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Abstract
In this paper, we dealwith production planning problem
under temporal demand uncertainty. More precisely,
a demand forecasting for a given period could move
backward in time or forward in time. We investigate
the case where knowledge on dependencies on demand
is available. This knowledge is taken into account
through a family of copula function. The aim results
of the paper are: (a) this approach do not increase the
complexity of production planning problem, (b) limit
the conservatism of fuzzy robust approach for produc-
tion planning problem and evaluates more precisely
the necessity that the cost of a production plan does
not exceed a certain threshold.
Keywords: production planning, fuzzy robust opti-
mization, possibility theory

1. Introduction

Demand uncertainties are a critical factor to consider in
production planning since they induce risks for the manufac-
turer such as backordering and obsolete inventory (see [11]
for a comprehensive review). Nowadays it is often difficult
to access to the probability distribution on the demand and
approach based on robust optimization or fuzzy optimiza-
tion give the possibility to deal with a poorer knowledge
on the demand. In the literature most of the paper focus on
the uncertain demands in periods [1, 10, 13], few on the
uncertain demands in periods and orders (MRP) [2]. To our
knowledge, the imprecision on the date of the orders has
not been studied much in the literature [3, 4, 5] while it is
often present and is due to production delays (see [11, 7]
for a comprehensive review).
In fuzzy robust optimization some methods have been

proposed to moderate the conservatism of the solution. In
[9] the moderation is done by aggregated the possibility and
the neccessity measure; in [8] the number of deviations (i.e
budget) to the most possible value is limited by a parameter
called budget and in [6] a parametric copula function to
take into account the dependencies is proposed.
In this paper a capacitated production planning prob-

lem under temporal demand uncertainty is discussed. To
moderate the conservatism of fuzzy robust optimization

the approach proposed in [6] is developed. We show that
introducing uncertainty on times in the possibilistic set-
ting does not make our problem much computationally
harder than its deterministic counterpart. Furthermore, the
computational experiments performed suggest that taking
additional information about possibility distributions of the
cumulative demands given by fuzzy intervals and copula
function may lead to better quality over a set of plausible
scenarios and reduce the over conservatism of fuzzy the
robust optimization approach.

2. Production Planning Problem

In this section we formulate a production planning problem
that we examine in the paper. It is a simple version of the
well-known capacitated single-item lot sizing problem with
backordering (see, e.g., [12]) without setup cost. We first
state the problem with precise parameters. Then we assume
that demands are subject to uncertainty - the rest of the
parameters are precisely known.

2.1. Deterministic Problem

Weare given𝑇 periods, a demand 𝑑𝑡 in each period 𝑡, 𝑡 ∈ [𝑇]
([𝑇] denotes the set {1, . . . , 𝑇}), production, inventory and
backordering costs and a selling price, denoted by 𝑐𝑃 , 𝑐𝐼 ,
𝑐𝐵 and 𝑏𝑃 , respectively, which do not depend on period 𝑡.
The problem is to find a feasible production amount 𝑥𝑡
in each period 𝑡, called production plan, subject to the
condition of satisfying each demand, which minimizes the
total storage and backordering costs minus the benefit from
selling the product.
Let us denote by 𝕏 the set of production plans. We

assume that 𝕏 is specified by some linear constraints, for
example

𝕏 = {𝑥𝑥𝑥 = (𝑥𝑡 )𝑡 ∈[𝑇 ] ∈ ℝ𝑇
+ : 𝑥𝑡 ≥ 0, 𝑐𝑙𝑡 ≤ 𝑥𝑡 ≤ 𝑐𝑢𝑡 ,

𝐾𝐿
𝑡 ≤

∑︁
𝑖∈[𝑡 ]

𝑥𝑖 ≤ 𝐾𝑈
𝑡 , 𝑡 ∈ [𝑇]},

where 𝑐𝑙𝑡 , 𝑐𝑢𝑡 and 𝐾𝐿
𝑡 , 𝐾𝑈

𝑡 are given capacity and cumulative
capacity limits, respectively.
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Our problem can be modeled by the following linear
program:

min
∑︁
𝑡 ∈[𝑇 ]

(𝑐𝐼 𝐼𝑡 + 𝑐𝐵𝐵𝑡 + 𝑐𝑃𝑥𝑡 − 𝑏𝑃𝑠𝑡 ) (1)

s.t. 𝐵𝑡 − 𝐼𝑡 = 𝐷𝑡 − 𝑋𝑡 𝑡 ∈ [𝑇], (2)∑︁
𝑖∈[𝑡 ]

𝑠𝑖 = 𝐷𝑡 − 𝐵𝑡 𝑡 ∈ [𝑇], (3)

𝐵𝑡 , 𝐼𝑡 , 𝑠𝑡 ≥ 0 𝑡 ∈ [𝑇], (4)
𝑥𝑥𝑥 ∈ 𝕏 ⊆ ℝ𝑇

+ , (5)

where 𝐷𝑡 =
∑

𝑖∈[𝑡 ] 𝑑𝑖 and 𝑋𝑡 =
∑

𝑖∈[𝑡 ] 𝑥𝑖 , 𝐷𝑡 and 𝑋𝑡
stand for the cumulative demand up to period 𝑡 and the
cumulative production up to period 𝑡, respectively. 𝐼𝑡 and
𝐵𝑡 are respectively the inventory and the backordering à
period 𝑡
An easy computation shows that (1)-(5) can be rewritten

in the following equivalent compact form, which is more
convenient to analyze:

min
𝑥𝑥𝑥∈𝕏

C(𝑥𝑥𝑥, 𝐷𝐷𝐷) = min
𝑥𝑥𝑥∈𝕏

∑︁
𝑡 ∈[𝑇 ]

max{𝑐𝐼 (𝑋𝑡 − 𝐷𝑡 ), 𝑐𝐵 (𝐷𝑡 − 𝑋𝑡 )}

+ 𝑐𝑃𝑋𝑇 − 𝑏𝑃 min{𝑋𝑇 , 𝐷𝑇 },
(6)

where 𝐷𝐷𝐷 = (𝐷𝑡 )𝑡 ∈[𝑇 ] is a 𝑇-vector of cumulative demands.

