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Abstract
When information about a population is sparse, it is

difficult to test whether a data set originated from that
population. In applied research, however, researchers
often have access to external information in the form of
(central) statistical moments such as mean or variance.
To compensate for the uncertainty in the external point
values, this paper uses external intervals instead to
represent the information about moments. The Sargan-
Hansen test from the generalized method of moments
framework is used, which exploits point-valued ex-
ternal information about moments in the presence of
a statistical model to test whether data and external
information are in conflict. For the Sargan-Hansen
test, a separability result is derived with respect to the
model and the external information. This result leads
to a simplification of the test in terms of its analytical
form and the calculation of the test statistics. To allow
the use of external intervals instead of point values, an
imprecise version of the Sargan-Hansen test is created
using the Gamma-maximin decision rule. Assuming
that the variables are normally distributed, a small
sample version of this imprecise Sargan-Hansen test is
derived. The power and type I errors of the developed
tests are analyzed and compared in a simulation study
in different small sample scenarios.
Keywords: imprecise external information,
information-data conflict, generalized method of
moments, Sargan-Hansen test, credal set, robustness

1. Introduction

The use of (external) prior information on parameters has
frequently been studied.Well-known techniques for incorpo-
rating external information into statistical analysis include
informed prior distributions in Bayesian statistics [3] and
constraints on the parameter space imposed by the external
information, leading to constrained optimization (see, e.g.
Knopov and Korkhin [11] for the case of multiple linear
regression). However, in some research areas, there may
not be enough information to determine the feasible region
or a prior distribution. The following example is provided
to support this assertion:

Example 1 Suppose we have a simple linear regression
model 𝑦 = 𝛽1 + 𝑥𝛽2 + 𝜖 under Gauss-Markov assumptions
and only the expected value 𝐸 (𝑦) = 100 is known externally.
Under the model assumptions, 𝐸 (𝑦) = 100 becomes a
constraint on the parameter,

100 = 𝐸 (𝑦) = 𝛽1 + 𝐸 (𝑥)𝛽2, (1)

which is a linear constraint on intercept 𝛽1 and slope 𝛽2.
However, if 𝐸 (𝑥) is not known, we cannot use Equation (1)
directly as a constraint in the optimization. Equation (1) is
also not sufficient to identify (the moments of) a prior distri-
bution, since there are usually several different distributions
that satisfy this condition.

The fact that the external information in Example 1 is in
the form of a moment motivates another method of using
external information. According to an idea proposed by
Imbens and Lancaster [9], this type of external information
implies moment conditions that can be combined with the
moment conditions used to estimate a statistical model.
In general, the resulting overidentified system of moment
conditions does not have an exact solution, but the General-
ized Method of Moments (GMM) [7] can be used to find
estimators that are ’as close as possible’ to a solution with
respect to some norm. Imbens and Lancaster [9] showed for
multiple linear models that the estimators found in this way
generally have lower variances than the corresponding OLS
estimators, provided that the external information is cor-
rect. This paper examines the opposite question: Given the
combined moment conditions of the model and the external
information, is the external information correct (for a given
data set)? This concept is similar to the prior-data conflict
in Bayesian statistics and will be referred to hereafter as
information-data conflict. To answer this question in the
GMM framework, the Sargan-Hansen test is typically used
because it is a test for overidentifying restrictions [18, 7].
However, its role as a test for misspecification has been

criticized in current research, especially with respect to
models that use instrumental variables [14, 10]. Therefore,
the results of this paper should be interpreted as a test
of the coherence of external information and data rather
than a test of misspecification of a model. This argument
is supported by a small thought experiment. There are
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two statements: "The model assumptions are true." and
"The expected value of the dependent variable is 100."
Both statements are logically independent, one is neither
necessary nor sufficient for the other to be true. How might
a model specification test benefit from this kind of external
information? A mathematical formulation of this logical
independence is proved in Section 2.
Most external information depends on population, time,

and many other aspects, which makes the use of point
values for the external information risky because the results
of Imbens and Lancaster [9] depend on the correctness
of these point values. To reduce the risk of potentially
misspecified external information, this paper addresses the
case where an interval is given that contains the true value
of the external moments, but its exact position inside the
interval is unknown. This epistemic uncertainty about the
true value of the external moments leads directly to the use
of imprecise probabilities in the form of credal sets, as we
show in Section 2.

2. The Sargan-Hansen Test with External
Information

2.1. The Point-Valued Case

We assume that the external information only consists of
point values of the respective moments. The notation from
Newey and McFadden [12] is adopted. In the following,
italic lowercase letters are for (random) scalar values, bold
lowercase letters are for (random) vectors, and bold upper-
case letters are for (random) matrices, unless otherwise
indicated. Now let z be a random variable over ℝ𝑘 and
z1, . . . , z𝑛 be 𝑛 > 1 i.i.d. random variables distributed like
z.1 Further let 𝑞 be an integer and 𝜣 ⊂ ℝ𝑞 , then let 𝜽 ∈ 𝜣
be a possible value for a (fixed) parameter of a statistical
model, where 𝜽0 is the true value. Given a function g(z, 𝜽)
with the property 𝐸 [g(z, 𝜽0)] = 0, one can try to esti-
mate the parameter by the method of moments. Practically,
this is done by formulating the equivalent sample moment
conditions 1

𝑛

∑𝑛
𝑖=1 g(z𝑖 , 𝜽) = 0 and solving for 𝜽 .

