SUBLINEAR EXPECTATIONS FOR COUNTABLE-STATE UNCERTAIN PROCESSES

Proof of Theorem 3. Let Eg = {E € Ep: E(E) <
+co}. Since & is downward continuous, we know from
Lemma 2 that every linear expectation E € Eg is downward
continuous. Consequently, if follows from the Daniell-Stone
Theorem that for all E € Eg, E = E| ¢ with

E:Mﬁ@:gr—)‘/gdPE.

It follows immediately from this and Lemma 1 that & is
well defined and extends &.

On several occasions, we will need that for all f € M(D)
and E € Eg, E(E) € R (due to Lemma 1) and

E(f) <&(f) +E(E). (12)

Next, we show that & is a convex expectation. The
extension & is a nonlinear expectation: (i) M (D) includes
all constant real functions because D € M(D) and D
includes all constant real functions; (ii) & is isotone because
the Lebesgue integral is isotone on M (D) [20, Chapter 8,
Theorem 5 (iv)]; and (iii) & is constant preserving because
itextends & and & is constant preserving. To verify that & is
convex, we fix some f, g € M(D) and A € [0, 1] such that
f +g is meaningful and in M(D) and 2&(f) +(1-)E(g)
is meaningful. f A = 0or A = 1, clearly E(Af + (1 -2A) f) =
AE(f) + (1 = 1)&(g); hence, without loss of generality we
may assume that 0 < A < 1. Due to symmetry, and because
AE(f) + (1 — 1)E(g) is meaningful, we need to distinguish
three cases: (i) &(f) = +co and E(g) > —oo; (ii) E(f) and
&(g) both real; and (iii) &(f) = —c0 and E(g) < +o0. In
the first case, the required inequality holds trivially. In the
second case, it follows from Eqn. (12) that for all £ € Eg,
E(f) < +o0 and E(g) < 400,50 AE(f) + (1 = D)E(g) is
meaningful and, due to the linearity of E [20, Chapter 8,
Theorem 5 (i)], equal to E(Af + (1 — 2)g). Similarly, in
the third case, it follows from Eqn. (12) that for all £ € Eg,
E(f) = —coand E(g) < +00, 50 AE(f) + (1 = D)E(g) is
meaningful and, due to the linearity of £, equal to E(Af +
(1 = 2)g). Consequently, in the last two cases,

E@f+(1-2)g)
= sup{lf(/lf+ (1-2)g)-E"(E): E € [Eg}
= sup{E(ﬂf) +(1-2)E(g)-E(E): E € [Eg}
< /lsup{E(f) -&"(E): E€ [Eg}
+(1-2) sup{E(g) -&(E): E€ [Eg}
=28(f) + (1 - )é(g),
as required.
Denk et al. [10, Theorem 3.10] show that the restriction
of & to M(D) N L(Y) 2 Ds.p is downward continuous
on D p, so clearly & is downward continuous on D p too.

Proving the upward continuity on My (D) is straight-
forward. Fix any (Mp)N 3 (f)nen ./ f € Mp(D). For
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all E € Eg, E is upward continuous on Mp—due to
the Monotone Convergence Theorem, see for example
[35, Theorem 12.1]—and therefore lim,_ 0 E(f,) =
sup,cn E(fn) = E(f). From this and the isotonicity of &,
it follows that

dim &(f,) =sup{E(fu): n €N}
= sup{sup{E(fn) -&"(E): E € [Eg}: ne N}
= sup{sup{E(fn) -&"(E):ne N}: E € [Eg}
= sup{E(f) -&(E): E € [Eg}
= &(/),

as required.