2.2. Model of Demand under Uncertainty

We now admit that demands are subject to temporal uncer-
tainty. This means that a part of demand forecasting for a
given period 𝑡 can be advanced to the previous period 𝑡 − 1
or delayed to the next period 𝑡 + 1. More formally, let 𝑑𝑡
be the forecasting demand at period 𝑡 and 𝐷̂𝑡 =

∑
𝑖∈[𝑡 ] 𝑑𝑖

the cumulative forecasting demand. The manager can give
for each period 𝑡 ∈ [𝑇] the maximum percent of demand
𝛿−𝑡 ∈ [0, 1] that can be advanced to the previous period
𝑡 − 1 and maximum percent of demand 𝛿+𝑡 ∈ [0, 1] that
can be delayed to the next period 𝑡 + 1. From this knowl-
edge fuzzy sets on the cumulative demand can be build.
Fuzzy sets are interpreted as possibility distribution 𝜋. This
possibility distribution 𝜋

𝐷̃𝐷𝐷
is defined in terms of 𝜆 − 𝑐𝑢𝑡:

D[𝜆] = {D|𝜋
𝐷̃𝐷𝐷

≥ 𝜆},∀𝜆 ∈ [0, 1] by the following equation
7.

D[𝜆] : {𝐷 [𝜆]𝐷 [𝜆]𝐷 [𝜆] ∈ ℝ𝑇

𝑠.𝑡. 𝐷
[𝜆]
𝑡 ≥ 𝐷̂𝑡 − 𝛽+𝑡 𝛿+𝑡 𝑑𝑡 ,∀𝑡 ∈ [𝑇] (𝑎)

𝐷
[𝜆]
𝑡 ≤ 𝐷̂𝑡 + 𝛽−𝑡+1𝛿

−
𝑡+1𝑑𝑡+1,∀𝑡 ∈ [𝑇] (𝑏)

𝛽−𝑡 ≤ 1 − 𝜆,∀𝑡 ∈ [𝑇] (𝑐)
𝛽+𝑡 ≤ 1 − 𝜆,∀𝑡 ∈ [𝑇] (𝑑)
𝛽+𝑡 𝛿

+
𝑡 + 𝛽−𝑡 𝛿−𝑡 ≤ 1,∀𝑡 ∈ [𝑇] (𝑒)

𝛽−𝑡 , 𝛽
+
𝑡 ∈ [0, 1],∀𝑡 ∈ [𝑇]}

(7)

Constraints (a).7 and (b).7 mean that the cumulative
demand of a period is imprecise due to the quantity that
is advanced or delayed. Constriants (c).7 and (d).7 mean
that the maximal deviation is bounded by 1 − 𝜆. When
𝜆 = 1 the deviation is 0 and the cumulative demand is crisp.
When 𝜆 = 0 the maximum deviation is possible. Finally
constraints (e).7 mean that it is not possible to advanced to
𝑡 − 1 or delayed to 𝑡 + 1 more than all the periodic demand
𝑑𝑡 . We can see that D[𝜆1 ] ⊆ D[𝜆2 ] ,∀𝜆1, 𝜆2 ∈ [0, 1] such
that 𝜆1 > 𝜆2. The scenario with possibility 𝛱 (D) = 1 is the
scenario without temporal deviation from the forecasting
one D[1] = D̂.
The problem with time uncertainty can be formulate

as a version of (6) with uncertain cumulative demands
𝐷𝐷𝐷 = (𝐷𝑡 )𝑡 ∈[𝑇 ] :

m̃in
𝑥𝑥𝑥∈𝕏

C(𝑥𝑥𝑥, 𝐷𝐷𝐷) = m̃in
𝑥𝑥𝑥∈𝕏

∑︁
𝑡 ∈[𝑇 ]

C𝑡 (𝑥𝑡 , 𝐷𝑡 ) = (8)∑︁
𝑡 ∈[𝑇 ]

max{𝑐𝐼 (𝑋𝑡 − 𝐷𝑡 ), 𝑐𝐵 (𝐷𝑡 − 𝑋𝑡 )} + 𝑐𝑃𝑋𝑇

−𝑏𝑃 min{𝑋𝑇 , 𝐷𝑇 }. (9)

For simplicity we denote by C𝑡 (resp. C) the cost C𝑡 (𝑥𝑡 , 𝐷𝑡 )
(resp.C(𝑥𝑥𝑥, 𝐷𝐷𝐷)).

3. Robust Possibilistic Optimization Taking
into Account the Dependencies Belief

Robust possibilistic optimization maximize the degree of
certainty that a solution cost is lower than a given threshold
g.

max𝑥𝑥𝑥∈𝕏 𝑁 (C ≤ 𝑔) (10)

To take into account the belief on dependencies [6]
has proposed an approach based on copula function. In
this approach the necessity measure is computed from
the marginal possibility distribution and a function 𝐻𝛼 :
[0, 1]𝑇 → [0, 1] (eq.11) where 𝛼 ∈ [0, 1] is the degree of
belief that they is negative dependencies, i.e. if 𝛼 = 0 we
do not have negative dependencies between uncertainty, if
𝛼 = 1 we know that there is negative dependencies between
uncertainty of each periods.

