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Abstract

Inspired by the theory of desirable gambles that is
used to model uncertainty in the field of imprecise
probabilities, I present a theory of desirable things. Its
aim is to model a subject’s beliefs about which things
are desirable. What the things are is not important, nor
is what it means for them to be desirable. It can be
applied to gambles, calling them desirable if a subject
accepts them, but also to pizzas, calling them desirable
if my friend Arthur likes to eat them. Regardless of
the particular things that are considered, inference
rules are imposed by means of an abstract closure
operator, and models that adhere to these rules are
called coherent. I consider two types of models, each
of which can capture a subject’s beliefs about which
things are desirable: sets of desirable things and sets
of desirable sets of things. A crucial result is that the
latter type can be represented by a set of the former.
Keywords: desirable things, coherence, finite coher-
ence, representation theorem, closure operator

1. Introduction

The theory of imprecise probabilities [2, 24] is often thought
of as a theory of partially specified probabilities, which
involves manipulating sets of probabilities and their lower
and upper expectations. Its mathematical underpinnings,
however, are provided by an underlying theory of sets of de-
sirable gambles [24, 26, 25, 4, 19]: sets of gambles—rewards
with an uncertain payoff—that a subject finds desirable, in
the sense that she prefers those gambles to the status quo. In
particular, well known imprecise probability models such as
credal sets, lower and upper expectations, partial preference
oderings, belief functions and lower and upper probabilities,
all correspond to special cases [25]. Other models, such
as choice functions, have even more expressive power [21],
but these too have recently been incorporated into the
theory of desirable gambles, through their equivalence
with sets of desirable sets of gambles [9, 10, 23], a new
type of desirability model that extends the theory of sets
of desirable gambles to allow for a notion of disjunction.
The main contribution of this paper is to show that many
of the central ideas behind the theory of desirable gambles,
both in its original and generalised form, are not constrained
to the context of gambles. We do this by putting forward a

© 2023 J. De Bock.

theory of desirable things. As we will see, these things can
be, quite literally, anything, even pizzas. All that is needed
to develop the theory is an inference mechanism that allows
us to infer the desirability of things from that of other things;
we do this by means of an abstract closure operator. In the
case of desirable gambles, this would typically be closure
with respect to positive linear combinations. The point
of the paper, however, is that any other closure operator
can be used instead, and that the gambles can instead by
arbitrary things. This allows us to generalise the notion of
a coherent set of desirable gambles to that of a coherent
set of desirable things, and similarly for coherent sets of
desirable sets of gambles and coherent sets of desirable
sets of things. Furthermore, and perhaps most surprisingly,
we show that the connection between these two types of
models also extends from gambles to things.

Proofs of all results are available in an extended online
version [7], which also contains more context and discussion
and at times slightly more general results, but otherwise
essentially presents the same material.

2. Desirable Things

Let 7 be a set containing all things whose desirability we
wish to model. We’ll use P (7") to denote its powerset: the
set of all sets of things. A crucial feature of our framework
is that it does not matter what the things in 7~ are, nor what
it means for them to be desirable. Desirability is simply an
abstract feature that these things may or may not have, and
the goal is to model a subject’s beliefs about which of the
things in 7~ are desirable. In particular, we put forward two
different types of models that can be used for this purpose.

The first—and most simple—model is a set of desirable
things D C 7, which we will sometimes refer to as an SDT.
As the terminology suggests, this is simply a set containing
things that our subject deems desirable. No exhaustivity
claim is made though: the model does not claim that the
things in D are the only desirable ones; it simply says that
every thing ¢ in D is desirable.

Example 1 Let T be the set of all types of pizza, and call
a pizza desirable if my friend Arthur likes to eat it. Let the
subject who'’s beliefs we are modelling be myself. A set of
desirable things—in this case, a set of desirable pizzas—is
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then simply a set D C T of pizzas that I think Arthur likes to
eat. I might for example provide the set of desirable pizzas
D = {peperoni, meatballs}, which expresses that I think
that Arthur likes to eat pizza peperoni and pizza meatballs.

The second model is a set of desirable sets of things
K € P (7). Rather than use desirable things as its elements,
this model instead considers desirable sets of things, which
are sets that contain at least one desirable thing. For ease
of reference, we will often simply speak of desirable sets,
leaving it implicit that they are actually desirable sets of
things, and then refer to K as a set of desirable sets! or, even
shorter, as an SDS. Again, no exhaustivity claim is made:
there might be desirable sets that are not in K. The model
simply—and only—says that every set T in K is deemed
desirable by the subject who’s beliefs we are modelling,
meaning that he thinks that every set 7 € K contains at
least one desirable thing. This second type of model is more
complex, but also has more expressive power. The following
two examples provide a first illustration.

Example 2 Continuing with the pizza example, consider a
situation where I remember that Arthur very much likes ei-
ther pizza peperoni and olives, or pizza chicken and olives,
but that I have forgotten which of these two he likes. Us-
ing our abstract terminology, this means that at least
one of these two pizzas is desirable. I would like to in-
clude this piece of information in my model. With sets
of desirable things, this is not possible. Sets of desir-
able sets, however, can. It suffices to assess that the set
T = {peperoni and olives, chicken and olives} is desirable,
meaning that it contains at least one desirable pizza. I could
for example put forward the set of desirable sets

K= {{peperoni}, {meatballs},

{peperoni and olives, chicken and olives}},

which contains three desirable sets. The first two express
the same information as that in Example 1, while the second
adds the new disjunctive statement.