To prove the second part of the statement, we assume
that & is an upper expectation. Recall from Lemma 1 that
&E*(E) = 0forall E € Eg and that Eg is the set of dominated
linear expectations (on D). Hence, to see that & is positively
homogeneous, it suffices to realise that for all £ € Eg (i)
&E*(E) = 0 due to Lemma 1; and (ii) Eis homogeneous [20,
Chapter 8, Theorem 5 (i)]. That & is subadditve follows
from a similar argument as the one we used to prove that &
is convex. |

Proof of Corollary 4. From Theorem 3.10 in [10]—or the
functional version of Choquet’s Capacitibility Theorem, see
[3, Proposition 2.1]—it follows that for all f € Mp(D) N
MP(D) = M(D) N L(Y),

E(f) =sup{ lim E(f): D 3 (fhwen N5 f]. (13)

It remains for us to prove the equality in the statement for
all f € My(D) \ MP(D), so let us fix any such f. Then
(f A k)gen is an increasing sequence in My (D) N MP (D)
that converges pointwise to f, and therefore

&(f) =k1leé(fAk) =sup{&(f Ak): k eN}.

Because f Ak € My(D)NMP(D) forall k € N, it follows
from this equality and Eqn. (13) that

E(f) =sup{ Jim E(f): k € N.DV'3 (fduen \u= £ A k|
= sup{ lim &(fu): D3 (fulnen N5 f},

as required. |

Proof of Equation (2). Due to Lemma 8.1 (and Lemma 8.3)
in [35], (D) is generated by the collection of level sets

C = {{weQ: f(w) = a}: fe@,a/eR}.

Hence, it follows from Eqn. (1) that every cylinder F € &
belongs to C, and therefore also to o(Z). Consequently,
o(F) co(9).



ERREYGERS

To prove that 0(9) C o (%), it suffices to verify that
any level set in C is a cylinder. To this end, we fix any
f € 9 and @ € R. By definition of &, there are some
Ue%andg € L(XY) suchthat f = gony. Let A =
{x e ZY: g(x) > a}. Then clearly

{we Q: f(w) 2 a}={w e Q: my(w) € A},

so this level set is indeed a cylinder. |
Proof of Lemma 9. That Rg is finitely additive with
Re(Q) = 1 follows immediately because E is a linear
expectation. Hence, we focus on the second part of the
statement.

First, we assume that E is downward continuous. Then it
follows immediately from the Daniell-Stone Theorem that
Rg = Pg|, and therefore Rg is countably additive.

Second, we assume that Rg is countably additive. Then
it is well known, see for example Proposition 9 in [20,
Chapter 7] or Lemma 4.3 in [33, Chapter II], that for any
decreasing (F,)nen € FN—meaning that F,, D F,,; for
all n € N—with (,,en Fr = 0,

lim Rg(F,) =0. (14)
n—+co
To show that E is downward continuous, we fix any f € 9
and any decreasing sequence (f,,)nen € DV that converges
pointwise to f. Then

E(f)—E(f)=E(fu—f) >0 forallneN. (15)

Obviously, (f, — f)nen is a decreasing sequence in @ that
converges pointwise to 0.

Fixany € € R.g,andlet 8 := || fi— f|| = sup f1—f. Then
foralln e N,welet F,, = {w € Q: f,(w) — f(w) > €};
it is a bit laborious to verify that F,, € &, so we leave
this as an exercise to the reader. This way, (F,),en 1S a
decreasing sequence in & with (), Fn = 0, and for all
neN, f, — f < e+ plF, and therefore

E(fu-f) < E+E(ﬂ1:n) = e+ Re(Fy).
It follows from this and Eqn. (14) that
lirP E(fn—f) < lirP €+ BRe(F,) =e.

Since this inequality holds for any strictly positive real
number €, we infer from it and the one in Eqn. (15) that

Tim E(f) = E(f),
|

as required.

Proof of Theorem 7. To prove that E is downward con-
tinuous, we recall from Proposition 6 that £ is an upper
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expectation. By Lemmas 1 and 2, it suffices to verify that
every dominated linear expectation E in

Ez = {E €Eg: (Vf € D) E(f) < E(f)}
is downward continuous. So fix any E € Ex, and let
Rg: F — [0,1]: F— E(lp).

