈E 𝑃E (𝐸 𝑗 ) = 1. We have the
following.

Proposition 1 𝑃E is a finitely additive probability mea-
sure.6

In general, Jeffrey’s rule of conditioning – as presented
in [11, Equation 1.1] – is given by 𝑃★(𝐴) =

∑
𝑗 𝑃(𝐴 |

𝐸 𝑗 )𝑃★(𝐸 𝑗 ), where 𝑃★ is Jeffrey’s posterior for 𝑃. It is
valid when Jeffrey’s condition is met, that is, when there
is a given partition {𝐸 𝑗 } of the state space 𝛺 such that

3We assume F = 2𝛺 to work with the richest possible sigma-algebra;
all the results in this paper still hold if F is not the power set. 𝛺 is
assumed at most countable for simplicity: we want to focus on the updating
mechanism and not on measure-theoretic complications.

4𝑃𝑋 is assumed to be a finitely additive probability measure on X.
5This assumption is needed to ensure that partition Ẽ in Proposition

3 is finite.
6This proposition is true also in the countably additive case. That is,

if 𝑃 is countably additive, then 𝑃E is also countably additive.
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𝑃(𝐴 | 𝐸 𝑗 ) = 𝑃★(𝐴 | 𝐸 𝑗 ) is true for all 𝐴 ∈ F and all
𝑗 . Specifically, this condition is met by 𝑃E . Since 𝑃E is
a finitely additive probability measure by Proposition 1,
it is true that, for all 𝐴 ∈ F , 𝑃E (𝐴) =

∑
𝐸 𝑗 ∈E 𝑃E (𝐴 |

𝐸 𝑗 )𝑃E (𝐸 𝑗 ). But given our definition for 𝑃E , we also have
that 𝑃E (𝐴) =

∑
𝐸 𝑗 ∈E 𝑃(𝐴 | 𝐸 𝑗 )𝑃E (𝐸 𝑗 ). This implies that

there is a partition E for which 𝑃(𝐴 | 𝐸 𝑗 ) = 𝑃E (𝐴 | 𝐸 𝑗 ) is
true for all 𝐴 ∈ F and all 𝐸 𝑗 ∈ E.

4. An Empirical Specification of 𝑃E

In this Section, we show how to compute DPK updating for
𝑃E (𝐴) via an empirically specified sequence of partitions,
which in turn determines a sequence of empirical probability
measures. Utilizing it eases the analyst of the burden of
making a full subjective probabilistic assessment for the
elements of E.
Recall that E ′ = (𝐸𝑖)𝑛𝑖=1 = {𝑋−1 (𝑥𝑖)}𝑛𝑖=1, and E =

{𝐸 𝑗 }𝑚+1
𝑗=1 , where 𝐸1, . . . , 𝐸𝑚 are the unique elements of E ′,

and 𝐸𝑚+1 = (∪𝑚
𝑗=1𝐸 𝑗 )𝑐 . Denote by 𝛥(𝛺, F ) the set of all

finitely additive probability measures on (𝛺, F ). Then, con-
sider the empirical probability measure 𝑃𝑒𝑚𝑝 ∈ 𝛥(𝛺, F )
such that, if 𝐸𝑚+1 ≠ ∅,

𝑃𝑒𝑚𝑝 (𝐸 𝑗 ) =
1

𝑛 + 1

𝑛∑︁
𝑖=1

𝕀(𝐸 𝑗 = 𝐸𝑖), (1)

for all 𝑗 ∈ {1, . . . , 𝑚}, where 𝕀 denotes the indicator func-
tion, and

𝑃𝑒𝑚𝑝 (𝐸𝑚+1) = 1 −
𝑚∑︁
𝑗=1

𝑃𝑒𝑚𝑝 (𝐸 𝑗 ). (2)

If instead 𝐸𝑚+1 = ∅, 𝑃𝑒𝑚𝑝 (𝐸 𝑗 ) = 1/𝑛
∑𝑛

𝑖=1 𝕀(𝐸 𝑗 = 𝐸𝑖), for
all 𝑗 ∈ {1, . . . , 𝑚}, and 𝑃𝑒𝑚𝑝 (𝐸𝑚+1) = 0. We require that,
for all 𝐸 𝑗 ∈ E,

𝑃E (𝐸 𝑗 ) = 𝛽(𝑛)𝑃(𝐸 𝑗 ) + [1 − 𝛽(𝑛)] 𝑃𝑒𝑚𝑝 (𝐸 𝑗 ), (3)

where 𝛽(𝑛) is a coefficient in [0, 1] depending on 𝑛: the
posterior probability 𝑃E assigned to the elements 𝐸 𝑗 of
partition E is a weighted average of the prior 𝑃 and the
empirical probability measure 𝑃𝑒𝑚𝑝.7 Performing the up-
date in Section 3 then becomes a mechanical procedure.
The coefficient 𝛽(𝑛) is specified by the agent and controls
the extent of prior-data trade-off in the updated belief. The
closer 𝛽(𝑛) is to 1, the “stickier” DPK is; that is, the less
the collected observations influence the agent’s (revised)
beliefs, and vice versa the closer 𝛽(𝑛) is to 0. The facts that
DPK is mechanical and that its stickiness is regulated by a
parameter that is entirely under the agent’s control makes

7In [7, Remark 9], the authors discuss an appealing choice of 𝛽 (𝑛) .

our updating procedure mathematically and conceptually
appealing.
In the remainder of this paper, we use the above procedure

to assign updated probabilities to the elements of E. We
do so for two main reasons. The first one is that it makes
studying the asymptotic behavior of subsequent updates of
𝑃E relatively easy (see Theorem 4). The second one is that
controlling the stickiness of the update via parameter 𝛽(𝑛) is
desirable in many examples, and also from a computational
point of view. An example of how to update subjective
beliefs according to DPK is given in Section 7.1.8

5. Subsequent Updates
Let us denote the amount of data available at time
𝑡 = 1 by 𝑛1. Once at time 𝑡 = 2 we observe new
data points 𝑥𝑛1+1, . . . , 𝑥𝑛2 , and update 𝑃E ≡ 𝑃E1 to
𝑃E1E2 via the empirical procedure presented in Sec-
tion 4. That is, consider partition E2 = {𝐸 𝑗 }𝑘+1𝑗=1 where
𝐸1, . . . , 𝐸𝑘 are the unique elements in the collection
E ′′ = (𝐸𝑖)𝑛2𝑖=1 = {𝑋−1 (𝑥𝑖)}𝑛2𝑖=1, and 𝐸𝑘+1 = (∪𝑘

𝑗=1𝐸𝑘 )𝑐 . We
equate 𝑃E1E2 (𝐸 𝑗 ) = 𝛽(𝑛2)𝑃E1 (𝐸 𝑗 )+[1−𝛽(𝑛2)]𝑃𝑒𝑚𝑝

2 (𝐸 𝑗 ),
for all 𝐸 𝑗 ∈ E2, where the 𝑃𝑒𝑚𝑝

2 (𝐸 𝑗 )’s are computed simi-
larly to Section 4, so we have 𝑃E1E2 (𝐴) =

∑
𝐸 𝑗 ∈E2 𝑃E1 (𝐴 |

𝐸 𝑗 )𝑃E1E2 (𝐸 𝑗 ). Clearly, Proposition 1 is true also for 𝑃E1E2 .
Call (𝑃E1 · · ·E𝑡

), 𝑡 ∈ ℕ, the sequence of successive updates
of probability measure 𝑃 representing the initial subjective
beliefs of the agent around the elements of 𝛺, and x𝑡 =

(𝑥𝑖)𝑛𝑡𝑖=1 the collection of data points available at time 𝑡.
Notice that #E𝑡 = #unique(x𝑡 ) + 1, where # denotes the
cardinality operator. That is, the number of elements of
partition E𝑡 is equal to the number of unique observations
𝑥𝑖 collected up to time 𝑡 plus 1, the complementary of the
union of the other elements of E𝑡 . For convenience, from
here on we write 𝑃E𝑡

in place of 𝑃E1 · · ·E𝑡
for all 𝑡 ∈ ℕ.