Example 3 Let 7 be some set of propositions and let de-
sirable propositions be propositions that are true. Consider
now three propositions p1, p; and p3 in T . I furthermore
know that at least two of these propositions are true, but [
don’t know which two are true. I can model this information
with the following set of desirable sets (of propositions):
K = {{p1.p2}.{p2. p3}.{p1. p3}}. It expresses that if I
remove any of the three considered propositions, then—
since at least two of the propositions are true—the set of
the remaining two propositions will contain at least one
proposition that is true.

1If the things are sets themselves, this is a bad idea, as the distinction
between sets of desirable things and sets of desirabe sets then becomes
unclear. In such a case, it seems preferable to not use the shorthand sets of
desirable sets, and to always speak of sets of desirable sets of things.
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3. Coherence

For many sets of things 7, and many notions of desirabil-
ity, it makes sense to impose rules that statements about
desirability should adhere to. One might think of them as
rationality constraints. We will consider three such rules
here. The first rule puts forward a set Aot S 7 of things
that should never—on grounds of rationality—be desirable:

Rpot. The things in Apo¢ are not desirable.

The second puts forward a set Ages € 7 of things that
should always be desirable:

Rges. The things in A4 are desirable.

Example 4 Continuing with the pizza example, we might
want to impose, on grounds of rationality, that pizza Hawaii
should never be desirable and that pizza margherita should
always be desirable. To do so, it suffices to let Apot =
{Hawaii} and Ag4es = {margherita}

Our third rule builds in an inference mechanism, ex-
pressed by means of a closure operator cl.

Definition 1 A map cl: P(T) — P(T) is a closure
operator? if

clj. A Ccl(A) [extensive]
clp. if A C B, then cl(A) C cl(B) [monotone]
cls. cl(cl(A)) = cl(A) [idempotent]
cly. cl(0) =0

These conditions are slightly stronger than what is usually
required of a closure operator. In particular, the last con-
dition, stating that the closure of the empty set should be
empty, is typically not imposed. We choose to impose it
anyway because it better corresponds to the interpretation
that we want to attach to such a closure operator, which
goes as follows: for every set of things A, we take cl(A)
to contain all the things whose desirability can be inferred
from the desirability of the things in A:

Rj. If the things in A C 7 are desirable, then so are the
things in cl(A).

I invite the reader to observe that for an operator that
has this interpretation, the properties in Definition 1 make
perfect sense. In particular, cly imposes that an empty
assessment does not lead to meaningfull inferences.3

2Similar operators are also used in abstract logic. An operator that sat-
isfies clj—clj is then called a consequence operator [28], and a consequence
operator that additionally satisfies cly is called axiomless [31].

3If we were to drop axiom cly, the theory that we are about to develop
would still work [15], provided that axiom Ks further on is imposed
for A = 0 as well. We find this less intuitive though. It furthermore
would not yield a more expressive theory, since drawing inferences from
nothing—like from the empty set—is already built into the theory as it is:
that is exactly what axioms D, and K4 are for. We do not consider this to
be a form of inference though, and therefore prefer to separate this from
the axioms involving the closure operator cl, by requiring that c1(0) = 0.
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Example 5 Going back to our pizza example, a possible
inference mechanism could be that if pizza cheese is deemed
desirable, then every desirable pizza will continue to be
desirable if we replace its crust with a cheese crust. This
corresponds to the closure operator cl that, for every set
A C T of pizzas returns the closure

cl(A) = A U {pizza with cheese crust: pizza € A}

if cheese € A and cl(A) = A otherwise. The closure
of A = {meatballs, cheese} would then be cl(A) = AU
{meatballs with cheese crust, cheese with cheese crust}.

Example 6 For another example, let O be some set of
options, let T = To = {(01,02): 01,02 € O} be the
set of all ordered pairs of such options, and call a pair
(01,072) € T desirable if our subject prefers o1 over 0. In
that context, one might want to impose transitivity. To do
so, we can let cl to be the operator trans that, for every set
of preferences A C T, returns the closure

trans(A) = {(00,0,): 0; € O forall0 <i < n,

(0i-1,0;) € Aforalll <i<n} (1)
of A with respect to transitivity. So trans(A) contains the
preferences that can be inferred from the ones in A by ap-
plying transitivity. The closure of A = {(01, 03), (02,03)},
with 01, 02,03 all different, would then for example be
trans(A) = A U {(01,03)}.

We will call a model coherent if it adheres to the rules
Riots Rges and R—and, in the case of sets of desirable
sets, if it is furthermore compatible with our interpretation
for a desirable set. For sets of desirable things, this is
straightforward and self-explanatory.

Definition 2 A set of desirable things D is coherent if

Di. ApscND =0
D;. Ages © D
D3. CI(D) =D

We let D be the set of all coherent sets of desirable things.

For sets of desirable sets, we require a new piece of
machinery: for any subset A of P(7), we let

Sa={{ta: AcA}: 14 Aforall A € A}

be the set of all selections from A. Any such selection
S € 84 is a set obtained by selecting from each A € A a
single thing 74; that is, S = {r4y: A € A}. The set S4 is
simply the set of all sets S that can be obtained in this way.
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Example 7 Going back to the pizza example, let A =
{A1, Ay}, with Ay {peperoni, meatballs} and A;
{peperoni, cheese}. In that case, ta, € A can be either
peperoni or meatballs, whereas ta, € Ay can be peperoni
or cheese. Each of the four possible combinations corre-
sponds to a selection, so we find that the set of selections
that corresponds to A is

Sa = {{peperoni}, {peperoni, cheese},

{meatballs, peperoni}, {meatballs, cheese}} .

Using this notion of selections, we now define coherence
for sets of desirable sets as follows.

Definition 3 A set of desirable sets (of things) K is coherent

if

.0¢K

. ifAC Band A € K, thenalso B € K
. ifAeKthenalso A\ Ay € K

{t} e K forallt € Ages

. if0# A CKand, forall S € S, ts € cl(S), then
{ts: S€Sa}ekK

We let K be the set of all coherent sets of desirable sets.