We know from Lemma 9 that Rg is finitely additive with
Rg(Q) =1, and that E is downward continuous if and only
if Rg is countably additive. Hence, it suffices to show that
RE is countably additive, and we will do so by checking
that the conditions in Lemma 8 are satisfied.

First, fix any U € %, and let

RY: o(2Y) — [0,1]: A Re(n;'(A)) = E(lpo1(a))-

Clearly, Rg is a non-negative set function with Rg(&” Uy =
Rg(Q) =1 that is finitely additive. By a standard result in
measure theory—see for example Proposition 9 in [20,
Chapter 7] or Lemma 4.3 in [33, Chapter II]—RY is
countably additive, and therefore a probability measure,
if and only if for any decreasing sequence (Ag)ken in
Y with Ngen Ak = 0, limg 10 Rg(Ak) = 0. For any
such sequence (Ag)ren, the corresponding sequence of
indicators (Hﬂl—/] ( Ak))kGN e N clearly decreases to 0, and
therefore

0< kl_l)I}—loo RE(Ag) < kETwE(ﬂﬂ&l (Av)
= lim Ey(la,) =0,
k—+0c0

where for the final equality we used that Ey; is downward
continuous and constant preserving.

Next, fix some n € N and ¢+ € [0,n]. Then for all
s € Ry \ {1},

{t.5} z
Ry (DY, ) < Esy(d], )

Hence,
RUSH(DE ) Eqs(dt )
. E {t.s} . {53\l 5y
limsup ————— < limsup ———— < 4,
s—t |S_t| s—t |S_t|

as required. |
Proof of Proposition 13. We have already established that
(MZ)IERzo is a semigroup of upper transition operators, so it
remains for us to verify (i) that M, is downward continuous
for all + € Rsg, and (ii) that (Mt)fERzO has uniformly
bounded rate.

To verify that M, is downward continuous for all
t € R.p, we fix some ¢t € R.9 and z € Zs¢, and
consider any N 3 (fi)uen \ f € Z. On the one
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hand, since M, is isotone, ( [M; £,](2))nen decreases, with
limy, 400 [M; fn](2) > [M; f](z). On the other hand, for all
n € N, it follows from the subadditivity of M, that

M, £21(2) < M (f = H1(2) + M £1(2).

Hence, it suffices for us to show that

Jim [M; (fu = )](2) <0. (16)

For all n € N, let

Ja: Zs0 = R x > max{fu(y)=f(y): y € Z50,y < x}.

Itis easy to verify that for all n € N, f,, is a bounded function
that dominates f, — f, so it follows from the isotonicity
of Mt that

M, (f = H1(2) < M £l (2).

Moreover, since fn is increasing (in the sense that ﬂ,(z) <
fn(y) whenever z < y), it follows from Theorem 15, Pro-
position 16 and Eqn. (18) in [15] that

M (fu=H1) < Y Fulr, (=2) = / Falzo)du,,
y=z

where Y7, : 9(Z50) — [0, 1] is the probability measure
corresponding to the Poisson distribution with parameter Az.
Finally, it is easy to verify that ( f,),cn is monotone and
decreases pointwise to 0, so a straightforward application
of the Monotone Convergence Theorem yields

lim [ fu(z+e)dyg, =0.
n—+o0o

Eqn. (16) follows from this equality and the previous in-
equality, and this finalises our proof for the downward
continuity.

Finally, we verify that the sublinear Markov semig-
roup (M,),ERZO has uniformly bounded rate—so satisfies
Eqn. (4). First, note that due to constant additivity,

lim sup 1 sup{[ﬁ,(l -l)](x):x € 2’}
AN

= lim sup sup

[Mi (10100 = (L) |,
N0 ! ' .

It follows from this, the definition of the norms ||e|| and
|15, and Eqn. (11) that

lim sup ; sup{[ﬁ,(l —-ly)]x):x € &”}

N0
Slimsup{ :xe&"}

t\0

M(_l]x) B I(_l]x)
t
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0
< lim||——

= |ILJI°, < +oo,
Jim ILlop

op

where the strict inequality holds because L is a bounded
operator. |
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