𝐻𝛼 (𝑢𝑢𝑢) = 𝛼.𝑊 (𝑢𝑢𝑢) + (1 − 𝛼)𝑀 (𝑢𝑢𝑢), 𝛼 ∈ [0, 1] (11)

with 𝑊 (𝑢𝑢𝑢) = max{∑𝑇
𝑖=1 𝑢𝑖 − 𝑇 + 1, 0} and 𝑀 (𝑢𝑢𝑢) =

min𝑖=1,...,𝑇 (𝑢𝑖).
Based on themarginal possibility distribution and a function
𝐻𝛼, the necessity degree to have a vector 𝑥𝑥𝑥 ∈ ℝ𝑇 lower or
equal to a given vector 𝑎𝑎𝑎 is:

𝑁 (𝑥𝑥𝑥 ≤ 𝑎𝑎𝑎) = 1 − 𝐻𝛼 (𝛱 (𝑎1 < 𝑥1), ..., 𝛱 (𝑎𝑇 < 𝑥𝑇 )) (12)

Hence the problem 10 can be formalized as:

242



Robust Possibilistic Production Planning under Temporal Demand Uncertainty with Knowledge on Dependencies

min𝑥𝑥𝑥∈𝕏 𝜖

max
{𝑐𝑐𝑐 |𝐻𝛼 (𝑐𝑐𝑐) ≥𝜖 }

∑
𝑡 ∈[𝑇 ] 𝑐𝑡 ≤ 𝑔

C𝑡 = 𝑐𝑡 ∀𝑡 ∈ [𝑇]
(13)

with 𝐻𝛼 (𝑐𝑐𝑐) = 𝐻𝛼 (𝛱 (𝑐1 < 𝐶1), ..., 𝛱 (𝑐𝑇 < 𝐶𝑇 ))
The problem eq.13 is composed to a maximization prob-

lem in the constraints, we call this problem the adversarial
problem. Before studying the specificity of the produc-
tion planning problem let us recall the results on the set
{𝑐𝑐𝑐 |𝐻𝛼 (𝑐𝑐𝑐) ≥ 𝜖} given in [6].

Theorem 1 The adversarial problem:
max

{𝑐𝑐𝑐 |𝐻𝛼 (𝑐𝑐𝑐) ≥𝜖 }
𝑐𝑐𝑐𝑇 𝑥𝑥𝑥, 𝛼 ∈ [0, 1] is equivalent to:

• max
𝑐𝑐𝑐∈C1

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥 if 𝛼 = 0,

• max
𝑐𝑐𝑐∈C2

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥 if 𝛼 = 1,

• max
𝑐𝑐𝑐∈C3

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥 if𝑊𝑚
𝛼,𝜖 ≠ 0 and 𝑀𝑚

𝛼,𝜖 ≠ 0

• max{max
𝑐𝑐𝑐∈C1

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥,max
𝑐𝑐𝑐∈C2

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥,max
𝑐𝑐𝑐∈C3

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥} if 𝑊𝑚
𝛼,𝜖 = 0 and

𝑀𝑚
𝛼,𝜖 = 0,

• max{max
𝑐𝑐𝑐∈C1

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥,max
𝑐𝑐𝑐∈C3

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥} if𝑊𝑚
𝛼,𝜖 = 0 and 𝑀𝑚

𝛼,𝜖 ≠ 0,

• max{max
𝑐𝑐𝑐∈C2

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥,max
𝑐𝑐𝑐∈C3

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥} if𝑊𝑚
𝛼,𝜖 ≠ 0 and 𝑀𝑚

𝛼,𝜖 = 0.

C1 = {𝑐𝑐𝑐 : 𝑐𝑡 ≤ C [𝑀𝑀
𝛼,𝜖 ]

𝑡 , 𝑡 ∈ [𝑇]}

C2 = {𝑐𝑐𝑐 :
∑︁
𝑡 ∈[𝑇 ]

𝑢𝑡 −𝑊𝑀
𝛼,𝜖 = 𝑇 − 1,

𝑐𝑡 ≤ C [𝑢𝑡 ]
𝑡 , 𝑡 ∈ [𝑇], 𝑢𝑢𝑢 ∈ [0, 1]𝑛},

C3 = {𝑐𝑐𝑐 :
∑︁
𝑡 ∈[𝑇 ]

𝑢𝑡 − (𝜁𝑊𝑀
𝛼,𝜖 + (1 − 𝜁)𝑊𝑚

𝛼,𝜖 ) = 𝑇 − 1,

𝑐 𝑗 ≤ C [𝑢 𝑗 ]
𝑡 , 𝑡 ∈ [𝑇]

𝑐 𝑗 ≤ C [𝜁 𝑀𝑚
𝛼,𝜖 +(1−𝜁 )𝑀𝑀

𝛼,𝜖 ]
𝑡 , 𝑡 ∈ [𝑇]

𝑢𝑢𝑢 ∈ [0, 1]𝑛, 𝜁 ∈ [0, 1]}.

with𝑊𝑚
𝛼,𝜖 (resp.𝑊𝑀

𝛼,𝜖 ) and𝑀𝑚
𝛼,𝜖 (resp.𝑀𝑀

𝛼,𝜖 ) the minimal
(resp. maximal) value of𝑊 (𝑢𝑢𝑢) respectively 𝑀 (𝑢𝑢𝑢) sucht that
𝜖 = 𝛼.𝑊 (𝑢𝑢𝑢) + (1 − 𝛼)𝑀 (𝑢𝑢𝑢).
In the context of production planning we do not access

directly to marginal distribution 𝜋C𝑡 but we start from the
marginal possibility distribution on demand 𝜋D𝑡

. In the next
section we will formulate the production planning problem
taking into account the dependencies and show how to solve
it.

4. Robust Possibilistic Production Planning
Taking into Account the Dependencies
Belief

4.1. Problem Formulation

The proposition 1 shows that the uncertainty set D̂ is equiv-
alent to a more compact form which is more convenient
to analyze. Proposition 2 define the marginal possibility
distribution 𝜋𝐷𝑡

. For ease of reading, the proves are in
appendix.

Proposition 1 D[𝜆] = {𝐷̂𝑡 − (1 − 𝜆)𝛿+𝑡 𝑑𝑡 ≤ 𝐷𝑡 ≤ 𝐷̂𝑡 +
(1 − 𝜆)𝛿−

𝑡+1𝑑𝑡+1 |𝐷𝑡 ≤ 𝐷𝑡+1∀𝑡 ∈ [𝑇 − 1]}

Proposition 2 The marginal possibility distribution 𝜋𝐷𝑡
is

triangular possibility distribution represented by the lower
possible value: 𝐷̂𝑡 − 𝛿+𝑡 𝑑𝑡 , the most possible value: 𝐷̂𝑡 and
the higher possible value: 𝐷̂𝑡 + 𝛿−𝑡+1𝑑𝑡+1.