The first two of these axioms follow from the fact that K
consists of desirable sets. Indeed, since a set is desirable if
it contains at least one desirable thing, it follows at once that
the empty set cannot be desirable (K;) and that supersets
of desirable sets should be desirable as well (K5).

The last three of these axioms implement the rules Ry,
Ryes and R, again taking into account that K consists of
desirable sets. The third axiom (K3) implements R;,o;, which
says that the things in Ay cannot be desirable. If a set A
contains at least one desirable thing, this clearly implies
that A \ Apo should also contain at least one desirable thing.
The fourth axiom (K4) implements Rges, which simply
states that every thing in Ages should be desirable. The fifth
axiom (Ks), finally, implements R, which says that if all
the things in a set A are desirable then the same is true
for cl(A). To see how this indeed leads to Ks, the crucial
observation is that S# contains at least one selection S
whose elements are all desirable. The reason is that every
A € A C K contains at least one desirable thing. So if, for
each A € A, we let r4 € A be that desirable thing, then
S ={ta: A € A} € S consists of desirable things only.
For that particular S € S, R therefore imposes that cl(S)
consists of desirable things only, and thus in particular,
that zg € cl(S) is desirable. It follows that {ts: S € Sz}
contains at least one desirable thing, making it a desirable
set. For that reason, it makes sense to require that it belongs
to K, as K5 does.
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Example 8 7o illustrate Ks, consider the closure operator
cl of Example 5 and the assessment A = {A1, A2} of Exam-
ple 7. For each of the three S € S that contain peperoni,
let tg := peperoni € S C clS. For S = {meatballs, cheese},
let tg := meatballs with cheese crust € cl(S). If A| and A,
both belong to K, it then follows from Ks that

{ts: S € Sa} = {peperoni, meatballs with cheese crust}

belongs to K as well. To understand why this is reasonable,
recall that Ay, Ay € K means that A\ and A, are both desir-
able: they each contain at least one desirable thing. In case
peperoni is not desirable, this implies that meatballs and
cheese are both desirable, and therefore also, by applying cl,
that meatballs with cheese crust is desirable. So we indeed
find that peperoni or meatballs with cheese crust should be
desirable.

An important feature of the rules and axioms above is that
they can accommodate a wide range of different context, by
considering various sets of things 7~ and various choices of
Anot> Ades and cl. The examples above served as a first simple
illustration of this range; more complex examples will be
given further on. It is also not necessary to impose all of the
rules; each of them is optional. Not imposing Rpot Or Ryes
corresponds to setting Ay = 0 and Ages = 0, respectively,
whereas not imposing R corresponds to letting cl be equal
to the identity operator id, defined for each A € 7 by
id(A) := A. That the corresponding axioms are in those
cases indeed redundant is easy to see, except for axiom Ks,
for which it is not obvious that it has no implications in
case cl = id. Nevertheless, the following result shows that
it indeed does not.

Proposition 4 [f cl = id, then any set of desirable sets
K C P(T) that satisfies Ky will also satisfy Ks.

We end this section by addressing the question whether it
is at all possible to be coherent; that is, whether the proposed
axioms are compatible. The following result presents a sim-
ple intuitive condition that is both necessary and sufficient
for this to be the case.

Proposition 5 D is non-empty—so there is at least one
coherent SDT—if and only if cl(Ages) N Anot = 0. Similarly,
K is non-empty—so there is at least one coherent SDS—if
and only if cl(Ages) N Apot = 0.

4. Representation

An essential feature of the theory of desirable things here
presented, is the connection between the two frameworks it
consists of. We start by showing that sets of desirable sets
(of things) are more expressive than sets of desirable things.
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The reason, quite simply, is that every set of desirable things
D has a corresponding set of desirable sets

Kp ={AeP(T): AnD # 0}. )

It is furthermore coherent if and only if D is.

Proposition 6 Consider a set of desirable things D and its
corresponding set of desirable sets Kp. Then D is coherent
if and only if Kp is.

More involved sets of desirable sets can for example be
obtained by taking intersections of these basic ones. In
particular, with any non-empty set D of sets of desirable
things, we can associate a set of desirable sets

KZ) = ﬂDED KD

This kind of model expresses that at least one of the SDTs
in O is representative, in the sense that a set of things
is deemed desirable according to Ko if and only if it is
desirable according to all D € D. If every set of desirable
things in D is coherent, the resulting set of desirable sets
K ¢ will furthermore be coherent as well. This follows from
Proposition 6 and the fact that coherence is preserved under
intersections.

Proposition 7 For every non-empty set K C K of coherent
sets of desirable sets, (K is a coherent set of desirable
sets as well. Similarly, for every non-empty set D C D of
coherent sets of desirable things, (D is a coherent set of
desirable things.

Corollary 8 For any non-empty set D C D of coherent
sets of desirable things, K o is a coherent set of desirable
sets.

What is much more surprising, and a central result of this
report, is that the converse is true as well: every coherent
set of desirable sets K corresponds to a set D of coherent
sets of desirable things.

Theorem 9 A set of desirable sets (of things) K is coherent
if and only if there is a non-empty set D C D of coherent
sets of desirable things such that K = K p.

As a first serious illustration of the proposed framework,
and of Theorem 9 in particular, we apply it to the case of
desirable gambles, leading to variations on existing results
for so-called coherent sets of desirable gambles, as well
as for generalisations thereof where instead of gambles,
arbitrary vectors are considered.