Remark 2 Notice that 𝑛𝑡 > 𝑛𝑡−1 for all 𝑡 ∈ ℕ, and 𝑛0 =
0. That is, the amount of data points available at time
𝑡 is always larger than that at time 𝑡 − 1; this implies
that as 𝑡 → ∞, 𝑛𝑡 → ∞. In addition, we have that 𝑃E𝑡

depends on 𝑛1, . . . , 𝑛𝑡 and 𝑃E0; we denote this by 𝑃E𝑡
≡

𝑃E𝑡
(𝑛1, . . . , 𝑛𝑡 , 𝑃0).9

Aconsequence of howwe build partitions is that, for any 𝑡,
E𝑡 is not coarser thanE𝑡−1. To see this, supposeE𝑡−1 has ℓ+1
many elements, that is, E𝑡−1 = {𝐸 E𝑡−1

1 , . . . , 𝐸
E𝑡−1
ℓ

, 𝐸
E𝑡−1
ℓ+1 }.

As we know, this means that 𝐸 E𝑡−1
ℓ+1 = (∪ℓ

𝑗=1𝐸
E𝑡−1
𝑗

)𝑐 . Now
suppose that in the next updating step we only observe
one element 𝑥. If it is not a “novelty”, then E𝑡 = E𝑡−1. If

8A subtlety in moving from 𝑃 to 𝑃E is discussed in [7, Remark 3].
9To illustrate this, in [7, Remark 4] the authors write 𝑃E2 in terms of

𝑛1, 𝑛2, and 𝑃0; it is then easy to see how that can be generalized to any
𝑡 > 2.
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instead 𝑥 is a new element, we have that E𝑡 has ℓ + 2 many
elements. In particular, 𝐸 E𝑡−1

𝑗
= 𝐸

E𝑡

𝑗
, for all 𝑗 ∈ {1, . . . , ℓ},

and 𝐸 E𝑡−1
ℓ+1 = 𝐸

E𝑡

ℓ+1 ∪ 𝐸
E𝑡

ℓ+2. Of course, if we observe more
elements, we further refine 𝐸 E𝑡−1

ℓ+1 .

Proposition 3 There exists a partition Ẽ that cannot be
refined as a result of the updating process described in
Sections 3 and 4.

We now show how, under mild assumptions, the sequence
of successive subjective beliefs updated according to the
DPK procedure converges. Call 𝑄 the “objective” (finitely
additive) probability measure on (𝛺, F ). In the language
of Walley, it is the aleatory probability associated with
our experiment [32, Sections 1.3.2, 2.11.2]. That is, 𝑄 is
linked to a physical property of the analysis that does not
depend on the observer. Formally, we have that for all 𝑥 ∈ X,
𝑄(𝑋−1 (𝑥)) = 𝑃𝑋 ({𝑥}). On the other hand, an epistemic
probability models logical or psychological degrees of
belief of the agent. It is immediate to see, then, how the
probability 𝑃 specified by the agent at the beginning of the
analysis is an epistemic probability. Recall that 𝐹𝑋 denotes
the cdf of 𝑃𝑋 , and that the total variation distance 𝑑𝑇𝑉

is defined as 𝑑𝑇𝑉 (𝜋, 𝛾) := sup𝐴∈F |𝜋(𝐴) − 𝛾(𝐴) |, for all
𝜋, 𝛾 ∈ 𝛥(𝛺, F ).

Theorem 4 Suppose the following conditions hold,

1. lim𝑛𝑡→∞ 𝛽(𝑛𝑡 ) = 0;

2. for every discontinuity point 𝑥 of𝐹𝑋 ,𝐹𝑋 (𝑥+)−𝐹 (𝑥−) =
𝑃𝑋 ({𝑥});

3. 𝐹𝑋 (−∞) = 1 − 𝐹𝑋 (∞) = 0.

Then, 𝑃E𝑡
converges to

∑
𝐸 ∈Ẽ 𝑃E𝑡−1 (· | 𝐸)𝑄(𝐸) almost

surely as 𝑛𝑡 → ∞ in the total variation distance.10

Because as 𝑛𝑡 grows to infinity the partition induced by
collection {𝑋−1 (𝑥𝑖)}𝑛𝑡𝑖=1 approaches Ẽ, we denote by 𝑃 Ẽ
the limit we find in Theorem 4.
We tacitly assumed that for all nonempty 𝐴 ∈ F , the

probability assigned to 𝐴 by 𝑃 (representing the agent’s
initial beliefs) is positive. In formulas, 𝑃(𝐴) > 0, for all ∅ ≠

𝐴 ∈ F . This assumption is not too stringent. For example,
suppose the agent specifies 𝑃 so that there is a collection
of sets {𝐴′

𝑘
} ⊂ F such that 𝐴′

𝑘
≠ ∅ and 𝑃(𝐴′

𝑘
) = 0, for

all 𝑘 . Then, the agent should choose 𝑃̃ = (1 − 𝜖)𝑃 + 𝜖𝑅 as
probability encapsulating their initial beliefs, where 𝑅 is
a (finitely additive) probability measure belonging to the
set R := {𝑅 ∈ 𝛥(𝛺, F ) : 𝑅({𝜔}) > 0,∀𝜔 ∈ 𝛺}, and 𝜖 is
an arbitrarily small element of (0, 1). This procedure – a
particular case of 𝜖-contamination [4, 5, 15, 16] or padding

10In the countably additive case, it is enough to assume 1 to obtain the
same result. This is also true for Propositions 5 and 6.

[1] – keeps the initial beliefs essentially unaltered, and
avoids complications coming from conditioning on zero
probability events. In the future, we plan to deal with the
delicate matter of conditioning on zero probability events in
a more sophisticated way, possibly using techniques from
the literature on lexicographic probabilities [6] or layers of
zero probabilities [10].
Dynamic probability kinematics is not commutative. An

in-depth study of this issue is given in [7, Remark 8]. Should
the lack of commutativity worry the agent that intends to
update their beliefs using DPK? The answer is no. Since
successive partitions are induced by an increasing amount
of collected data points, commutativity would mean that
losing data yields no loss of information on the likelihood
of the event 𝐴 ⊂ 𝛺 of interest. This is undesirable: the
more we know about the composition of 𝛺, the better we
want our assessment to be on the plausibility of event 𝐴. As
Diaconis and Zabell point out in [11, Section 4.2, Remark
2], “noncommutativity is not a real problem for successive
Jeffrey updating”; it is not a real problem for DPK either.
Despite DPK is not in general commutative, the limit

probability 𝑃 Ẽ is the same regardless of the order in which
data is collected. Suppose we collect observations in a
different order in two different procedures. Call (E𝑡 ) and
(E ′

𝑡 ) the sequences of successive partitions in the first and
second procedures, respectively, and Ẽ and Ẽ ′ the limit
partitions for the first and second procedures, respectively.

Proposition 5 Suppose that conditions 1-3 of Theorem 4
hold. Call 𝑃 Ẽ the almost sure limit of (𝑃E𝑡

) and 𝑃 Ẽ′ the
almost sure limit of (𝑃E′

𝑡
) in the total variation metric as

𝑛𝑡 goes to infinity. Then, 𝑃 Ẽ = 𝑃 Ẽ′ .