We can now define the marginal possibility distribution
on cost from the marginal possibility distribution on 𝐷𝑡 ,
where 𝐷 [𝜆]

𝑡 is the 𝜆-cut of possiblity distribution 𝜋𝐷𝑡
.

C [𝜆]
𝑡 = [ min

𝐷𝑡 ∈𝐷 [𝜆]
𝑡

C𝑡 , max
𝐷𝑡 ∈𝐷 [𝜆]

𝑡

C𝑡 ] = [C [𝜆]
𝑡
, C [𝜆]

𝑡 ] (14)

Proposition 3 The possibility distribution 𝜋C𝑡 is convex
on 𝑥 ∈ [min

𝐷𝑡 ∈𝐷 [0]
𝑡

C𝑡 ,min𝐷𝑡 ∈𝐷 [1]
𝑡

C𝑡 ] and concave on
𝑥 ∈ [max

𝐷𝑡 ∈𝐷 [1]
𝑡

C𝑡 ,max𝐷𝑡 ∈𝐷 [0]
𝑡

C𝑡 ].

The necessity degree of cost under temporal demand
uncertainty taking into account dependence with function
𝐻𝛼 is:

𝑁 (𝐶𝐶𝐶 ≤ 𝑐𝑐𝑐) = 1−
{
𝐻𝛼 (𝑐𝑐𝑐) if ∃𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]s.t. C𝑡 = 𝑐𝑡∀𝑡 ∈ [𝑇]
else 0

(15)
The condition ∃𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0] means that the cumulative

demand must be nondecreasing.
The problem of Robust possibilistic production planning

under temporal uncertainty taking into account dependen-
cies belief is:

min𝑥𝑥𝑥∈𝕏 𝜖

max
{C=𝑐𝑐𝑐 |𝐻𝛼 (𝑐𝑐𝑐) ≥𝜖 }

∑
𝑡 ∈[𝑇 ] C𝑡 ≤ 𝑔

𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]
(16)

4.2. Solving the Adversarial Problem

In this section we focus on the problem :

max
{C=𝑐𝑐𝑐 |𝐻𝛼 (𝑐𝑐𝑐) ≥𝜖 }

∑
𝑡 ∈[𝑇 ] 𝑐𝑡

𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]
(17)

Let us present the first important result of the paper
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Theorem 2 The problem 17 can be computed in 𝑂 (𝑇2)
times

We will now proceed to develop the proof of this result.
From theorem 1 solving the problem 17 is equivalent to
solving the problem with constraints {𝑐𝑐𝑐 ∈ C1, 𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]},
{𝑐𝑐𝑐 ∈ C2, 𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]} and {𝑐𝑐𝑐 ∈ C3, 𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]}. From
proposition 4 and to prove theorem 2 we study the vertex of
each set of constraints described just before. These analyses
are detailed in the following sections.

Proposition 4 the optimal value of problem 17 is obtain
on the vertex of the polyhedron defined by its constraints

Remark 1 In [4] it shows that all the vertex of cumulative
demand uncertainty set 𝐷𝐷𝐷 for a vector 𝜆 ∈ [0, 1]𝑇 can
be represented by a layered graph 𝐺 = (𝑉, 𝐴). The set
𝑉 is partitioned into 𝑇 + 2 disjoint layers 𝑉0, 𝑉1, ..., 𝑉𝑇 +2
in which 𝑉0 = {𝑠}, 𝑉𝑇 +1 = {𝑤} and 𝑉𝑡 = {𝐷𝑖

𝑡 |𝐷𝑖
𝑡 ∈

𝐷
[𝜆𝑡 ]
𝑡 ∩ ⋃

𝑗∈[𝑇 ]{𝐷
[𝜆𝑡 ]
𝑗
, 𝐷

[𝜆𝑡 ]
𝑗 }. Let 𝐴 = 𝐴1 ∪ ... ∪ 𝐴𝑇 +1.

Arc (𝑢, 𝑣) ∈ 𝐴1 if 𝑢 ∈ 𝑉0 and 𝑣 ∈ 𝑉1, arc (𝑢, 𝑣) ∈ 𝐴𝑇 +1 if
𝑢 ∈ 𝑉𝑇 and 𝑣 ∈ 𝑉𝑇 +1 and (𝑢, 𝑣) ∈ 𝐴𝑡 ,∀𝑡 ∈ [𝑇] if 𝑢 ∈ 𝑉𝑡−1,
𝑣 ∈ 𝑉𝑡 and 𝑢 ≤ 𝑣. We can associate with each arc a length
𝑙𝑢,𝑤 in the following way:

𝑙𝑢,𝑣 =

{
C𝑡 if (𝑢, 𝑣) ∈ 𝐴𝑡 ,∀𝑡 ∈ [𝑇]
0 if (𝑢, 𝑣) ∈ 𝐴𝑇 +1

(18)

Hence the maximal cost is the longest path of this graph.

4.3. Resolution of Problem 17 with Constraints
{𝑐𝑐𝑐 ∈ C1, 𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]}

Since 𝐷 [𝑀𝑀
𝛼,𝜖 ]

𝑡 ⊆ 𝐷
[0]
𝑡 the constraints of problem 17 with-

constraints {𝑐𝑐𝑐 ∈ C1, 𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]} can be reformulate as:

max
∑

𝑡 ∈[𝑇 ] 𝑐𝑡

𝑐𝑡 = max

{
𝑐𝐼 (𝑋𝑡 − 𝐷𝑡 )
𝑐𝐵 (𝐷𝑡 − 𝑋𝑡 )

∀𝑡 ∈ [𝑇 − 1]

𝑐𝑇 = max

{
𝑐𝐼 (𝑋𝑇 − 𝐷𝑇 ) − 𝑏𝑃𝐷𝑇

𝑐𝐵 (𝐷𝑇 − 𝑋𝑇 ) − 𝑏𝑃𝑋𝑇
𝐷𝑡 ∈ 𝐷

[𝑀𝑀
𝛼,𝜖 ]