Example 9 Let X be a set of states, typically regarded as
the possible outcomes of some experiment, and let G(X) be
the set of all bounded real functions on X, called gambles. A
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gamble f in G(X) can then be interpreted as an uncertain
reward f(x) whose value depends on the unkown state
x. Several notions of desirability can be considered here,
but one that is particulary common is to call such a gam-
ble desirable if our subject (strictly) prefers this gamble—
so receiving the reward f(x) after the state x has been
determined—to the status quo—so to not gambling at all.
The definitions of coherence that are commonly used
for sets of desirable gambles then correspond to particular
cases of Definition 2 [19, 4]. One popular choice, that
makes sense if desirability is defined as above, is to let

Anot ={f € G(X): f <0} and

Ages = {f€G(X): f=0and (Ix € X)f(x) > 0},
(3)
and to let cl := posi be the closure operator with respect to
positive linear combinations, defined for all A € G(X) by

posi(A) = {2, Aifi:n>0,f € A, >0}

In this case, Anot expresses that a gamble that only yields
negative rewards is not desirable, Ages expresses that a non-
negative but possibly positive reward should always be desir-
able, and cl corresponds to an assumption that the awards
are expressed in units of some linear utility scale. Alternative
versions of this concept of a coherent set of desirable gam-
bles are typically very similar, and also correspond to spe-
cial case of our framework, but with small differences in the
choice of Ages and Anot; Ages = {f € G(X): inf(f) > 0}
is for example often considered as well. Regardless of the
particular choice, Definition 3 will lead to a corresponding
notion of coherent sets of desirable sets of gambles, and The-
orem 9 shows that the latter can always be represented by
a set of coherent sets of desirable gambles. A similar result
can for example be found in Reference [9], but the desirable
sets (of gambles) can only be finite there, and the version
of axiom Ks used there, with cl = posi, is therefore simpler.
Such simplifications are also possible in our general frame-
work of desirable things; we will get to that in Section 5.
Rather than focus on gambles, completely similar con-
cepts and results can also be obtained for vectors in some
arbitrary vector space V. The choice of Ages and Ayt will
then be different, and will depend on the particular vector
space and context, but the inference mechanism that is ex-
pressed by cl = posi then still makes sense (because linear
combinations do), and all the results continue to apply.
In that context, a version of Theorem 9 is given in Refer-
ence [10], be it again for the case where desirable sets can
only be finite. Examples of things in a vector space for which
the notion of desirability has proven useful include, for exam-
ple, desirable polynomials [14] and desirable matrices [3].

The main determining feature of the cases considered in
the example above, is that the inference mechanism consists
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in taking positive linear combinations. However, this is
not always defensible. In the case of desirable gambles,
for example, one might want to drop the assumption of
linear utility that justifies the use of the posi operator. The
framework of desirable things makes this easy; one can
easily use a different closure operator such as, for example,
the convex hull.

Example 10 Let T be the set G(X) of all gambles, as in
Example 9. With Ayt = {f € G(X): f < 0} and Ages as
in Equation (3). Rather than choose cl = posi, however, we
can drop the assumption of linear utility and use any other
closure operator instead. For coherent sets of desirable
gambles, this corresponds to the theory of nonlinear
desirability of Miranda and Zaffalon [17, 30], who provide
several examples for such closure operators. Another
example of such a closure operator, which was essentially
already put forward by Quaeghebeur [20], is to let cl .= CH
be the convex hull operator, defined for all A C G(X) by

CH(A)
={2Aifirn>0,fie A2, >0,370,4; =1},

which can easily be seen to be a closure operator. In any
case, regardless of the particular choice of cl, it follows
from our results that it not only leads to a notion of coherent
sets of desirable gambles, as in Reference [17], but also to a
notion of coherent sets of desirable sets of gambles, as well
as a connection between both as provided by Theorem 9.

The framework of desirable things is also not restricted to
the vector spaces—such as sets of gambles—to which it has
typically been applied in the past: moving away from the
posi operator also opens up the possibility of moving away
from vector spaces. For example, if inference is expressed
by means of the convex hull operator, 7~ can be any convex
space. Interestingly, this makes it possible to directly deal
with probabilities and horse lotteries. In contrast, previous
attempts at applying the ideas behind desirability to horse
lotteries consisted in embedding horse lotteries in a vector
space and working with positive linear rather than convex
combinations in that vector space [29, 22, 12].

Example 11 Let T be the set of all probability mass
functions on some finite set R that consists of ‘prizes’.
Any such mass function is called a lottery, and provides a
probability for winning each of the prizes in R. We could
then call a lottery desirable if our subject is willing to let
this lottery determine which prize he will get from R. The
set of things T is now a convex space, but not a vector
space. Nevertheless, the theory we developed can still be
applied. Here too, we can for example consider CH as
our closure operator, which builds in an assumption that
convex mixtures of desirable lotteries should be desirable as
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well. Apot and Ages can be chosen freely, but will typically
depend on the particular set of prizes R. For any given such
set-up, the theory we developed provides a notion of sets of
desirable lotteries, of sets of desirable sets of lotteries, as
well as a connection between both types of models.

The example of lotteries on a finite set R is furthermore
completely arbitrary; we can consider any other convex
space instead. R could for example be infinite, and T~ could
then be the set of all finitely additive probability measures
on P(R), or if we endow R with a sigma algebra, the
set of all countably additive probability measures on that
algebra. As another example, T could be the set of all horse
loteries [1] on a state space X with a finite set of prizes R:

T ={h e RER: 3, g h(x,r) =1forallx € X}. (4)

These horse lotteries are typically interpreted as gambles
for which the reward associated with every x € X is not
numeric, but rather a lottery on R. Here too, R could also
be infinite; the lottery associated with each x € X will then
be a (finitely or countably additve) probability measure on
R instead of a probability mass function.