In PK, an agent’s subjective probabilities over a fixed
partition E undergo an exogenous change (a Jeffrey shift),
which is then propagated across the rest of their probabilities
in a natural manner. Crucially, PK does not specify what
Jeffrey shift an agent’s probabilitieswill undergo; it treats the
choice of the Jeffrey shift as an input to the rule rather than
part of the rule itself. Indeed, in the original interpretation
of PK, the shift is usually a non-inferential change to the
agent’s degrees of belief that is not chosen consciously or
freely, but rather e.g. the brute result of a perceptual process.
Training the complicated network of neurons in our skull to
translate perceptive and proprioceptive inputs into sensible
Jeffrey shifts is something that Jeffrey did not believe should
be formalized.
DPK is an updating technique that sits in between Bayes’

and Jeffrey’s rules. It can be seen, heuristically, as a map
from specifications of statistical problems to choices of
Jeffrey shift (which are then propagated in the usual way,
via PK). While it is built as a particular case of PK, it
uses the empirical distribution to assign probabilities to the
elements of the updated partition E𝑡 . In order to mechanize
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the procedure, it gives up the freedom of choosing whatever
probability the agent feels correct to assign to the elements
of E𝑡 .11
Notice for example that DPK can give significantly dif-

ferent answers about the appropriate Jeffrey shift to use on
a given occasion than a trained medical expert. Though it
may give different (potentially worse) answers than subject
matter experts, it nevertheless enjoys the properties that we
present in the next paragraph. The choice of adopting DPK
instead of PK to update one’s beliefs is based on such a
trade-off.
If evidence is collected that does not belong to 𝛺, that

is, if X ⊄ 𝛺, then using the inverse image 𝑋−1 of function
𝑋 , DPK allows one to update their beliefs without first
needing to enlarge 𝛺 to 𝛺′ = 𝛺×X. Notice also that, being
a particular case of PK, DPK updates can be obtained by
Bayesian updating in a larger space 𝛺′ [11, Theorem 2.1].12
There are two main reasons for not wanting to enlarge the
state space: (i) reassessing our beliefs on a larger space
requires us to extend our beliefs from the elements of 2𝛺
to those of 2𝛺′ [12, 21];13 (ii) updating probabilities on a
larger sigma-algebra can be computationally costly. Besides
simplifying the updating procedure by not requiring an
enlarged state space, we also conjecture that DPK simplifies
the treatment of nuisance parameters, a statement that will
be verified in future work.

6. Working with Sets of Probabilities
In this Section, we generalize dynamic probability kinemat-
ics to dynamic imprecise probability kinematics (DIPK). To
do so, we first introduce the concepts of lower probability,
upper probability, and the core.

6.1. Concepts

Consider a generic set of probabilities 𝛱 on a measurable
space (𝛺, F ). The lower probability of 𝐴 associated with
𝛱 is defined as 𝑃(𝐴) := inf𝑃∈𝛱 𝑃(𝐴), for all 𝐴 ∈ F .
The upper probability of 𝐴 associated with 𝛱 is defined
as the conjugate to 𝑃(𝐴), that is, 𝑃(𝐴) := 1 − 𝑃(𝐴𝑐) =

sup𝑃′∈𝛱 𝑃′(𝐴), for all 𝐴 ∈ F . Recall that 𝛥(𝛺, F ) denotes
the set of all finitely additive probability measures on

11Such mechanical procedure is domain-invariant, that is, the same
rule is used e.g. for medical data (see Section 7.1) and for soccer matches
(see Section 7.2).

12In [11], the authors show that there exists a “duality” between Bayes’
rule (BR) and PK. BR can be seen as a special case of PK, as we pointed
out in Section 1.2, while at the same time we can obtain PK from BR if
we enlarge the state space.

13For the imprecise version of DPK, that is, for DIPK, we can extend
the agent’s beliefs via Walley’s extension [32, Chapter 3].

(𝛺, F ). 𝑃 completely characterizes its core14

core(𝑃) = {𝑃 ∈ 𝛥(𝛺, F ) : 𝑃(𝐴) ≥ 𝑃(𝐴),∀𝐴 ∈ F }
= {𝑃 ∈ 𝛥(𝛺, F ) : 𝑃(𝐴) ≥ 𝑃(𝐴) ≥ 𝑃(𝐴),∀𝐴 ∈ F },

where the second equality is a characterization. The core
of 𝑃 is the set of all probability measures on (𝛺, F ) that
setwise dominate 𝑃. Notice that the core is convex and
weak★-compact [32, Theorem 3.6.2].15
To generalize DPK to DIPK, we first prescribe the agent

to specify a set of probabilities P, then to compute the
lower probability associated with it.16 The core of such
lower probability represents the agent’s initial beliefs. To
update their beliefs, the agent computes the DPK update
of the extrema of the core, that is, of the elements of the
core that cannot be written as a convex combination of
other elements. Their updated beliefs are represented by the
convex hull of the updated extrema, which coincides with
the core of the updated lower probability by [32, Theorem
3.6.2].
We assume that the number of extrema of PcoE0 is finite;

we do so mainly for computational reasons [7, Remark 14].
We require the agent’s beliefs to be represented by the

core for two main reasons. The first, mathematical, one is
to ensure that the belief set can be completely characterized
by the lower probability, and that lower probability 𝑃 is
coherent [32, Section 3.3.3]. The second, philosophical,
one is presented next.
At the beginning of the study, the sensitivity analysis

approach to imprecise probabilities prescribes the agent to
specify a set of possible (or plausible) candidates for the
true or ideal probability measure 𝑃𝑇 governing the events
of interest [3]. As [32, Section 5.9] points out, this way
of proceeding assumes the axiom of ideal precision: there
exists a true probability measure 𝑃𝑇 governing the random
events, but it cannot be precisely known e.g. because we
would need an infinitely long reflection to elicit it.
The philosophical motivation for the agent’s beliefs being

represented by the core of 𝑃 is the following. A criticism
brought forward byWalley in [32, Section 2.10.4.(c)] is that,
given a lower probability 𝑃, there is no cogent reason for
which the agent should choose a specific 𝑃𝑇 that dominates
𝑃, or, for that matter, a collection of “plausible” probabilities.
Because the core considers all finitely additive probability
measures that dominate 𝑃, it is the perfect instrument

14By complete characterization, we mean that it is sufficient to know
𝑃 to be able to completely specify core(𝑃) . To emphasize this aspect,
some authors say that 𝑃 is compatible with core(𝑃) [14].

15Recall that in the weak★ topology, a net (𝑃𝛼)𝛼∈𝐼 converges to 𝑃 if
and only if 𝑃𝛼 (𝐴) → 𝑃 (𝐴) , for all 𝐴 ∈ F.

16We work with the core instead of the convex hull of P because
the lower probability completely characterizes the core, but does not
completely characterize the convex hull [7, Remark 15].
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to reconcile Walley’s behavioral and sensitivity analysis
interpretations.17

6.2. DIPK for Sets of Probabilities

The analysis begins with specifying a set P ⊂ 𝛥(𝛺, F )
of finitely additive probability measures on 𝛺. Consider
𝑃 ≡ 𝑃E0 , the lower probability associated with P. The set
representing the agent’s initial beliefs is given by PcoE0 =
core(𝑃E0 ), where superscript co denotes the fact that P

co
E0

is convex and compact. We also need to consider the set
PE0 = exPcoE0 of extrema of P

co
E0 .