𝑡 ,∀𝑡 ∈ [𝑇]
𝐷𝑡 ≤ 𝐷𝑡+1,∀𝑡 ∈ [𝑇 − 1]

(19)

From remark 1 we know that solving problem.17 with
𝑐𝑐𝑐 ∈ C1 and 𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0] boils down to finding a longest path
form 𝑠 to𝑤 so the general complexity is𝑂 (𝑇3). Nevertheless
in context of temporal uncertainty we can ameliorate the
complexity since we have 𝐷 [𝑀𝑀

𝛼,𝜖 ]
𝑡 ≤ 𝐷

[𝑀𝑀
𝛼,𝜖 ]

𝑡+2 ,∀𝑡 ∈ [𝑇 −2]
hence |{𝐷𝑖

𝑡 |𝐷𝑖
𝑡 ∈ 𝐷

[𝑀𝑀
𝛼,𝜖 ]

𝑡 ∩⋃ 𝑗∈[𝑇 ]{𝐷
[𝑀𝑀

𝛼,𝜖 ]
𝑗

, 𝐷
[𝑀𝑀

𝛼,𝜖 ]
𝑗 }| ≤

6 so 𝐴 has 𝑂 (𝑇) arcs and 𝑉 has 𝑂 (𝑇) nodes. So we have
the following lemma.

Lemma 1 The problem 17 with constraints {𝑐𝑐𝑐 ∈ C1, 𝐷𝐷𝐷 ∈
𝐷𝐷𝐷 [0]} (𝛼 = 0) can be computed in 𝑂 (𝑇) times

4.4. Resolution of Problem 17 with Constraints
{𝑐𝑐𝑐 ∈ C2, 𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]}

We formulate the problem eq.20 with the convex combina-
tion of the vertex of the constraint

∑
𝑡 ∈[𝑇 ] 𝑢𝑡 − 𝜖 = 𝑇 − 1

with 𝜖 ∈ [0, 1]. This vertex is composed of 𝑇 vectors such
that ∀𝑖 ∈ [𝑇] : 𝑢𝑢𝑢𝑖 = (𝑢𝑖 = 𝜖, 𝑢 𝑗 = 1 ∀ 𝑗 ∈ [𝑇] 𝑗 ≠ 𝑖). So the
problem can be reformulate with convex combination of
extreme points becomes:

s.t.

(𝑎)𝑐𝑡 = max
{
𝑐𝐼 (𝑋𝑡 − 𝐷𝑡 )
𝑐𝐵 (𝐷𝑡 − 𝑋𝑡 )

∀𝑡 ∈ [𝑇 − 1]

(𝑏)𝑐𝑇 = max

{
𝑐𝐼 (𝑋𝑇 − 𝐷𝑇 ) − 𝑏𝑃𝐷𝑇

𝑐𝐵 (𝐷𝑇 − 𝑋𝑇 ) − 𝑏𝑃𝑋𝑇
𝐷𝑡 ∈ 𝐷 [𝑣𝑡 ]

𝑡 ,∀𝑡 ∈ [𝑇]
𝐷𝑡 ≤ 𝐷𝑡+1,∀𝑡 ∈ [𝑇 − 1]
𝑣𝑡 =

∑
{𝑖∈[𝑇 ] |𝑖≠𝑡 } 𝛾𝑖 + 𝜖𝛾𝑡 ,∀𝑡 ∈ [𝑇]∑

𝑡 ∈[𝑇 ] 𝛾𝑡 = 1
𝛾𝑡 ∈ [0, 1],∀𝑡 ∈ [𝑇]

(20)

Proposition 5 The constraints 𝐷𝑡 ≤ 𝐷𝑡+1,∀𝑡 ∈ [𝑇 − 1]
of problem (20) are always satisfied

From proposition 5, for each vector 𝑢𝑢𝑢 the vertex of 𝐷𝐷𝐷
is the products of the extremes points of the intervals:∏

𝑡 ∈[𝑇 ]{𝐷
[𝜖 ]
𝑡 , 𝐷

[𝜖 ]
𝑡 }. So the vertex of problem 20 is com-

posed of 2𝑇 vectors: ∀𝑖 ∈ [𝑇] : 𝑢𝑖 = 𝜖,∀ 𝑗 ≠ 𝑖 ∈ [𝑇] 𝑢 𝑗 = 1
with 𝐷𝑖 = 𝐷

[𝜖 ]
𝑡 or 𝐷𝑖 = 𝐷

[𝜖 ]
𝑡 and ∀ 𝑗 ≠ 𝑖 ∈ [𝑇], 𝐷 𝑗 = 𝐷̂ 𝑗 .

So we have the following lemma.

Lemma 2 The problem 17 with constraints {𝑐𝑐𝑐 ∈ C2, 𝐷𝐷𝐷 ∈
𝐷𝐷𝐷 [0]} (𝛼 = 1) can be computed on 𝑂 (𝑇2)

4.5. Resolution of Problem 17 with Constraints
{𝑐𝑐𝑐 ∈ C3, 𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0]}

The set C3 is the intersection of two sets depending on 𝜁
namely C31 (𝜁) and C

3
2 (𝜁):

C31 (𝜁) = {𝑐𝑐𝑐 :
∑︁
𝑡 ∈[𝑇 ]

𝑢𝑡 − (𝜁𝑊𝑀
𝛼,𝜖 + (1 − 𝜁)𝑊𝑚

𝛼,𝜖 ) = 𝑇 − 1,

𝑐 𝑗 ≤ C [𝑢 𝑗 ]
𝑡 , 𝑡 ∈ [𝑇] .}

C32 (𝜁) = {𝑐𝑐𝑐 :

𝑐 𝑗 ≤ C [𝜁 𝑀𝑚
𝛼,𝜖 +(1−𝜁 )𝑀𝑀

𝛼,𝜖 ]
𝑡 , 𝑡 ∈ [𝑇]}.