5. Finite Desirable Sets and Simpler Axioms

For sets of desirable sets, the axiom that imposes the effects
of clis quite demanding: it requires us to combine the effects
of infinitely many desirable sets in A to draw conclusions
about the desirability of a new set {ts: S € S#}. In contrast,
in previous studies of sets of desirable sets of gambles [9, 10],
the axiom that imposes the effects of posi was simpler than
Ks, and essentially required Ks only for the case |A| = 2.
We now intend to investigate whether—and if yes, under
which conditions—such simplifications can also be obtained
in our more general context. We will in particular consider
three possible simplifications for Ks. First, a version that
imposes Ks for finite A only:

Ksfin. if @ # A C K is finite and, for all S € S 4,
ts € cl(S), then {ts: S € S4x} € K.

Second, mimicking the approach in earlier studies for the
case of desirable gambles, a version that essentially focusses
on the case |A| = 2:

Kspin. if A,B € K and, foralla € A and b € B,
tap €cl({a,b}), then{t,p: a € A,b € B} € K.

And finally, a version that only considers the case | A| = 1:

Ksun. if A € K and, forall a € A, t, € cl({a}),
then {t,: a € A} e K

Definition 10 A set of desirable sets K € P(T) is called
finitely coherent if it satisfies K|—Ky4 and Ksgy. It is called
2-coherent if it satisfies Ki—K4 and Kspin. It is called 1-
coherent if it satisfies Ki—K4 and Ksyp.

A common feature of the previous studies that used a
simpler version of K5 [9, 10], resembling Kspy, is that the
desirable sets of gambles they consider are all finite: in
those studies, sets of desirable sets (of gambles) are subsets
of

Pun(T) ={A € P(T): |A| < oo}

rather than P (7). In such a setting, some of the coherence
axioms need to be modified slightly, in such a way that they
do not enforce us to add infinite sets of things. In particular,
B and {ts: S € Ax} need to be finite for K, and K;s to
make sense, respectively. To enable us to consider this
setting as well, we introduce a notion of coherence for sets
of desirable sets that explicitly restricts attention to P (77).

Definition 11 A set of desirable sets (of things) K C P(T")
is coherent in Pg, (77) if it satisfies

Kin 0¢K
K" if A C B € Psu(T) and A € K, then also B € K
K" if A € KN Ppin(T) then also A\ Ano, € K
Kin {1} € K forallt € Ages
K" if0 # A C KN Pun(T) and, for all S € S,
ts € cl(S), then if {ts: S € Sa} € Pun(T), also
{ts: SeSq} €K,

It is called finitely coherent in Pg, (7) if it satisfies Ki"-Kf"
and

Kﬁn

iy 0 # A C KNPy (T) is finite and, for all S € S,

ts € cl(S), then {ts: S € Sx} € K.
It is called 2-coherent in Py, (7°) if it satisfies KI"-K" and

Kﬁn

soine A B € KN Phn(T) and, foralla € A and b € B,

tap €cl({a,b}), then{t,p:a € A,b € B} € K.

It is called 1-coherent in Py, (7°) if it satisfies Ki"-K™ and

Kgﬂn if A€ KNPun(T) and, forall a € A, t, € cl({a}),
then {t,: a € A} € K

These new versions of the axioms, and the associated
notions of coherence, simply amount to imposing the previ-
ous ones only to the extent that they involve sets in P, (7).
For that reason, coherence trivially implies coherence in
Phn(77), and similarly for finite coherence (in Pg, (7)),
2-coherence (in P, (7)) and 1-coherence (in Pn (77)).

As is to be expected from their definitions, coherence,
finite coherence, 2-coherence and 1-coherence are related
as well, and similarly for the versions that focus on P, (77).
In that order, earlier notions imply later ones.

Proposition 12 Let K C P(T) be a set of desirable sets.
Then coherence implies finite coherence, which implies
2-coherence, which implies 1-coherence. The same is true
for the versions that focus on Pgn (7).
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The more interesting question is whether finite coherence,
2-coherence or 1-coherence implies coherence, and simi-
larly for the versions that focus on P, (7°), since that would
allow us to replace our axioms with simpler yet equivalent
ones. A first important result is that this is always the case
provided that the closure operator cl is unitary. In that case,
without loss of power, coherence (in P, (7)) can therefore
be replaced by 1-coherence (in Pg, (7)).

Definition 13 A closure operator cl is unitary if
cl(A) = Useacl({t}) forall A € P(T).

Proposition 14 Assume that cl is unitary and consider
any set of desirable sets K C P(T). Then coherence is
equivalent to finite coherence, to 2-coherence, and to 1-
coherence. Similarly, coherence in P, (T) is equivalent to
finite coherence in P (T), to 2-coherence in Pgn(7T"), and
to 1-coherence in Pen(T).

A particular class of unitary closure operators to which
this result can be applied, are those that close a set with
respect to an equivalence relation. Another are closure
operators for which cl(A) is the upset of A according
to some partial order on 7. Unfortunately though, being
unitary is a very strong property to ask of a closure operator,
and only the most simple closure operators will satisty it.
The posi operator that is typically used in the context of
desirable gambles—see Example 9—is for example not
unitary, nor is the convex hull operator that appeared in
Examples 10 and 11 or the transitive closure in Example 6.

Fortunately, we can also obtain similar equivalences—
yet not for 1-coherence—for closure operators that are not
unitary, provided we make some other assumptions. We
start by doing so for the versions that focus on P (7).

Our first result is that finite coherence in P, (7) is
equivalent to coherence in P, (77) provided that the closure
operator cl is finitary. As can be seen from the following
definition, these finitary closure operators are a superset of
the unitary ones.