We then compute the DPK update of every element in
PE0 , and we obtain

PE1 :=
{
𝑃E1 : 𝑃E1 (𝐴) =

∑︁
𝐸 𝑗 ∈E1

𝑃E0 (𝐴 | 𝐸 𝑗 )𝑃E1 (𝐸 𝑗 ),

∀𝐴 ∈ F , 𝑃E0 ∈ PE0

}
.

After that, we compute PcoE1 = Conv(PE1 ) = core(𝑃E1 ),
where 𝑃E1 is the updated lower probability, Conv(·) denotes
the convex hull, and the last equality holds by [32, Theorem
3.6.2].
Repeating this procedure, we build two sequences, (PE𝑡

)
and (PcoE𝑡

). Notice that for any 𝑡 ∈ ℕ, the lower and upper
probabilities associated with PE𝑡

are equal to the lower and
upper probabilities associated with PcoE𝑡

, respectively. An
example of how to update subjective beliefs according to
DIPK is given in Section 7.2.
Recall that 𝑑𝑇𝑉 denotes the total variation distance

𝑑𝑇𝑉 (𝜋, 𝛾) := sup𝐴∈F |𝜋(𝐴) − 𝛾(𝐴) |, for all 𝜋, 𝛾 ∈
𝛥(𝛺, F ). Suppose that assumptions 1-3 of Theorem 4
hold. Call PẼ := {𝑃 Ẽ ∈ 𝛥(𝛺, F ) : 𝑑𝑇𝑉 (𝑃E𝑡

, 𝑃Ẽ)
𝑎.𝑠.−−−−−→

𝑛𝑡→∞
0, 𝑃E𝑡

∈ PE𝑡
}. That is, PẼ is the set of limits (as 𝑛𝑡 goes

to infinity with probability 1 in the total variation metric)
of the elements 𝑃E𝑡

of set PE𝑡
representing the (extrema of

the) agent’s updated beliefs. We are sure PẼ is not empty
by Proposition 3 and Theorem 4. Then, by construction,
we have that 𝑑𝐻 (PE𝑡

,PẼ) → 0 as 𝑛𝑡 goes to infinity with
probability one, where 𝑑𝐻 denotes the Hausdorff metric
max(sup𝑃∈PE𝑡

𝑑𝑇𝑉 (𝑃,PẼ), sup𝑃′∈PẼ
𝑑𝑇𝑉 (PE𝑡

, 𝑃′)) and,
in general, 𝑑𝑇𝑉 (𝜋, 𝛤) := inf𝛾∈𝛤 𝑑𝑇𝑉 (𝜋, 𝛾), for all 𝜋 ∈
𝛥(𝛺, F ) and all 𝛤 ⊂ 𝛥(𝛺, F ). Such a convergence is true
also for PcoE𝑡

and PcoẼ , as shown in the next proposition.

Proposition 6 If assumptions 1-3 of Theorem 4 hold, then
𝑑𝐻 (Pco

E𝑡
,Pco

Ẽ ) → 0 as 𝑛𝑡 goes to infinity with probability
one.

17In the imprecise probabilities literature, agents are often required to
specify coherent lower (and upper) probabilities [32, Section 2.5]. In [32,
Section 3.3.3] the author shows that 𝑃 is coherent if and only if it can be
written as the infimum of a set P of finitely additive probability measures.

Let us discuss the importance of PcoE𝑡
being convex

and compact. Consider a generic set of probabilities 𝛱
on a measurable space (𝛺, F ). Suppose 𝛱 is finite, i.e.
𝛱 = {𝜋 𝑗 }𝑘𝑗=1, for some 𝑘 ∈ ℕ. Then, the lower probability
associated with 𝛱 is equivalent to the one associated with
its convex hull Conv(𝛱 ). If instead 𝛱 is convex but open,
then the lower probability associated with 𝛱 is equivalent
to the one associated with its closure Cl(𝛱 ). To this extent,
lower probabilities are not able to detect “holes and dents”
in their associated set of probabilities. This is why we need
the sequence of convex and (weak★-)compact sets (PcoE𝑡

) to
represent the agent’s belief updating procedure.
Notice that assuming 𝑃(𝐴) > 0, for all ∅ ≠ 𝐴 ∈ F ,

implies a near-ignorance assumption in the DIPK update.
This means that every element in PE0 = exPcoE0 gives
positive probability to all nonempty 𝐴 ∈ F . This is desirable
because no finite sample is enough to annihilate a sufficiently
extreme prior belief [7, Remark 17].

7. Examples of DPK and DIPK Updating

In this Section, we present two simple examples on how
to update subjective beliefs according to DPK and DIPK
procedures.

7.1. Trials of a New Surgical Procedure

We continue Example 1, and show how to frame it within
the DPK paradigm. Recall that we wish to form a prob-
abilistic opinion of a new surgical procedure to be per-
formed three times at a new hospital. Upon one colleague’s
suggestion that another hospital performed this type of
procedure with a success rate of 0.8, we update by consid-
ering random variable 𝑋 : 𝛺 → X = {0, 1, 2, 3} whose
distribution is unknown and such that 𝑋 (𝜔) represents the
number of 1’s in 𝜔. As we can see, 𝑋−1 (3) = {111},
𝑋−1 (2) = {011, 101, 110}, 𝑋−1 (1) = {001, 010, 100},
𝑋−1 (0) = {000}. The finest partition of 𝛺 according to
DPK, then, is given by Ẽ = {𝐸0, 𝐸1, 𝐸2, 𝐸3, 𝐸4}, where
𝐸 𝑗 = 𝑋−1 ( 𝑗), 𝑗 ∈ {0, 1, 2, 3}, and 𝐸4 = ∅. Recall that
in DPK data points contribute information not through
their sheer number, but rather the way they partition the
space and assign relative frequencies. The information
that our colleague provided us is equivalent to observing
1000 data points 𝑥1, . . . , 𝑥1000, out of which 512 are all
3’s, 384 are all 2’s, 96 are all 1’s, and 8 are all 0’s. This
because the relative frequency 𝐹𝑟 of the elements of X is
𝐹𝑟 ({3}) = 512/1000 = 1 · 0.83, 𝐹𝑟 ({2}) = 384/1000 =
3 · 0.2 · 0.82, 𝐹𝑟 ({1}) = 96/1000 = 3 · 0.22 · 0.8, and
𝐹𝑟 ({0}) = 8/1000 = 1 · 0.23. But why should they be
derived in this way? We have that 𝐹𝑟 ({3}) = 1 · 0.83 be-
cause there is only one way of obtaining three successes,
each of which has probability 0.8 in the procedures con-
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ducted at the hospital that our colleague informed us about.
Instead, 𝐹𝑟 ({2}) = 3 · 0.2 · 0.82 because there are three
ways of obtaining two successes and one failure, where
the probability of the latter is 0.2 according to our col-
league. Finally, 𝐹𝑟 ({1}) = 3 · 0.22 · 0.8 because there are
three ways of obtaining one successes and two failures,
and 𝐹𝑟 ({0}) = 1 · 0.23 because there is only one way of
obtaining three failures.
Relative frequency 𝐹𝑟 implies that 𝑃𝑒𝑚𝑝

