
C����������� ��� ���� �� �������������

Constriction for sets of probabilities

Supplementary material

Appendix A. Dubins-deFinetti conditioning

In this section, we show how if we are willing to depart from
the classical Kolmogorovian paradigm of probabilities, then
we have additional opportunities for constriction. In partic-
ular, as we shall see, Bayes’ rule can induce constriction if
we allow probabilities to be merely finitely additive.

Suppose that we adopt Dubins-deFinetti conditioning
(DdFC) framework; an in-depth exposition of DdFC can be
found in [10, 14, 35]. Notice also that in [9], the authors
compare generalized Bayes’, geometric and Dempster’s
rules for belief functions in DdFC framework. For the sake
of the present work, the two main differences with respect
to the Kolmogorovian framework is that probabilities need
not be countably additive, and that conditioning does not
happen on sigma-fields, but rather on events, members of a
partition of the state space. The following statements are
true; we will provide illustrations for the first one, and the
second one is shown similarly.

1. If probability measures are finitely but not countably
additive, then constriction can take place for all the
elements of a countable partition;

2. Recall that a probability % is completely additive if the
measurable union of a set of %-null events is %-null. If
probability measures are countably but not completely
additive, then constriction can take place for all the
elements of an uncountable partition.

Notice also that if probability measures are completely
additive, then they must be discrete.

Definition 26 We say that probability measure % is con-
glomerable in partition E when for every event � such
that %(� | ⇢) is defined for all ⇢ 2 E, and for all con-
stants :1, :2, if :1  %(� | ⇢)  :2 for all ⇢ 2 E, then
:1  %(�)  :2.

Definition 26 asserts that for each event �, if all the condi-
tional probabilities over a partition E are bounded by two
quantities, :1 and :2, then the unconditional probability for
that event is likewise bounded by these two quantities [25].
De Finetti [10] shows the non-conglomerability of finitely
additive probability measures (FAPMs) in denumerable
partitions.

Assume that instead of requiringP to be a set of countably
additive probabilities, we allow it to be a set of FAPMs.
Then, weak and strict constriction can happen by Bayes
updating P thanks to the non-conglomerability property of
FAPMs. The two illustrations that we present in this section

build on the example in [14, page 92], which we state here
for motivating their construction.

Example 3 (Dubins) Let S = {�, ⌫} ⇥ {# = 1, 2, . . .}.
Stipulate that

• %(�) = %(⌫) = 1/2,

• %(# = = | �) = 2�=, for = 2 {1, 2, . . .}, a countably
additive conditional probability,

• %(# = = | ⌫) = 0, for = 2 {1, 2, . . .}, a strongly
finitely additive conditional probability.8

Then, %(# = =) = 2� (=+1) > 0, for = 2 {1, 2, . . .}, and
(marginally) % is merely finitely additive over the subalgebra
generated by the partition E# = {{# = 1}, {# = 2}, . . .}.
% displays non-conglomerability for the event � in the
partition E# = {{# = 1}, {# = 2}, . . .} as %(�) = 1/2
and %(� | # = =) = 1, for = 2 {1, 2, . . .}.

Illustration 1 (weak constriction)

Use Example 3 as follows. Consider a set P of probabilities
on S = {�, ⌫} ⇥ {# = 1, 2, . . .} such that P = {%U, 0 <
U  1}, where

• %U (�) = U,

• %U (# = = | �) = 2�=, for = 2 {1, 2, . . .}, a countably
additive conditional probability,

• %U (# = = | ⌫) = 0, for = 2 {1, 2, . . .}, a strongly
finitely additive conditional probability.

Note that neither%U (# = = | �) nor%U (# = = | ⌫) depend
upon U. With respect to P, we have 0 < %U (�)  1. For
each 0 < U < 1, we have non-conglomerability of %U for
the event � in the partition E# as %U (� | # = =) = 1,
for = 2 {1, 2, . . .}. Observe then that 1 = %1 (�) = %1 (� |
# = =), for = 2 {1, 2, . . .}. Thus, Bayes-updating using
the information {# = =} from the partition E# weakly-
constricts P = {%U, 0 < U  1}.

Illustration 2 (strict constriction)

Modify Example 3 as follows. Consider a set P of prob-
abilities on S = {�, ⌫} ⇥ {# = 1, 2, . . .} such that
P = {%U, 0 < U < 1}, where

• %U (�) = U, so that with respect to P, we have 0 <
%U (�) < 1,

• %U (# = = | �) = (1 � U)2�=, for = 2 {1, 2, . . .},

• %U (# = = | ⌫) = U2�=, for = 2 {1, 2, . . .}.
8Recall that a FAPM is strongly finitely additive if it admits countable

partitions by null sets [1].

13



C����� S���������

Note that each of these two conditional probabilities is
a merely finitely additive probability distribution over #
that depends on U. In addition, observe that %(# = =) =
2U(1 � U)2�= > 0, which (for each U) also is a merely
finitely additive probability distribution over # .