To explain this method, let’s consider Example 1. Let
y = (𝑦1, . . . , 𝑦𝑛)𝑇 be an i.i.d. sample of random variables
distributed like y, and let

X =
©­­«
1 𝑥1,1 𝑥1,2 . . . 𝑥1,𝑞−1
...

...
...

...
...

1 𝑥𝑛,1 𝑥𝑛,2 . . . 𝑥𝑛,𝑞−1

ª®®¬
be the design matrix containing the covariates assumed to
be an i.i.d. sample of the random variable x. The sample mo-
ment conditions for the OLS estimator can be derived by set-
ting the mixed moment of the independent variables and the

1Some entries of z could possibly be fixed, as long as at least one
entry is random.

error term to zero, i.e. 𝐸 (g(z, 𝜷0)) = 𝐸 (x𝜖) = 0. The sam-
ple moment conditions are therefore 0 = 1

𝑛

∑𝑛
𝑖=1 g(z𝑖 , 𝜷) =

1
𝑛
X𝑇 (y − X𝜷), where 𝜷 in this case denotes the parameter
[4, p. 172].
However, sometimes the number of the moment condi-

tions is larger than the dimension of the parameter. As a
classic example from econometrics, we present estimation
using instrumental variables, following the presentation of
Cameron and Trivedi [4, p. 170]. As before, we assume a
linear model. If some of the independent variables in x are
correlated with the error term, then the Gauss-Markov as-
sumptions are incorrect, and therefore OLS will not provide
a consistent estimate of the regression parameter. A common
idea to solve this problem is to find other variables that are
correlated with x but uncorrelated with the error term. These
variables are called instruments, and we represent their sam-
ple realizations by the (𝑛 × 𝑠) matrix D. Similar to the OLS
case, we can set the mixed moment of the instruments and
the error term to zero. The corresponding sample moment
conditions are 0 = 1

𝑛

∑𝑛
𝑖=1 g(z𝑖 , 𝜷) = 1

𝑛
D𝑇 (y − X𝜷). If the

number of potential instruments is greater than the dimen-
sion of the parameter, the sample moment conditions are
generally not solvable for 𝜷, the system of equations is
overidentified. Not using all the instruments would result
in a loss of efficiency. Instead of solving the equations,
the idea of the GMM is to find a value for 𝜷 that makes
1
𝑛
D𝑇 (y − X𝜷) as small as possible in terms of quadratic
loss, i.e, by minimizing

( 1
𝑛

D𝑇 (y − X𝜷))𝑇 W( 1
𝑛

D𝑇 (y − X𝜷)),

where W is a chosen positive-definite weighting matrix.
Note that this is a generalization of the case of solvable
sample moment conditions, since a positive quadratic form
in 1

𝑛
D𝑇 (y − X𝜷) is zero if and only if 1

𝑛
D𝑇 (y − X𝜷) = 0.

In general, different W lead to different estimators. In
the GMM approach, there is a way to choose the optimal
weighting matrix with respect to the efficiency of the es-
timator. This optimality is achieved by W = 𝜴−1 with
𝜴 = 𝐸 (g(z, 𝜽)g(z, 𝜽)𝑇 ) [7]. This optimal W is almost
always unknown and must be estimated by a random matrix
Ŵ. Taken together, this leads to the following definition:

Definition 1 [12, p. 2116] Let 𝑝 ≥ 𝑞 be an integer and
g(z, 𝜽) be a vector valued function with values in ℝ𝑝 , that
meets the moment conditions 𝐸 [g(z, 𝜽0)] = 0. Further let
Ŵ ∈ ℝ𝑝,𝑝 be a positive semi-definite (and hence symmetric)
random matrix such that (r𝑇 Ŵr)1/2 is almost surely a norm
for all r ∈ ℝ𝑝 . Then a GMM-estimator 𝜽̂𝑒𝑥 is defined as a
𝜽 , that maximizes the following objective function:

𝑄̂𝑛 (𝜽) = −( 1
𝑛

𝑛∑︁
𝑖=1

g(z𝑖 , 𝜽))𝑇 Ŵ( 1
𝑛

𝑛∑︁
𝑖=1

g(z𝑖 , 𝜽)) . (2)
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Under mild regularity conditions, the GMM-estimator
is point-identified, consistent, and asymptotically normally
distributed [12, Theorem 3.4]. To emphasize the generality
of the GMM, we give some examples. Special cases of
GMM-estimators range from OLS estimators to maximum
likelihood estimators (MLE) [4, p. 172] to estimators de-
rived by generalized estimating equations [4, p. 790]. To see
that GMM is an extension of MLE, note that maximizing
the log-likelihood function implies setting the score func-
tion to zero. This corresponds to the first-order conditions
for MLE and has exactly the form of sampling moment
conditions. In addition, the regularity conditions of the
MLE require that the expected value of the score function
be zero at the true parameter value, which is exactly the
requirement 𝐸 [g(z, 𝜽0)] = 0 in Definition 1. This property
of the score function is central to establishing the con-
sistency and asymptotic normality of the MLE. For the
mathematical details of incorporating the MLE into the
GMM, see Cameron and Trivedi [4, p. 140]. Finally, there
is also an important connection to robust statistics, since
M-estimators with differentiable 𝜌 (those of the 𝜓−type)
are also derived by sample moment conditions and thus
represent a special case of GMM estimators [4, p. 118].
Following Imbens andLancaster [9],we include in g(z, 𝜽)