1 (𝐸0) = 0.008,
𝑃
𝑒𝑚𝑝

1 (𝐸1) = 0.096, 𝑃𝑒𝑚𝑝

1 (𝐸2) = 0.384, 𝑃𝑒𝑚𝑝

1 (𝐸3) =

0.512, and 𝑃
𝑒𝑚𝑝

1 (𝐸4) = 0. This corresponds to collect-
ing the following probabilistic evidence: three failures
with probability 0.008, only one success with proba-
bility 0.096, two successes with probability 0.384, and
three successes with probability 0.512. We are now ready
to compute the DPK update of our initial 𝑃. Given
the composition of the sample space X, we have that
𝑃({000}) = 𝑝0, 𝑃({001}) = 𝑃({100}) = 𝑃({010}) = 𝑝1,
𝑃({110}) = 𝑃({101}) = 𝑃({011}) = 𝑝2, 𝑃({111}) = 𝑝3.
Suppose 𝛽(𝑛𝑡 ) = 1/𝑛𝑡 ; in turn we have

𝑃E1 ({000}) =
𝑝0

𝑃E0 (𝐸0)

(
𝑝0
1000

+ 999
1000

𝑃
𝑒𝑚𝑝

1 (𝐸0)
)

= 1 ·
(

𝑝0
1000

+ 7.992
1000

)
=

𝑝0 + 7.992
1000

,

𝑃E1 ({001}) =
𝑝1

𝑃E0 (𝐸1)

(
𝑝1
1000

+ 999
1000

𝑃
𝑒𝑚𝑝

1 (𝐸1)
)

=
1
3
·
(

𝑝1
1000

+ 95.904
1000

)
=

𝑝1 + 95.904
3000

,

𝑃E1 ({011}) =
𝑝2

𝑃E0 (𝐸2)

(
𝑝2
1000

+ 999
1000

𝑃
𝑒𝑚𝑝

1 (𝐸2)
)

=
1
3
·
(

𝑝2
1000

+ 383.616
1000

)
=

𝑝2 + 383.616
3000

,

𝑃E1 ({111}) =
𝑝3

𝑃E0 (𝐸3)

(
𝑝3
1000

+ 999
1000

𝑃
𝑒𝑚𝑝

1 (𝐸3)
)

= 1 ·
(

𝑝3
1000

+ 511.488
1000

)
=

𝑝3 + 511.488
1000

,

and 𝑃E1 ({001}) = 𝑃E1 ({010}) = 𝑃E1 ({100}),
𝑃E1 ({011}) = 𝑃E1 ({110}) = 𝑃E1 ({101}). We can see
how, because of the composition of sample space X, in the
case of only one successful outcome the updated probability
𝑃E1 assigned to {001}, {010}, and {100} is exactly 1/3 of
the mixture between the prior and the empirical probability
of 𝐸1. The same is true for the case of two successful
outcomes.
To generalize the DPK updating presented here to a

DIPK updating involving a set P of probability measures
representing the initial beliefs of the agent one can follow
the procedure explained in Section 7.2.

7.2. Soccer Match Results

This example is built on [32, Section 4.6.1]. Let 𝛺 =

{𝑊, 𝐷, 𝐿} represent the result of soccer match Juventus
Turin vs Inter Milan, where𝑊 denotes a win for Juventus
Turin, 𝐷 a draw, and 𝐿 a loss for Juventus Turin. Let then
𝑋 : 𝛺 → X = {0, 1}, where 1 denotes a useful result (a
victory or a draw) and 0 denotes a defeat, so 𝑋 can be
thought of as a Bernoulli random variable with unknown
parameter. It is immediate to see how the finest partition of
𝛺 according to DPK is given by Ẽ = {𝐸1, 𝐸2, 𝐸3}, where
𝐸1 = {𝑊, 𝐷}, 𝐸2 = {𝐿}, and 𝐸3 = ∅. We call 𝑃E𝑡

the
𝑡-th update of 𝑃 ≡ 𝑃E0 ; 𝑃 Ẽ denotes the limit of sequence
(𝑃E𝑡

).18
The data points 𝑥1, . . . , 𝑥𝑛 that we collect represent the

outcomes of past matches. Because the two teams are well
established and high-level, it is reasonable to assume that
function 𝑋 is fixed.
Let us describe how to perform a DIPK update of

subjective beliefs in this context. Let the agent specify
P ⊂ 𝛥(𝛺, F ), and suppose that the lower and upper prob-
abilities 𝑃 ≡ 𝑃E0 and 𝑃 ≡ 𝑃E0 associated with P are
such that 𝑃 (𝑊) = 𝑃 (𝐷) = 0.27, 𝑃 (𝑊) = 𝑃 (𝐷) = 0.52,
𝑃 (𝐿) = 0.21, and 𝑃 (𝐿) = 0.31.19
A simplex representation is given in Figure 1 where each

assessment is represented by a line parallel to one side of
the simplex.20 The initial beliefs of the agent are encap-
sulated in PcoE0 = core(𝑃). To update P

co
E0 we need to find

PE0 = exPcoE0 . This is an easy job; it is sufficient to 1. Equate
𝑃(𝜔) to either 𝑃(𝜔) or 𝑃(𝜔) for two of the three events. The
probability of the third is then determined; 2. Checkwhich of
the resulting 𝑃 satisfies 𝑃 ≤ 𝑃 ≤ 𝑃. This procedure gives us
four extreme pointsPE0 = {𝑃𝑒𝑥

1,E0 , 𝑃
𝑒𝑥
2,E0 , 𝑃

𝑒𝑥
3,E0 , 𝑃

𝑒𝑥
4,E0 } such

that (𝑃𝑒𝑥
1,E0 (𝑊), 𝑃𝑒𝑥

1,E0 (𝐷), 𝑃𝑒𝑥
1,E0 (𝐿)) = (0.52, 0.27, 0.21),

(𝑃𝑒𝑥
2,E0 (𝑊), 𝑃𝑒𝑥

2,E0 (𝐷), 𝑃𝑒𝑥
2,E0 (𝐿)) = (0.27, 0.42, 0.31),

(𝑃𝑒𝑥
3,E0 (𝑊), 𝑃𝑒𝑥

3,E0 (𝐷), 𝑃𝑒𝑥
3,E0 (𝐿)) = (0.42, 0.27, 0.31), and

(𝑃𝑒𝑥
4,E0 (𝑊), 𝑃𝑒𝑥

4,E0 (𝐷), 𝑃𝑒𝑥
4,E0 (𝐿)) = (0.27, 0.52, 0.21). The

extrema PE0 of PcoE0 are the vertices of the grey trapezoid
in Figure 1.
As of January 12, 2022, there have been 257 matches

between the two teams, with 178 useful results for Juventus
Turin and 79 wins for Inter Milan.21 This is to say that we
observe 𝑥1, . . . , 𝑥257 such that 178 are 1’s, and 79 are 0’s.
Then, to compute PcoE1 it is enough to update the extrema
in PE0 so to obtain PE1 , and then consider the convex hull
of the latter. The partition induced by the collected data is
E1 = {𝐸1, 𝐸2, 𝐸3}, and we have that 𝑃𝑒𝑚𝑝

1 (𝐸1) = 178/257,

18Notice that Ẽ is attained almost immediately: it is enough to observe
𝑥 𝑗 ≠ 𝑥𝑘 , for some 𝑗 ≠ 𝑘.

19Wewrite 𝑃 (𝜔) in place of 𝑃 ( {𝜔 }) and 𝑃 (𝜔) in place of 𝑃 ( {𝜔 }) ,
𝜔 ∈ {𝑊 , 𝐷, 𝐿 }, for notational convenience.

20Notice that the higher the values assigned by 𝑃 to {𝜔 } ⊂ 𝛺, the
closer the line representing 𝑃 ( {𝜔 }) is to vertex 𝜔 ∈ {𝑊 , 𝐷, 𝐿 }.