Which satisfied the properties:
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Property 1 ∀𝜁1, 𝜁2 ∈ [0, 1] if 𝜁1 > 𝜁2 then C31 (𝜁1) ⊆
C31 (𝜁2)

and

Property 2 ∀𝜁1, 𝜁2 ∈ [0, 1] if 𝜁1 < 𝜁2 then C32 (𝜁1) ⊆
C32 (𝜁2)

Since C31 (𝜁) ⊆ C2 and result of section 4.4 the constraints
𝐷𝑡 ≤ 𝐷𝑡+1,∀𝑡 ∈ [𝑇 − 1] be can be removed.

𝑐1

𝑐2

C32 (𝜁)

C31 (𝜁)

(𝑎) case of 𝜁� 𝑐1

𝑐2

C32 (𝜁)

C31 (𝜁)

(𝑏) case of 𝜁M ≥ 0 𝑢1

𝑢2

C32 (𝜁)
C31 (𝜁)

(𝑐) case of 𝜁M < 0

Figure 1: Extreme value of 𝜁

We can see that the polyhedron C31 (𝜁) with equality
constraints is a hyperplane and the polyhedron C32 (𝜁) is a
hyperrectangle. We denote by 𝜁� (eq.21) the maximal value
of 𝜁 such that C31 (𝜁) ∩ C32 (𝜁) = C32 (𝜁) and by 𝜁

M(eq.22)
the maximal value of 𝜁 such that C31 (𝜁) ∩ C32 (𝜁) = C31 (𝜁).
Nevertheless 𝜁M can be < 0 in this case the vertex are
vertex for 𝜁 = 0. The different cases are represented for
2-dimensional example on figure 1.

𝜁� =
𝑇 (1 − 𝑀𝑀

𝛼,𝜖 ) +𝑊𝑚
𝛼,𝜖 − 1

𝑇 (𝑀𝑚
𝛼,𝜖 − 𝑀𝑀

𝛼,𝜖 ) +𝑊𝑚
𝛼,𝜖 −𝑊𝑀

𝛼,𝜖

(21)

𝜁M =
𝑊𝑚

𝛼,𝜖 − 𝑀𝑀
𝛼,𝜖

𝑀𝑚
𝛼,𝜖 − 𝑀𝑀

𝛼,𝜖 +𝑊𝑚
𝛼,𝜖 −𝑊𝑀

𝛼,𝜖

(22)

The vertex of variables 𝑢𝑢𝑢 is composed of 𝑇 + 1 vectors:

∀𝑖 ∈ [𝑇],
𝑢𝑢𝑢 𝑗 = 

if 𝜁M ≥ 0


𝑢 𝑗 = 1,
𝑢𝑖 = 𝜁

M𝑊𝑀
𝛼,𝜖 + (1 − 𝜁M)𝑊𝑚

𝛼,𝜖 ,

∀𝑖 ∈ [𝑇]𝑖 ≠ 𝑗

else

{
𝑢 𝑗 = 1 − (𝑀

𝑀
𝛼,𝜖 −𝑊𝑚

𝛼,𝜖

𝑇 −1 ),
𝑢𝑖 = 𝑀

𝑀
𝛼,𝜖 ,∀𝑖 ∈ [𝑇]𝑖 ≠ 𝑗

𝑢𝑢𝑢𝑀 =(𝜁�𝑀𝑚
𝛼,𝜖 + (1 − 𝜁�)𝑀𝑀

𝛼,𝜖 )𝑡 ∈[𝑇 ]

Since the constraints𝐷𝑡 ≤ 𝐷𝑡+1,∀𝑡 ∈ [𝑇−1] are satisfied
the vertex for each vertex vectors 𝑢𝑢𝑢, 𝑉𝑡 = {𝐷 [𝑢𝑡 ]

𝑡 , 𝐷
[𝑢𝑡 ]
𝑡 }.

The longest path for a given vertex vector 𝑢𝑢𝑢 is computed in
𝑂 (𝑇). The number of vertex vector is 𝑇 + 1 the complexity
is in 𝑂 (𝑇2). So we have the following lemma:

Lemma 3 The problem 17 with constraints C3 and 𝐷𝐷𝐷 ∈
𝐷𝐷𝐷 [0] can be computed on 𝑂 (𝑇2)

5. Solving the Robust Possibilistic Production
Planning

Beforewe propose an algorithm for solving the problem (16),
we will focus on the problem (16) for a fixed 𝜖 . Thus it
boils down to checking if constraint max𝑐𝑐𝑐∈H𝛼

𝜖
𝑐𝑐𝑐𝑇 𝑥𝑥𝑥 ≤ 𝑔

is satisfied. For the sake of brevity, we only consider the
case when 𝑊𝑚

𝛼,𝜖 ≠ 0 and 𝑀𝑚
𝛼,𝜖 ≠ 0, the other cases can

be handled in a similar manner. Consider the following
mathematical programming problem:

min
𝑥𝑥𝑥∈𝕏

ℎ𝜖

s.t. max
𝑐𝑐𝑐∈C1 ,𝐷𝐷𝐷∈𝐷𝐷𝐷 [0]

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥 ≤ ℎ𝜖 , (23)

max
𝑐𝑐𝑐∈C2 ,𝐷𝐷𝐷∈𝐷𝐷𝐷 [0]

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥 ≤ ℎ𝜖 , (24)

max
𝑐𝑐𝑐∈C3 ,𝐷𝐷𝐷∈𝐷𝐷𝐷 [0]

𝑐𝑐𝑐𝑇 𝑥𝑥𝑥 ≤ ℎ𝜖 , (25)

The left hand sides of the constraints (23)-(25) are the longest
path problem. Based on the dual formulation of each longest
path problem the problem above can be linearized.
We are now ready to propose an algorithm for solving

problem (16), which is based on the standard binary search
in [0, 1] (the interval of possible values of 𝜖) due to the
fact that ℎ𝜖 is nonincreasing function of 𝜖 . We call it the
binary search based algorithm. In order to find an optimal
(𝑥∗, 𝜖∗) with a given error tolerance 𝜉 > 0, we seek at each
iteration, for a fixed 𝜖 , a feasible solution 𝑥𝑥𝑥 for which ℎ𝜖 ≤ 𝑔
is satisfied. This which boils down to solving the linear
programing formulation of the problem above. The running
time of the above algorithm is 𝑂 (𝐼 (𝑇) log 𝜉−1) time, where
𝐼 ( |𝑇 |) is the time required for solving the linear program.