By a Bayes’ updating, for each 0 < U < 1 and each
= 2 {1, 2, . . .}, %U (� | # = =) = 1/2. That is, for each
U < 1/2 with 0 < U < 1, there is non-conglomerability of
%U for the event � in the partition E# . Whereas, 1/2 =
%1/2 (�) = %1/2 (� | # = =). Thus, Bayes-updating using
the information {# = =} from the partition E# strictly-
constricts P = {%U, 0 < U < 1}.

Remark 27 These two illustrations help to explain why
Propositions 4 and 5 are restricted to countably additive
probabilities.

Appendix B. Proofs

Proof [Proof of Proposition 4] Let % be a probability
function that satisfies %(�) = min%2P %(�). By Lemma
3, if %(X�+

% ) > 0, then %(X��
% ) > 0 and (⌫, ⇢) does not

strictly uniformly constrict �. That is, for each %18 (�) 2
P(�),%(�)  %18 (�), so (⌫, ⇢) does not strictly uniformly
constrict � when %(�) = %18 (�). Hence, if (⌫, ⇢) weakly
uniformly constricts �, we have that %(X�+

% ) = 0, and then
%({G 2 X : %⌫ (� | - = G) = %(�)}) = 1. Let now % be
a probability function that satisfies %(�) = max%2P %(�).
By the same reasoning, %({G 2 X : %

⌫ (� | - = G) =
%(�)}) = 1, and then (⌫, ⇢) does not weakly uniformly
constrict � either.

Proof [Proof of Proposition 5] Assume (for a reductio proof)
that on a set of - values with P-measure 1 (i.e. with %-
probability 1, for all % 2 P), for each G8 there exist %18 (�)
and %28 (�) in P(�) such that for each %(� | G8) 2 P(� |
G8), either %18 (�) < %(� | G8)  %28 (�) or %18 (�) 
%(� | G8) < %28 (�). Since - is a simple random variable,
define %1 (�) := min8 %18 (�) and %2 (�) := max8 %28 (�).
Given Proposition 4, assume P(�) is not a closed set.
Without loss of generality, assume it is open below (the
reasoning is parallel if P(�) is open above). So, %(�) <
%1 (�). Then, there exists %0 2 P with %(�) < %0 (�) <
%1 (�). Since for each 8, %18 (�) < %0 (� | G8) or %18 (�) 
%0 (� | G8), we also have that for each 8, %0 (�) < %1 (�) 
%0 (� | G8). But then %0 (X�+

%0
) = 1, which is a contradiction

according to Lemma 3.

Proof [Proof of Theorem 7] Immediate from Definition 1
and Theorem 6.

Proof [Proof of Theorem 8] We first show that the lower
probability (LP) inf%2Conv(P) %(·) of the convex hull of

P and the LP inf%2ex[Conv(P) ] %(·) of the extrema of the
convex hull of P coincide. To see this, pick any � 2 F .
Since ex[Conv(P)] ✓ Conv(P), we have that

inf
%2Conv(P)

%(�)  inf
%2ex[Conv(P) ]

%(�). (9)

Then, let ; < ex[Conv(P)] = {%4G
9 } 92J . For all % 2

Conv(P) and all � 2 F , we have that

%(�) =
’
92J

U 9%
4G
9 (�) �

’
92J

U 9%
4G (�)

= %4G (�) := inf
%2ex[Conv(P) ]

%(�),

where {U 9 } 92J is a collection of positive reals such thatÕ
92J U 9 = 1, which implies that

inf
%2Conv(P)

%(�) � inf
%2ex[Conv(P) ]

%(�). (10)

By combining together (9) and (10) we obtained the desired
equality.

Now, if %¢ 2 ex[Conv(P)], then there might be a collec-
tion { �̃} ✓ F for which %¢( �̃) = %( �̃) or %¢( �̃) = %( �̃),
so the constriction is weak for the elements of the collec-
tion, while %¢(�) > %( �̃) and %¢(�) < %( �̃), for all
� 2 F \ { �̃}. If instead %¢ =

Õ
92J U 9%4G

9 , U 9 > 0 for all
9 , then %¢(�) 2 (%(�), %(�)), for all � 2 F , so we have
�↵1" �, for all � 2 F .

Proof [Proof of Theorem 9] If P(�) is closed in the
Euclidean topology and %¢(�) 2 mB([0,1] )P(�), then
%¢(�) = %(�) or %¢(�) = %(�), so the constric-
tion is weak. If instead %¢(�) 2 intB([0,1] )P(�), then
%¢(�) 2 (%(�), %(�)), so we have �↵1" �.