Definition 15 A closure operator cl is finitary if

cl(A) = Upca,|B|<eco 1(B) (5)

Corollary 16 Ifcl is finitary, a set of desirable sets K C
P(T) is finitely coherent in Pun(7T") if and only if it is
coherent in Pen (7).

Similarly, it is also possible to replace finite coherence
in Py, (77) with 2-coherence in Py, (7). For that result, the
closure operator cl needs to be incremental. Here too, it
can easily be seen that unitary closure operators are always
incremental.
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Definition 17 A closure operator is incremental if for all
A€ P(T), aecT andt € cl(A U {a}), there is some
ta € cl(A) such thatt € cl({ta,a}).

Proposition 18 [fcl is incremental, a set of desirable sets
K € P(T) is finitely coherent in Pgn(T") if and only if it is
2-coherent in Py (T).

Combining the preceding two results, we arrive at a suf-
ficient condition for coherence in P, (77) to be equivalent
to finite coherence in Py, (77) and 2-coherence in Pgp (7).

Corollary 19 If cl is finitary and incremental, then coher-
ence in Pun(7") is equivalent to 2-coherence in Py (T),
and to finite coherence in Pgn(T).

Unlike the condition that cl should be unitary, requiring
that it is finitary and incremental is not that much to ask.
For example, it is easy to verify that the posi operator in
Example 9, the convex hull operator in Examples 10 and 11,
and the transitive closure in Example 6, are all examples of
closure operators that are both finitary and incremental.

We have at this point established several conditions under
which coherence in P,y (7°) can be replaced by a simpler
alternative. The first of these results—Proposition 14—
also applies to our original notion of coherence—so not
in P, (7)— but the others do not, which is unfortunate
because that is the case to which Theorem 9 applies. To
obtain similar results also for this case, we will impose an
additional condition, this time on K instead of cl: we will
focus on finitary K.

Definition 20 A set of desirable sets K € P(T") is called
finitary if, for all A C T, we have that A € K if and only if
there is a finite B C A such that B € K.

Any such finitary set of desirable sets is completely
determined by its restriction to P, (7). Furthermore, as
we will see further on, the coherence of a finitary set of
desirable sets is also determined by its restriction to Pgn (77),
at least if we impose some suitable conditions.

To show this, we start by defining, for any set of desirable
sets K C P (7)), the set of all supersets of its restriction to
Pﬁn (T) :

fin(K) := {A € P(T): Be KN Psu(T),BC A}.

It is easy to see that K is finitary if and only if it coincides
with fin(K). In fact, even for K that are not finitary, fin(K)
is always finitary.

Proposition 21 For any set of desirable sets K C P(T),
fin(K) is a finitary set of desirable sets.

Proposition 22 A set of desirable sets K € P(T) is
finitary if and only if K = fin(K).
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Due to this last result, establishing that a finitary set of
desirable sets K satisfies—some version of—coherence is
equivalent to establishing that fin(K) does. Our next result
provides some ways for doing just that.

Proposition 23 Consider any set of desirable sets K C
P(T). If K is finitely coherent in P, (T), then fin(K) is
finitely coherent and fin(K) N P (7)) = K N Ppn(T), and
similarly for 2-coherence and I-coherence. Furthermore,
if K is finitely coherent in Pgn(T") and cl is finitary, then
fin(K) is coherent.

As an almost immediate consequence, we find that for
finitary sets of desirable sets, the distinguishement between
the different notions of coherence we consider, and their
restrictions to P, (7)), disappears. For coherence itself,
this does require cl to be finitary though.

Proposition 24 Consider a set of desirable sets K C P(T)
that is finitary. Then K is finitely coherent if and only if it is
finitely coherent in Py (T), and similarly for 2-coherence
and I-coherence. Furthermore, if cl is finitary, then K is
coherent if and only if it is coherent in Pgyn(T).

Taking into account our earlier equivalences between
coherence in P, (77), finite coherence in Py (77) and 2-
coherence in Pgn (7)), this directly leads to the following
similar results for the case where we do not focus on P, (77),
be it for finitary sets of desirable sets only.

Corollary 25 Ifclis finitary, a finitary set of desirable sets
K C P(T) is coherent if and only if it is finitely coherent.

Corollary 26 Ifclisincremental, a finitary set of desirable
sets K C P(T) is finitely coherent if and only if it is 2-
coherent.

Corollary 27 If cl is finitary and incremental, a finitary
set of desirable sets K C P(T) is coherent if and only if it
is 2-coherent, and if and only if it is finitely coherent.

What is nice about these results is that if we combine
them with our representation result in Theorem 9, we see
that for finitary sets of desirable sets, representation in
terms of a set of coherent sets of desirable things can be
obtained under weaker conditions than coherence. On the
one hand, for finitary incremental closure operators, every
set of desirable sets K that is finitary and 2-coherent will be
of the form K ¢, for some non-empty D C D. On the other
hand, for finitary closure operators, every set of desirable
sets K that is finitary and finitely coherent will be of the
form K ¢. Unfortunately though, these results only provide
sufficient conditions for such a representation, because even
for finitary incremental closure operators, sets of desirable
sets of the form K¢ need not be finitary.
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Example 12 We consider the case of desirable gambles, as
in Example 9, with cl = posi, Ano = {f € G(X): f <0}
and Ages as in Equation (3). We focus on a simple version
with two states only: X = {a,b}. For any n € N, we let
fn € G(X) be the gamble defined by f,(a) = —1/n and
Ju(b) =1, and use it to define a set of desirable gambles

D, ={feG(X): f>af,witha € Rso}\ {0}.

1t is fairly simple to show that each of these sets of desirable
gambles is coherent. Now let A := {f,,: n € N}. Then for
all n € N, since f,, € AN Dy, we know that AN D, # 0
and therefore, that A € Kp,. So we see that A € K p, with
D = {D,,: n € N}. However, there is no finite subset B of
A such that B € K ¢, because f,, &€ D, for alln > m.