6. Illustration on Example and Experimental
Results

In this section, we firstly present example illustrating the
robust possibilistic approach (see Sec. 4) to the production
planning problem 13 with temporal demand uncertainty
with knowledge on dependencies (see Sec. 2.2) and
compare this approach with the deterministic problem
and the classic fuzzy robust one that assumes positive
dependencies. Secondly experiments results will be given
to discuss more generally the adventage of the proposed
approach.
We consider a 10 periods example with
𝑑 = [892, 276, 725, 832, 782, 485, 603, 560, 699, 613],
𝑐𝑃 = 100, 𝑏𝑃 = 2 × 𝑐𝑃 , 𝑐𝐼 = 0.01 × 𝑐𝑃 and
𝑐𝐵 = 0.2×𝑏𝑃 .We have only upper capacity constraints 𝑐𝑢 =

[1074, 1080, 1157, 1152, 941, 953, 1171, 930, 937, 1200].
The goal 𝑔 = 0.2 × C(𝑥𝑥𝑥𝑂𝑝𝑡 ) + 0.8 × C(𝑥𝑥𝑥𝑂𝑝𝑡

𝛼=0, 𝜖=0) where
𝑥𝑥𝑥𝑂𝑝𝑡 is the optimal solution of the nominal scenario and

245



Guillaume

𝑥𝑥𝑥
𝑂𝑝𝑡

𝛼=0, 𝜖=0 is the optimal solution for dependence parameter
𝛼 = 0 and necessity 1 (the most robust solution). The
minimal and maximal cumulative demand with cumulative
production of optimal solutions for different knowledge
on dependencies are repented on figure 2. In orange the
optimal solution for the nominal production. We can
see that globally the fuzzy robust approach moves the
cumulative production to the left to be more robust to
temporal uncertainty. Moreover when 𝛼 decrease this
phenomena increase too. It is due to the fact that when
𝛼 decrease it is more possible that the demand of all
periods deviated simultaneously. Hence the knowledge on
dependencies moderate the conservatism of production.

Figure 2: Cumulative production

The necessity degree of violation of C(𝑥𝑥𝑥) ≤ 𝑔 is rep-
resented in Figure 3. First, we can see that deterministic
solution (solution for the nominal demand) can be risked
event if we have high level of negatives dependencies (𝛼 = 1)
and naturally the risk increase if the dependencies become
more positives.

Figure 3: Necessity of C(𝑥𝑥𝑥𝑂𝑝𝑡 ) ≤ 𝑔 and C(𝑥𝑥𝑥𝑂𝑝𝑡
𝛼 ) ≤ 𝑔

To study more generally the proposed approach, experi-
mentation are made for 50 random instances with horizon
10 where 𝑑 = 𝑈 (100, 1000), 𝑐𝑢 = 𝑈 (800, 1200), 𝑐𝐼 =

𝑈 (1, 10), 𝑐𝐵 = 𝑈 (10, 100), 𝑐𝑃 = 𝑈 (1, 10), 𝑏𝑃 =

𝑈 (200, 1000), 𝑔 = 0.2 × C(𝑥𝑥𝑥𝑂𝑝𝑡 ) + 0.8 × C(𝑥𝑥𝑥𝑂𝑝𝑡

𝛼=0, 𝜖=0).
Figures 4–6 below show the box-plot of necessity of
C(𝑥𝑥𝑥𝑂𝑝𝑡

𝛼 ) ≤ 𝑔: alpha Fuzzy robust, C(𝑥𝑥𝑥𝑂𝑝𝑡 ) ≤ 𝑔:Determin-
istic and C(𝑥𝑥𝑥𝑂𝑝𝑡

0 ) ≤ 𝑔: Fuzzy robust, for 𝛼 ∈ {0.25, 0.5, 1}.
We can observe that when the dependencies (𝛼 parameter)
increase the Fuzzy robust (solution for 𝛼 = 0) is less robust
than the alpha Fuzzy robust hence over estimate the depen-
dencies make lead to less robust solution. It is interested to
note that with high dependencies the Deterministic solution
is more robust than the Fuzzy robust.

Figure 4: Degree of necessity of different types of optimal
solutions for 𝛼 = 0.25

Figure 5: Degree of necessity of different types of optimal
solutions for 𝛼 = 0.5
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Figure 6: Degree of necessity of different types of optimal
solutions for 𝛼 = 1

7. Conclusion
In this paper we show that taking into account knowledge on
dependencies for production planning under temporal un-
certainty do not increase the complexity. Moreover we show
that this knowledge influence in term of chosen production
plan and on the quality guaranty of the production plan. As
perspective we would like to investigate more local depen-
dencies, in fact in production planning the dependencies
positive or negative could be dependent on the periods.

Proofs
Proof prop.1:

• Let us suppose that 𝛽−𝑡 = 𝛽+𝑡 = (1 − 𝜆) and constraint
(e).7 is not saturated then 𝐷̂𝑡 − (1 − 𝜆)𝛿+𝑡 𝑑𝑡 ≤ 𝐷𝑡 and
𝐷𝑡−1 ≤ 𝐷̂𝑡−1 + (1 − 𝜆)𝛿−𝑡 𝑑𝑡 .