21Data available here.
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L W

D

Pℰ0
(L) = 0.21

Pℰ0(L) = 0.31
Pℰ0

(W ) = 0.27

Pℰ0(W ) = 0.52

Pℰ0
(D) = 0.27

Pℰ0(D) = 0.52

Pℰ1
(W ) ≈ 0.251

Pℰ1(W ) ≈ 0.482Pℰ1(D) ≈ 0.482

Pℰ1
(D) ≈ 0.251

Pℰ1(L) ≈ 0.308
Pℰ1

(L) ≈ 0.267

Figure 1: Visual representation of PcoE0 (the grey trapezoid)
and of PcoE1 (the red hexagon) in our soccer ex-
ample. 𝑃E0 is represented by the solid grey lines,
while 𝑃E1 by the dashed red lines.

𝑃
𝑒𝑚𝑝

1 (𝐸2) = 79/257 and 𝑃𝑒𝑚𝑝

1 (𝐸3) = 0. This corresponds
to collecting the following probabilistic evidence: Juventus
Turin obtains a useful result with probability 178/257, and
it loses with probability 79/257. Let us update 𝑃𝑒𝑥

1,E0 to
𝑃𝑒𝑥
1,E1 . Suppose 𝛽(𝑛𝑡 ) =

1
log(𝑛𝑡+1) ; we have

𝑃𝑒𝑥
1,E1 (𝑊) =

𝑃𝑒𝑥
1,E0 (𝑊)

𝑃𝑒𝑥
1,E0 (𝐸1)

𝑃𝑒𝑥
1,E1 (𝐸1)

=
0.52

0.52 + 0.27

(
0.52 + 0.27
log(258) + log(258) − 1

log(258) · 178
257

)
≈ 0.482,

𝑃𝑒𝑥
1,E1 (𝐷) =

𝑃𝑒𝑥
1,E0 (𝐷)

𝑃𝑒𝑥
1,E0 (𝐸1)

𝑃𝑒𝑥
1,E1 (𝐸1)

=
0.27

0.52 + 0.27

(
0.52 + 0.27
log(258) + log(258) − 1

log(258) · 178
257

)
≈ 0.251,

𝑃𝑒𝑥
1,E1 (𝐿) =

𝑃𝑒𝑥
1,E0 (𝐿)

𝑃𝑒𝑥
1,E0 (𝐸2)

𝑃𝑒𝑥
1,E1 (𝐸2)

= 1 ·
(
0.21
log(258) +

log(258) − 1
log(258) · 79

257

)
≈ 0.267,

so (𝑃𝑒𝑥
1,E1 (𝑊), 𝑃𝑒𝑥

1,E1 (𝐷), 𝑃𝑒𝑥
1,E1 (𝐿)) ≈

(0.482, 0.251, 0.267). The other elements
of PE0 are updated similarly. In particular,
(𝑃𝑒𝑥
2,E1 (𝑊), 𝑃𝑒𝑥

2,E1 (𝐷), 𝑃𝑒𝑥
2,E1 (𝐿)) ≈ (0.271, 0.421, 0.308),

(𝑃𝑒𝑥
3,E1 (𝑊), 𝑃𝑒𝑥

3,E1 (𝐷), 𝑃𝑒𝑥
3,E1 (𝐿)) ≈ (0.421, 0.271, 0.308),

and (𝑃𝑒𝑥
4,E1 (𝑊), 𝑃𝑒𝑥

4,E1 (𝐷), 𝑃𝑒𝑥
4,E1 (𝐿)) ≈

(0.251, 0.482, 0.267). So we have that 𝑃E1 (𝑊) ≈ 0.251 ≈

𝑃E1 (𝐷), 𝑃E1 (𝑊) ≈ 0.482 ≈ 𝑃E1 (𝐷), 𝑃E1 (𝐿) ≈ 0.267,
and 𝑃E1 (𝐿) ≈ 0.308. As we can see from Figure 1, the
graphical representation of PcoE1 is a hexagon (in red).

8. Conclusion

In this paper, we presented dynamic probability kinemat-
ics (DPK) and dynamic imprecise probability kinematics
(DIPK). These methods dynamically update subjective be-
liefs stated in terms of precise and imprecise probabilities,
in the presence of partial information (both DPK and DIPK)
and of ambiguity (DIPK only). Two examples are provided
to illustrate the procedures.
This work is just the first step towards a fully developed

DIPK theory. In the future, we plan to relax the assumption
that 𝛺 needs to be at most countable and that X needs to be
finite. Furthermore, we aim to generalize DIPK by allowing
the agent to gather inconsistent evidence as in [26].
We also intend to let partial information be modeled via

a set of probability distributions on X, as empirical proba-
bilities usually need a very large number of observations to
estimate probabilities which are very close to zero or one
to a good standard of relative accuracy. A similar idea is
to use a set of empirical distributions to determine a set
of partitions and Jeffrey shifts, and take the union of the
posteriors recommended by DIPK.
After that, we plan to propose a way of performing

statistical analysis based on DIPK updating. It is worth
noting that lower probabilities are a special case of lower
previsions [31, 32]. In the future, we will generalize DIPK
to deal with these latter.

9. Proofs

Proof [Proof of Proposition 1] First, we have that 𝑃E (𝐴) ≥
0, for all 𝐴 ∈ F . This comes by its definition, since it
is defined as the summation of products of nonnegative
quantities. Second, we have that 𝑃E (𝛺) = 1. This comes
from the following

𝑃E (𝛺) =
∑︁
𝐸 𝑗 ∈E

𝑃(𝛺 | 𝐸 𝑗 )𝑃E (𝐸 𝑗 ) =
∑︁
𝐸 𝑗 ∈E

𝑃E (𝐸 𝑗 ) = 1.

Finally, we have that if {𝐴𝑖}𝑖∈𝐼 is a finite, pairwise disjoint
collection of events, then 𝑃E (∪𝑖∈𝐼 𝐴𝑖) =

∑
𝑖∈𝐼 𝑃E (𝐴𝑖). This

because

𝑃E (∪𝑖∈𝐼 𝐴𝑖) =
∑︁
𝐸 𝑗 ∈E

𝑃
(
∪𝑖∈𝐼 𝐴𝑖 | 𝐸 𝑗

)
𝑃E (𝐸 𝑗 )

=
∑︁
𝐸 𝑗 ∈E

𝑃
(
[∪𝑖∈𝐼 𝐴𝑖] ∩ 𝐸 𝑗

)
𝑃(𝐸 𝑗 )

𝑃E (𝐸 𝑗 )
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=
∑︁
𝐸 𝑗 ∈E

𝑃
(
∪𝑖∈𝐼

[
𝐴𝑖 ∩ 𝐸 𝑗

] )
𝑃(𝐸 𝑗 )

𝑃E (𝐸 𝑗 )

=
∑︁
𝐸 𝑗 ∈E

∑
𝑖∈𝐼 𝑃

(
𝐴𝑖 ∩ 𝐸 𝑗

)
𝑃(𝐸 𝑗 )

𝑃E (𝐸 𝑗 )

=
∑︁
𝑖∈𝐼

∑︁
𝐸 𝑗 ∈E

𝑃
(
𝐴𝑖 ∩ 𝐸 𝑗

)
𝑃(𝐸 𝑗 )

𝑃E (𝐸 𝑗 ) =
∑︁
𝑖∈𝐼

𝑃E (𝐴𝑖) .