The only simpler condition we have seen that is necessary
and sufficient for coherence, and hence for a representation
in the style of Theorem 9, is 1-coherence for unitary closure
operators, because that did not involve K being finitary.
Combining Theorem 9 with Proposition 14 indeed immedi-
ately yields the following simplification of Theorem 9.

Theorem 28 [f cl is unitary, a set of desirable sets K is
1-coherent if and only if there is a non-empty set D C D of
coherent sets of desirable things such that K = K ¢.

There is however also another way in which we can obtain
a representation in the style of Theorem 9 under conditions
that are simpler than—yet equivalent to—coherence, which
consists in focussing on finite desirable sets only. That is,
by considering sets of desirable sets in Pgn(7) that are
coherent in P, (7). For those, we have already established
several conditions that are simpler yet equivalent to coher-
ence, so simplifying coherence is not the issue here. Instead,
what’s missing is a representation result for such models. In
fact, it is not clear what such a representation would look
like, since models of the form K¢ are subsets of #(7") but
not of P, (7). This is easily fixed though because we can
simply consider the restriction to Py, (7). To that end, with
any set of desirable things D, we associate the restriction

KN :={AePi(T): AND £ 0} = Kp N Ppin(T)

of Kp to Psn(7"), and with every non-empty set D of sets
of desirable things, the restriction

K= Npep K = Kp 0 Ppin(T)

of K¢ to P (7). The question then is whether a result
similar to Theorem 9 can be obtained here as well. That
is, for any set of desirable sets in Pq,(7), is coherence
in Phn(7) equivalent with having a representation of this
form, with D a set of coherent sets of desirable sets?
Our next result shows that this is true for finitary closure
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operators; coherence in P, (7") can even be replaced by
finite coherence in P, (7). The proof is fairly simple,
and essentially consists in applying Theorem 9 to fin(K),
which is coherent due to Proposition 23, and observing that
fin(K) N Psn(7) = K.

Theorem 29 [f cl is finitary, then a set of desirable sets
K C Pen(T) is finitely coherent in Pen (T) if and only there
is a non-empty set D C D of coherent sets of desirable
things such that K = Kg‘. The same is true if we replace
finite coherence in Py (T) by coherence in P (T).

Combining this result with Proposition 18, we obtain a
similar representation theorem for 2-coherence in Pgn (7),
provided that cl is also incremental.

Theorem 30 [f cl is finitary and incremental, then a set
of desirable sets K C Pgn(T) is 2-coherent in P (T) if
and only there is a non-empty set D C D of coherent sets
of desirable things such that K = Kg‘.

Combining Theorem 29 with Proposition 14, finally,
yields a similar result for 1-coherence in Py, (7), provided
that cl is unitary.

Theorem 31 [f cl is unitary, then a set of desirable sets
K C Pan(T) is 1-coherent in P (T) if and only there is a
non-empty set D C D of coherent sets of desirable things
such that K = Kg’.

Since many closure operators are both finitary and incre-
mental, the most important of these three results is arguably
Theorem 30; in particular, it allows us to recover and extend
some earlier results for the case of vector spaces.

Example 13 We already explained in Example 9 that rep-
resentation results in the style of Theorem 9 have already
been obtained for the case where T is a vector space—such
as the set G(X) of all gambles on a state space X—and
cl = posi, but that these results took desirable sets to be
finite, and replaced axiom Ks with a simpler version. We
can now be more specific about this: the results we were re-
ferring to correspond to a special case of Theorem 30, with
cl = posi—which is both finitary and incremental—and T~
either a vector space or, more specifically, a set of gambles
G(X), and the simpler axiom we were referring to is then
of course axiom Kg&w That said, Theorem 30 is much more
broadly applicable than the results in References [9, 10]:
any set T~ will do, and it applies to any cl that is finitary
and incremental. Since the convex hull operator CH is
finitary and incremental, this implies that Theorem 30 can
for instance be applied to the settings we discussed in Exam-
ples 10 and 11. So in all of these settings, we can replace Ks
by Kggin and still obtain a representation in the style of
Theorem 9, provided we focus on finite desirable sets only.
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Example 14 For our final example, we return to the setting
of preferences, in Example 6, and show that we can use it
to represent sets of desirable sets of preferences in terms
of strict total orders. To that end, let cl = trans be the
transitive closure operator of Example 6 and let Ages = 0
and Ao = {(0,0): 0 € O}. A set of desirable preferences
D is then coherent if and only if it is irreflexive and transitive,
here expressed as (0,0) ¢ D and (01, 02),(02,03) € D =
(01,03) € D. Since trans is a finitary incremental closure
operator, it therefore follows from Theorem 30 that a set of
desirable sets of preferences K C Pen(To) is 2-coherent
in Pan(T0) if and only if it is of the form K, where each
D € D represents a binary relation on O that is irreflexive
and transitive. For the representing binary relations to be
strict total orders, they must also be connected, which here
translates to the requirement that for any o1, 02 € O such
that 01 # 0y, either (01,02) € D or (02,01) € D. If we let

ﬂtOt = {{(019 02)’ (02, 01)}: 01,02 € 0’01 F 02},

this corresponds to requiring that AND #+ 0 forall A € Aoy
and D € D, or equivalently, that Ay € Kp. So we
conclude that a set of desirable sets of preferences K C
Pin(To) can be represented by a set of total strict orders
if and only if it is 2-coherent in Pgn(To) and includes Ao

In summary, we see that focussing on finite desirable
sets allows us to obtain several necessary and sufficient
conditions for representation. All of them require that cl is
at least finitary though. If we do allow for infinite desirable
sets, Theorem 9 shows that coherence provides a necessary
and sufficient condition for non-finitary closure operators as
well, but this condition can then not be further simplified—at
least not with our results—without giving up necessity.