• Let us suppose that constraint (e).7 is saturated. then
𝐷𝑡 ≤ 𝐷̂𝑡 + 𝛽−𝑡+1𝛿

−
𝑡+1𝑑𝑡+1, 𝐷̂𝑡+1 − 𝛽+𝑡+1𝛿

+
𝑡+1𝑑𝑡+1 ≤ 𝐷𝑡+1

and 𝛽+
𝑡+1𝛿

+
𝑡+1 + 𝛽

−
𝑡+1𝛿

−
𝑡+1 = 1. so

𝐷̂𝑡+1 −
1−𝛽−

𝑡+1 𝛿
−
𝑡+1

𝛿+
𝑡+1

𝛿+
𝑡+1𝑑𝑡+1 ≤ 𝐷𝑡+1

𝐷̂𝑡+1 − 𝑑𝑡+1 + 𝛽−𝑡+1𝛿
−
𝑡+1𝑑𝑡+1 ≤ 𝐷𝑡+1

𝐷̂𝑡 + 𝛽−𝑡+1𝛿
−
𝑡+1𝑑𝑡+1 ≤ 𝐷𝑡+1

𝐷
[𝜆]
𝑡 ≤ 𝐷𝑡+1

(26)

�

Proof prop.2:
From proposition 1 we know that 𝐷̂𝑡 − (1 − 𝜆)𝛿+𝑡 𝑑𝑡 ≤
𝐷̂𝑡 ≤ 𝐷̂𝑡+1 − (1 − 𝜆)𝛿+

𝑡+1𝑑𝑡+1∀𝜆 ∈ [0, 1] so the lower part
of the marginal distribution is linear.
Concerning the upper bound, noted that
𝐷̂𝑡 + (1 − 𝜆)𝛿−

𝑡+1𝑑𝑡+1 ≤ 𝐷̂𝑡+1,∀𝜆 ∈ [0, 1] and 𝛱𝑡 (𝐷̂𝑡 ) = 1

hence 𝛱 (𝐷̂1, .., 𝐷̂𝑡 + (1 − 𝜆)𝛿−
𝑡+1𝑑𝑡+1, 𝐷̂𝑡+1, 𝐷̂𝑇 ) =

𝛱𝑡 (𝐷̂𝑡 + (1−𝜆)𝛿−
𝑡+1𝑑𝑡+1) = 𝜆 whatever the copula function.

So the upper bound of the marginal is linear. �

Proof prop.3:
For the minimum we can see that if 𝑋𝑡 ∈ 𝐷

[𝜆]
𝑡 then

C𝑡 = 0,∀𝑡 ∈ [𝑇 − 1] and C𝑇 = −𝑏𝑃𝑋𝑇 . we denote
by 𝜆∗ the highness value of 𝜆 such that 𝑋𝑡 ∈ 𝐷

[𝜆]
𝑡 . So

∀𝜆𝑖 ≥ 𝜆∗ the cost will be 𝑐𝐼 (𝑋𝑡 − 𝐷𝑡

[𝜆𝑖 ]),∀𝑡 ∈ [𝑇 − 1]
and min

𝐷𝑇 ∈𝐷 [𝜆]
𝑇

𝑐𝐼 (𝑋𝑇 − 𝐷𝑇 ) − 𝑏𝑃 min{𝑋𝑇 , 𝐷𝑇 }
or 𝑐𝐵 (𝐷𝑡

[𝜆𝑖 ] − 𝑋𝑡 ) for 𝑡 ∈ [𝑇 − 1] and
min

𝐷𝑇 ∈𝐷 [𝜆]
𝑇

𝑐𝐵 (𝐷𝑇 − 𝑋𝑇 ) − 𝑏𝑃 min{𝑋𝑇 , 𝐷𝑇 }. For
the maximal side, we need to note that the function C𝑡 is
concave on 𝐷𝑡 . �

Proof prop.4:
In production planning problem 17 the function is linear.
Since the upper bound of the possibility distribution 𝜋C𝑡
is pairwise linear concave function (prop.3) the domain
defined by the constraints C𝑡 = 𝑐𝑡 ,∀𝑡 ∈ [𝑇] is a concave
polyhedron, the set {𝑐𝑐𝑐 |𝐻𝛼 (𝑐𝑐𝑐) ≥ 𝜖} is concave polyhedron
(th.1) and 𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷 [0] is convex polyhedron. �

Proof prop.5:
Those constraints are always satisfied iff:

𝐷̂𝑡 + (1 −
∑︁

{𝑖∈[𝑇 ] |𝑖≠𝑡 }
𝛾𝑖 + 𝜖𝛾𝑡 )𝛿−𝑡+1𝑑𝑡+1 ≤

𝐷̂𝑡+1 − (1 −
∑︁

{𝑖∈[𝑇 ] |𝑖≠𝑡+1}
𝛾𝑖 + 𝜖𝛾𝑡+1)𝛿+𝑡+1𝑑𝑡+1,

∀𝛾𝑡 ∈ [0, 1],
∑︁
𝑖∈[𝑇 ]

𝛾𝑖 = 1

For 𝐷𝑡 we have:

𝐷̂𝑡 + (1 −
∑︁

{𝑖∈[𝑇 ] |𝑖≠𝑡 }
𝛾𝑖 + 𝜖𝛾𝑡 )𝛿−𝑡+1𝑑𝑡+1

≤ 𝐷̂𝑡 + (1 −
∑︁

{𝑖∈[𝑇 ] |𝑖≠𝑡 }
𝛾𝑖 + 𝜖𝛾𝑡 )𝑑𝑡+1

= 𝐷̂𝑡+1 −
∑︁

{𝑖∈[𝑇 ] |𝑖≠𝑡 }
𝛾𝑖 + 𝜖𝛾𝑡𝑑𝑡+1

= 𝐷̂𝑡+1 − (1 + 𝛾𝑡 (1 − 𝜖))𝑑𝑡+1

And for the 𝐷𝑡+1 we have:

𝐷̂𝑡+1 − (1 −
∑︁

{𝑖∈[𝑇 ] |𝑖≠𝑡 }
𝛾𝑖 + 𝜖𝛾𝑡 )𝛿+𝑡+1𝑑𝑡+1

≥ 𝐷̂𝑡+1 − (1 −
∑︁

{𝑖∈[𝑇 ] |𝑖≠𝑡 }
𝛾𝑖 + 𝜖𝛾𝑡 )𝑑𝑡+1

= 𝐷̂𝑡+1 − (𝜖 + 𝛾𝑡 (1 − 𝜖))𝑑𝑡+1
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And 1 + 𝛾𝑡 (1 − 𝜖) ≥ 𝜖 + 𝛾𝑡 (1 − 𝜖)�
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