Proof [Proof of Proposition 3] Consider the limiting case
where we have collected observations (𝑥𝑖)𝑖∈ℕ. We have
two cases. If ∪𝑖∈ℕ𝑥𝑖 = X, then, since we observed all
the elements of X, and given the procedure in Sections
3 and 4 to refine the partition, it is immediate to see
that the partition Ẽ induced by (𝑥𝑖)𝑖∈ℕ cannot be further
refined. If instead ∪𝑖∈ℕ𝑥𝑖 = X𝑟𝑒𝑑𝑢𝑐𝑒𝑑 ( X, then the ele-
ments of partition Ẽ will be the unique elements of the
collection {𝑋−1 (𝑥𝑖)}𝑥𝑖 ∈X𝑟𝑒𝑑𝑢𝑐𝑒𝑑

, plus an extra one given by
(∪𝑥𝑖 ∈X𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝑋−1 (𝑥𝑖))𝑐 .

Proof [Proof of Theorem 4] Let 𝑡 = 1 and fix any 𝐴 ∈ F .
Let #E1 = 𝑚 + 1 and assume without loss of generality
that 𝐸𝑚+1 = ∅. We have that 𝑃E1 (𝐴) =

∑
𝐸 𝑗 ∈E1 𝑃(𝐴 |

𝐸 𝑗 )𝑃E1 (𝐸 𝑗 ), which is equal to∑︁
𝐸 𝑗 ∈E1

𝑃(𝐴 | 𝐸 𝑗 )
[
𝛽(𝑛1)𝑃(𝐸 𝑗 )+

(1 − 𝛽(𝑛1))
1
𝑛1

𝑛1∑︁
𝑖=1

𝕀(𝐸 𝑗 = 𝐸𝑖)
]
.

(4)

Let then 𝑛1 → ∞; following (4), we have that
lim𝑛1→∞ 𝑃E1 (𝐴) is equal to∑︁
𝐸 𝑗 ∈Ẽ

{
𝑃(𝐴 | 𝐸 𝑗 )

[
lim

𝑛1→∞
𝛽(𝑛1)𝑃(𝐸 𝑗 )

+ lim
𝑛1→∞

1 − 𝛽(𝑛1)
𝑛1

𝑛1∑︁
𝑖=1

𝕀(𝐸 𝑗 = 𝐸𝑖)
]}

=
∑︁
𝐸 𝑗 ∈Ẽ

{
𝑃(𝐴 | 𝐸 𝑗 )

[
lim

𝑛1→∞
1
𝑛1

𝑛1∑︁
𝑖=1

𝕀(𝐸 𝑗 = 𝐸𝑖)
]}
. (5)

The equality in (5) is a consequence of assumption 1 in
our statement. Assumptions 2 and 3 are needed to apply
the finitely additive version of Glivenko-Cantelli theorem
[9, Remark 2]. It ensures us that 𝐹𝑛1

𝑋
converges uniformly

almost surely to 𝐹𝑋 as 𝑛1 → ∞, where 𝐹𝑛1
𝑋
is the empirical

cdf of 𝑥1, . . . , 𝑥𝑛1 . In turn, this implies that

lim
𝑛1→∞

1
𝑛1

𝑛1∑︁
𝑖=1

𝕀(𝐸 𝑗 = 𝐸𝑖) = 𝑄(𝐸 𝑗 )

with 𝑄-probability 1, for all 𝐸 𝑗 ∈ Ẽ. We considered 𝑡 = 1
to highlight the dependence of the limiting distribution on
the prior 𝑃. For a generic 𝑡 ∈ ℕ, we have that

lim
𝑛𝑡→∞

𝑃E𝑡
(𝐴) =

∑︁
𝐸 ∈Ẽ

𝑃E𝑡−1 (𝐴 | 𝐸)𝑄(𝐸) (6)

almost surely, for all 𝐴 ∈ F . Notice that 𝑃E𝑡−1 (𝐴 | 𝐸)
does not depend on 𝑛𝑡 , and 𝑃E𝑡−1 “contains” the prior as
shown in Remark 2. We denote 𝑃 Ẽ (𝐴) :=

∑
𝐸 ∈Ẽ 𝑃E𝑡−1 (𝐴 |

𝐸)𝑄(𝐸), for all 𝐴 ∈ F . Finally, notice that (6) entails that
lim𝑛𝑡→∞ 𝑑𝑇𝑉 (𝑃E𝑡

, 𝑃Ẽ) = 0 almost surely, concluding the
proof.

Proof [Proof of Proposition 5]We first point out that Ẽ = Ẽ ′.
This because, no matter the order in which we collect data
points 𝑥𝑖 ∈ X, in the limit we either end up observing all
the elements of X, or all the elements of X𝑟𝑒𝑑𝑢𝑐𝑒𝑑 in the
case ∪𝑖∈ℕ𝑥𝑖 = X𝑟𝑒𝑑𝑢𝑐𝑒𝑑 ( X. So if Ẽ is finer than Ẽ ′, this
means that there exists an 𝜔 that is mapped by 𝑋 into two
different values, a contradiction. If instead Ẽ is coarser
than Ẽ ′, this means that Ẽ can be further refined, which
contradicts Proposition 3. Then, the claim follows by the
uniqueness of the limit of a sequence.

Proof [Proof of Proposition 6] Fix any 𝑡 ∈ ℕ, and let
PE𝑡

= {𝑃̌𝑘,E𝑡
}. Pick any 𝑃E𝑡

∈ PcoE𝑡
. Then, by the convexity

of PcoE𝑡
, there exists a collection {𝛼𝑘 } ⊂ [0, 1] such that

#{𝛼𝑘 } = #PE𝑡
,
∑

𝑘 𝛼𝑘 = 1, and 𝑃E𝑡
(𝐴) = ∑

𝑘 𝛼𝑘 𝑃̌𝑘,E𝑡
(𝐴),

for all 𝐴 ∈ F . By construction and Theorem 4, given our
assumptions we know that for all 𝑘 , 𝑑𝑇𝑉 (𝑃̌𝑘,E𝑡

, 𝑃̌𝑘, Ẽ) → 0
as 𝑛𝑡 goes to infinity with probability 1, where 𝑃̌𝑘, Ẽ is an
element of PẼ = {𝑃̌𝑘, Ẽ}. So we can conclude that there
is 𝑃 Ẽ ∈ PcoẼ such that 𝑃 Ẽ (𝐴) =

∑
𝑘 𝛼𝑘 𝑃̌𝑘, Ẽ (𝐴), for all

𝐴 ∈ F , and 𝑑𝑇𝑉 (𝑃E𝑡
, 𝑃Ẽ) → 0 as 𝑛𝑡 goes to infinity with

𝑄-probability 1.
That is to say that for every element 𝑃E𝑡

ofPcoE𝑡
, there is an

element 𝑃 Ẽ of PcoẼ that 𝑃E𝑡
converges to (with probability

1 in the total variation metric). This immediately implies
that the Hausdorff distance between PcoE𝑡

and PcoẼ goes to 0
as 𝑛𝑡 goes to infinity with probability 1.
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Appendix A. Further Related Literature
In Section 2, we inspected previous works extending PK to
credal sets theory. Probability kinematics has been general-
ized to the contexts of Dempster-Shafer theory, evidence
theory, neighborhood models theory, possibility theory, and
maximum entropy theory as well.
Shafer [27] discusses Jeffrey’s updating from a philosoph-

ical perspective, and is the first to consider its application
to the context of Dempster-Shafer theory, for which belief
functions – functions representing the degree of belief of
the agent on a given event – and Dempster’s updating rule
play a central operational role. Ichihashi and Tanaka [17]
and Smets [29] further study the generalization of Jeffrey’s
updating for belief functions defined on a finite state space.
Ichihashi and Tanaka [17] point out how Shafer’s approach
is different from the normative Bayesian approach and is not
a straight generalization of Jeffrey’s rule, so they propose
rules of conditioning for which Jeffrey’s rule is a direct
consequence of a special case. Smets [29] generalizes the
results in [17] and shows that several forms of Jeffrey’s
updating rule can be defined so that they correspond to the
geometrical rule of conditioning and to Dempster’s rule of
conditioning, respectively.
Ma et al. [25] provide a generalization of both Jeffrey’s