6. Where To Go From Here

The main contribution of this paper, I hope, has been to
show that the theory of desirable gambles can be generalised
from gambles to things, without giving up on the main ideas
and results. That said, I have only done so up to some extent.
I focussed on extending the notion of a coherent set of
desirable gambles, and that of a coherent set of desirable
sets of gambles, and on the connection between these two.

There is more to the theory of desirable gambles though,
and it remains to be studied to which extent these other
aspects can be similarly generalised as well. If the theory
of desirable things is to be a proper generalisation of that
of desirable gambles, as I hope it will, developing these
other aspects will be essential. I conclude this paper with a
brief overview of these aspects, which I hope can provide
some inspiration for others wishing to further extend the
framework here proposed. For more details, I refer to the
extended online version of this paper [7].
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Conservative inference. One of the features of the theory
of desirable gambles that makes it important for imprecise
probabilities, is that it provides a natural way to do con-
servative inference: starting from an initial assessment (of
either desirable gambles or desirable sets of gambles), if it
is at all possible to extend it to a coherent model, then there
will always be a unique smallest such coherent extension,
called the natural extension [24, 9]. Since we know from
Proposition 7 that coherence is preserved under taking in-
tersections, it should be rather straightforward to develop a
similar notion of natural extension for desirable things.

Additional axioms. The closure operator that we employ
in our definitions of coherence is what gives the proposed
framework its generality, but it also comes at the price of
having to put all of the specific inference aspects of the
considered setting into this single operator. It would there-
fore be interesting to combine the axioms here proposed
with additional ones. Example 14 provided a simple illus-
tration of such an approach, where the addition of an extra
condition guaranteed that the representing binary relations
were strict total orders. Several more involved examples of
such an approach have already been obtained for desirable
gambles [10, 5], but it remains to be seen to which extent
this is possible for desirable things as well.

Logic. As hinted at in Footnote 2, the idea of representing
inference principles with closure operators is used in (ab-
stract) logic as well. Coherent sets of desirable things then
essentially correspond to so-called closed theories. Results—
or perhaps rather ideas—from abstract logic could therefore
usefully be employed in the study of sets of desirable
things.# Sets of desirable sets of things, on the other hand,
do not seem to have an analogue in abstract logic. Neverthe-
less, sets of desirable sets of things can be given a logical
interpretation, which we’ve recently explored [15].

Desirable preferences. As illustrated in Examples 6
and 14, it is possible to consider preferences—and hence
decision making—in the abstract setting of things, simply
by directly considering the desirability of preferences. Since
in the case of gambles, the connection between desirability,
preferences and decision making has proven to be fruitful,
it seems worthwile to further explore this connection in our
more general context as well.

Choice functions. One of the most general, and arguably
also most intuitive ways in which the theory of desirable gam-
bles has been connected with decision making, is through
the connection between coherent sets of desirable sets of

4Consider for example the well known result that coherent sets of
desirable gambles can be represented in terms of maximal sets of desirable
gambles. One might wonder to which extent this generalises to the setting
of things. In abstract logic, this corresponds to the question of whether
closed theories can be represented in terms of so-called maximal theories;
a question that has been thoroughly studied in that field.
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gambles on the one hand, and coherent choice functions
on the other. In fact, these two types of models have been
shown to be equivalent [10]. The advantage of this connec-
tion is that we can combine the intuitive language of the
latter—which involves statements about choices—with the
mathematical power of the former, in the form of represen-
tation theorems such as the ones presented in this paper.
In particular, this has lead to axiomatic characterisations
for the use of various types of decision rules, including
maximising expected utility, E-admissibility and maximal-
ity [10, 5, 21]. The results in this paper therefore beg the
question whether a similar connection with choice functions
is possible also in our more general setting.

Nonlinear operators. One of the main reasons why co-
herent sets of desirable gambles have played a foundational
role in the field of imprecise probabilities, is because, as
explained in the introduction, many well known imprecise
probability models correspond to special cases. An impor-
tant class of such special cases are nonlinear operators,
including coherent lower and upper expextations (or previ-
sions) and various types of nonlinear set functions [24, 25].
Given the developments in this paper, it makes sense
to wonder if similar connections are possible in our more
general context as well, and if yes for which types of things.
For the case of gambles with general closure operators,
some examples of such connections can already be found
in the work of Miranda and Zaffalon [17]. But even for that
case, much remains to be explored. If we adopt the convex
hull as closure operator, for example, I expect that coherent
sets of desirable gambles can be connected to convex lower
and upper previsions and convex risk measures [18, 16].

Multivariate models. A final feature of desirable gambles
that I would like to point out, is their use in a multivariate
context: marginalisation, conditioning and independence,
for example, are concepts that have been succesfully applied,
not only to sets of desirable gambles [4, 13], but also to
sets of desirable sets of gambles [23]. This has for example
made it possible to apply sets of desirable gambles in the
context of credal networks [8]—imprecise generalisations
of Bayesian networks. For sets of desirable gambles with
general closure operators, marginalisation and conditioning
have already been explored as well [17]. Extending these
ideas from gambles to arbitrary things seems impossible,
but if the things in question have sufficient structure, this
does seem feasible. For example, as one of the reviewers
kindly suggested, we could consider uncertain things: map-
pings from a state space to a set of things; gambles and
horse lotteries, for example, are specific instances of such
uncertain things. These uncertain things are just special
types of things, so the framework here presented can be
applied, but they also provide sufficient structure to allow
for a multivariate treatment.
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