Proof [Proof of Lemma 20] This proof draws on that of
[19, Lemma 5.1]. Fix any � 2 F . Because P is closed,
there exists %(�) 2 P such that %(�) (�) = %(�). Notice
that subscript (�) reminds us that this probability measure
can vary with the choice of �. Then, we have that

%(�) = %(�) (�) =
’
⇢2E

%(�) (� | ⇢)%(�) (⇢)

�
’
⇢2E

%⇥ (� | ⇢)%(�) (⇢)

�
’
⇢2E

inf
⇢2E

%⇥ (� | ⇢)%(�) (⇢)

= inf
⇢2E

%⇥ (� | ⇢)
’
⇢2E

%(�) (⇢)

= inf
⇢2E

%⇥ (� | ⇢).

The same argument applies for the upper probability of �,
that is, if we pick %0

(�) 2 P such that %0
(�) (�) = %(�),
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%0
(�) possibly different from %(�) , then

%(�) 
’
⇢2E

%
⇥ (� | ⇢)%0

(�) (⇢)  sup
⇢2E

%
⇥ (� | ⇢).

Proof [Proof of Theorem 21] Immediate from Lemma 20.

Proof [Proof of Theorem 22] This proof comes
from that of [36, Theorem 2.3]. Fix an event � 2
F of interest, and let ⇥ 2 {⌫,⌧}. Pick any
%⇢1 · · ·⇢C�: 2 P¢⇢1 · · ·⇢C�: (�) \ O� (�, ⇢C�:+1 \ · · · \ ⇢C ).
Then, we have that %⇢1 · · ·⇢C�: (�) = %⇢1 · · ·⇢C�:

(�) because
%⇢1 · · ·⇢C�: 2 P¢⇢1 · · ·⇢C�: (�) and %⇢1 · · ·⇢C�: (� \ ⇢C�:+1 \
· · · \ ⇢C ) < %⇢1 · · ·⇢C�: (�)%⇢1 · · ·⇢C�: (⇢C�:+1 \ · · · \ ⇢C ) be-
cause %⇢1 · · ·⇢C�: 2 O� (�, ⇢C�:+1 \ · · · \ ⇢C ). Then,

%⇢1 · · ·⇢C�:
(�) = %⇢1 · · ·⇢C�: (�)

>
%⇢1 · · ·⇢C�: (� \ ⇢C�:+1 \ · · · \ ⇢C )
%⇢1 · · ·⇢C�: (⇢C�:+1 \ · · · \ ⇢C )

= %⇢1 · · ·⇢C�: (� | ⇢C�:+1 \ · · · \ ⇢C )
� %⇥

⇢1 · · ·⇢C�:
(� | ⇢C�:+1 \ · · · \ ⇢C ).

A similar argument gives us that %⇢1 · · ·⇢C�: (�) <

%
⇥
⇢1 · · ·⇢C�: (� | ⇢C�:+1 \ · · · \ ⇢C ). So ⇢C�:+1 \ · · · \ ⇢C

dilates � regardless of which updating rule ⇥ 2 {⌫,⌧}
the agent endorses. In turn, forgetting ⇢C�:+1 \ · · · \ ⇢C

constricts �, in symbols (IF⇥ , ⇢C�:+1 \ · · · \ ⇢C ) " �.

Proof [Proof of Corollary 23] Analogous to the proof of
Theorem 22.

Proof [Proof of Theorem 25] Fix any � 2 F . Recall that
by (8), we have that <� (� | ⇢) =

Õ
-2F f(�, -)<(-),

for all � 2 F . Also, by property (c) of mass function
< associated to LP % (see Definition 5), we have that
%(�) = Õ

⌫✓�<(⌫). So,

%� (� | ⇢) =
’
⌫✓�

<� (⌫ | ⇢) =
’
⌫✓�

’
-2F

f(⌫, -)<(-).

Only if Suppose (�, ⇢) " �. Then, by definition of
constriction, %� (� | ⇢) > %(�) and %

� (� | ⇢) < %(�).
This happens if and only if

’
⌫✓�

’
-2F

f(⌫, -)<(-) >
’
⌫✓�

<(⌫)

()
’
⌫✓�

"’
-2F

f(⌫, -)<(-) � <(⌫)
#
> 0

and ’
⌫✓�2

’
-2F

f(⌫, -)<(-) >
’
⌫✓�2

<(⌫)

()
’
⌫✓�2

"’
-2F

f(⌫, -)<(-) � <(⌫)
#
> 0.

This latter is true because %
� (� | ⇢) < %(�) ()

1 � %� (�2 | ⇢) < 1 � %(�2) () %� (�2 | ⇢) > %(�2).
If Assume that

’
⌫✓�

"’
-2F

f(⌫, -)<(-) � <(⌫)
#
> 0 and

’
⌫✓�2

"’
-2F

f(⌫, -)<(-) � <(⌫)
#
> 0.

Then, we have

%� (� | ⇢) =
’
⌫✓�

’
-2F

f(⌫, -)<(-) >
’
⌫✓�

<(⌫) = %(�)

and

%� (�2 | ⇢) =
’
⌫✓�2

’
-2F

f(⌫, -)<(-) >
’
⌫✓�2

<(⌫)

= %(�2),

which implies %� (� | ⇢) < %(�). This concludes the proof.
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