rule and Dempster’s conditioning to propose an effective
revision rule in the field of evidence theory. This is very
interesting since when one source of evidence is less reliable
than another, the idea is to let prior knowledge of an agent
be altered only by some of the input information. The
change problem is thus intrinsically asymmetric. To this
extent, their model takes into account inconsistency between
prior and input information. Other works that deal with
a generalization of Jeffrey’s rule within the framework of
evidence theory are [30], in which the authors propose
a generalization of probability kinematics where a priori
knowledge and newevidence are allmodeled by independent
random sets, and [24] in which a priori knowledge and
evidences are modelled by a probability distribution and a
collection of multi-dimensional random sets, respectively.
Škulj [28] discusses the application of Jeffrey’s rule to

neighborhoodmodels theory, inwhich ambiguity is captured
by neighborhood of a classical probability measure 𝑃 and
presented in the form of interval probabilities [𝐿,𝑈]. This

means that 𝑃(𝐴) ∈ [𝐿 (𝐴),𝑈 (𝐴)] for all 𝐴 ⊂ 𝛺, the state
space of interest. The author shows that a neighborhood
[𝐿,𝑈] of a probability measure 𝑃 whose lower envelope 𝐿
is convex or bi-elastic with respect to the base probability
measure [28, Definitions 3 and 4] is closed with respect
to Jeffrey’s rule of conditioning. This means that Jeffrey’s
posterior for 𝑄 ∈ [𝐿,𝑈] still belongs to the interval.
Possibility theory [33] is a framework alternative to

probability theory that is suitable for handling uncertain,
imprecise and incomplete knowledge. In possibility theory,
there are two different ways to define the conditioning de-
pending on how possibility degrees are interpreted, one
called quantitative possibility and the other called qualita-
tive possibility. In [2], the authors investigate the existence
and uniqueness of the posterior probabilities computed ac-
cording to a possibilistic counterpart of Jeffrey’s rule in both
the quantitative and qualitative possibilistic frameworks.
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The Indian Journal of Statistics, Series A (1961-2002),
45(2):161–167, 1983.

[10] Giulianella Coletti and Romano Scozzafava. Proba-
bilistic Logic in a Coherent Setting. Trends in Logic.
Dordrecht : Springer, 2002.

[11] Persi Diaconis and Sandy L. Zabell. Updating subjec-
tive probability. Journal of the American Statistical
Association, 77(380):822–830, 1982.

[12] Lester E. Dubins. On Lebesgue-like extensions of
finitely additive measures. The Annals of Probability,
2(3):456–463, 1974.

[13] Daniel Ellsberg. Risk, ambiguity, and the Savage
axioms. The Quarterly Journal of Economics, 75(4):
643–669, 1961.

[14] Ruobin Gong and Xiao-Li Meng. Judicious judgment
meets unsettling updating: dilation, sure loss, and
Simpson’s paradox. Statistical Science, 36(2):169–
190, 2021.

[15] Peter J. Huber. The use of Choquet capacities in
statistics. Bulletin of the International Statistical
Institute, 4(45):181–191, 1973.

[16] Peter J. Huber and Elvezio M. Ronchetti. Robust
statistics. Wiley Series in Probability and Statistics.
Hoboken, New Jersey : Wiley, 2nd edition, 2009.

[17] Hidetomo Ichihashi and Hideo Tanaka. Jeffrey-like
rules of conditioning for the Dempster-Shafer theory
of evidence. International Journal of Approximate
Reasoning, 3(2):143–156, 1989.

[18] Richard C. Jeffrey. Contributions to the Theory of In-
ductive Probability. PhD Thesis, Princeton University,
Dept. of Philosophy, 1957.

[19] Richard C. Jeffrey. The Logic of Decision. Chicago :
University of Chicago Press, 1965.

[20] Richard C. Jeffrey. Probable knowledge. In Imre
Lakatos, editor, The Problem of Inductive Logic, vol-
ume 51 of Studies in Logic and the Foundations of
Mathematics, pages 166 – 190. Elsevier, 1968.

[21] Anatolii G. Kusraev and Sergei A. Malyugin. Ex-
tensions of finitely additive measures. Mathematical
notes of the Academy of Sciences of the USSR, 48:
658–661, 1990.

[22] Isaac Levi. The Enterprise of Knowledge. Cambridge,
MA : MIT Press, 1980.

[23] David Lewis. Probabilities of conditionals and
conditional probabilities. The Philosophical Re-
view, 85(3):297–315, 1976. ISSN 00318108,
15581470. URL http://www.jstor.org/
stable/2184045.

[24] Hexin Lv, Ning Qiu, and Yongchuan Tang. Updating
probabilistic knowledge using imprecise and uncer-
tain evidence. In Third International Conference on
Natural Computation (ICNC 2007), volume 4, pages
624–628, 2007.

[25] Jianbing Ma, Weiru Lu, Didier Dubois, and Henri
Prade. Bridging Jeffrey’s rule, AGM revision and
Dempster conditioning in the theory of evidence. In-
ternational Journal on Artificial Intelligence Tools,
20(4):691–720, 2011.

[26] Sabina Marchetti and Alessandro Antonucci. Imag-
inary kinematics. In Amir Globerson and Ricardo
Silva, editors, UAI 2018: Proceedings of the Thirty-
Fourth Conference on Uncertainty in Artificial Intel-
ligence, pages 104–113, Monterey, California, USA,
2018. AUAI Press. URL http://auai.org/
uai2018/proceedings/papers/42.pdf.

[27] Glenn Shafer. Jeffrey’s rule of conditioning. Philoso-
phy of Science, 48(3):337–362, 1981.

[28] Damjan Škulj. Jeffrey’s conditioning rule in neighbour-
hood models. International Journal of Approximate
Reasoning, 42(3):192–211, 2006.

[29] Philippe Smets. Jeffrey’s rule of conditioning gener-
alized to belief functions. In Proceedings of the Ninth
international conference on Uncertainty in Artificial
Intelligence, pages 500–505, 1993.

[30] Yongchuan Tang, Shouqian Sun, and Zhongyang Li.
Conditional evidence theory and its application in
knowledge discovery. Lecture Notes in Computer
Sciences, 3007:500–505, 2004.

[31] Matthias C. M. Troffaes and Gert de Cooman. Lower
Previsions. Wiley Series in Probability and Statistics.
New York : Wiley, 2014.

[32] Peter Walley. Statistical Reasoning with Imprecise
Probabilities, volume 42 of Monographs on Statistics
and Applied Probability. London : Chapman and Hall,
1991.

[33] Lotfi Zadeh. Fuzzy sets as a basis for a theory of
possibility. Fuzzy sets and systems, 1:3–28, 1978.

83

http://www.jstor.org/stable/2184045
http://www.jstor.org/stable/2184045
http://auai.org/uai2018/proceedings/papers/42.pdf
http://auai.org/uai2018/proceedings/papers/42.pdf

	Introduction
	Ambiguity
	Probability Kinematics
	Structure of the Paper

	Related Literature
	A New Way of Updating Subjective Beliefs
	An Empirical Specification of P_E
	Subsequent Updates
	Working with Sets of Probabilities
	Concepts
	DIPK for Sets of Probabilities

	Examples of DPK and DIPK Updating
	Trials of a New Surgical Procedure
	Soccer Match Results

	Conclusion
	Proofs
	Further Related Literature