not only the moment conditions for the model, but also those
for the external information, resulting in an overidentified
system of moment conditions. Letm(z, 𝜽) denote the 𝑝1 ≥
𝑞 moment conditions for the model and h(z) denote the
𝑝2 moment conditions for the external information, which
are assumed to be expressible as functions of the data
alone, then g(z, 𝜽) = (m(z, 𝜽)𝑇 , h(z)𝑇 )𝑇 . For example,
the condition for the external moment in Example 1 is
ℎ(z) = 𝑦 − 100. If one of the moment conditions for the
external information depends only on the parameter, then
the results derived here will not hold in general.
For the overidentified case 𝑝 > 𝑞, under the null hypoth-

esis that all moment conditions are correct, it holds that
−𝑛𝑄̂𝑛 (𝜽̂𝑒𝑥)

𝑑→ 𝜒2𝑝−𝑞 if the regularity conditions hold and
if Ŵ

𝑝
→ W = 𝜴−1 . The 𝜒2−test that results from this distri-

bution property is called the Sargan-Hansen test [18, 7]. For
simplicity, in the remainder of this paper we assume that
Ŵ is invertible almost surely and therefore positive-definite
almost surely by Definition 1. All the following results
are derived for this almost sure case of invertible Ŵ and
thus hold almost surely. If Ŵ is singular for certain data,
one should first check whether the moment conditions are
linearly dependent, and accordingly delete some conditions,
so that the remaining ones are not linearly dependent. Oth-
erwise, one could add random noise to Ŵ to try to make it
invertible, or use its Moore-Penrose inverse [20].
Let 𝜴̂ be the inverse of Ŵ. For the sake of brevity we

definem = 1
𝑛

∑𝑛
𝑖=1m(z𝑖 , 𝜽) and h = 1

𝑛

∑𝑛
𝑖=1 h(z𝑖). By A/B

we denote the Schur complement of the block B of the
matrix A and obtain

Lemma 2 (Separability) From the premises of Definition 1
and g(z, 𝜽) = (m(z, 𝜽)𝑇 , h(z)𝑇 )𝑇 it follows that 𝜴̂ has the
block form

𝜴̂ =

(
𝜴̂𝑚 𝜴̂

𝑇

𝑟

𝜴̂𝑟 𝜴̂ℎ

)
,

where 𝜴̂𝑚 ∈ ℝ𝑝1 , 𝑝1 and 𝜴̂ℎ ∈ ℝ𝑝2 , 𝑝2 . Further,

−𝑄̂𝑛 (𝜽) = (m − 𝜴̂
𝑇

𝑟 𝜴̂
−1
ℎ h)𝑇 (𝜴̂/𝜴̂ℎ)−1 (m − 𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ h)

+ h𝑇
𝜴̂

−1
ℎ h.

Proof We take advantage of the fact that Ŵ is symmetric,
positive-definite, and can be written in block form

Ŵ =

(
Ŵ𝑚 Ŵ𝑇

𝑟

Ŵ𝑟 Ŵℎ

)
,

where Ŵ𝑚 ∈ ℝ𝑝1 , 𝑝1 and Ŵℎ ∈ ℝ𝑝2 , 𝑝2 . The first statement
follows from the fact that Ŵ = 𝜴̂

−1 and the block form
of Ŵ. For the second statement, note that Ŵ is positive-
definite and so is 𝜴̂, so the Schur complement 𝜴̂/𝜴̂ℎ =

𝜴̂𝑚 − 𝜴̂
𝑇

𝑟 𝜴̂
−1
ℎ 𝜴̂𝑟 is invertible. Now Ŵ can be expressed

by Schur complements:

Ŵ𝑚 = (𝜴̂/𝜴̂ℎ)−1,

Ŵ𝑟 = −𝜴̂−1
ℎ 𝜴̂𝑟 (𝜴̂/𝜴̂ℎ)−1,

Ŵℎ = 𝜴̂
−1
ℎ + 𝜴̂

−1
ℎ 𝜴̂𝑟 (𝜴̂/𝜴̂ℎ)−1𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ .

It follows that

−𝑄̂𝑛 (𝜽) = ( 1
𝑛

𝑛∑︁
𝑖=1

g(z𝑖 , 𝜽))𝑇 Ŵ( 1
𝑛

𝑛∑︁
𝑖=1

g(z𝑖 , 𝜽))

= m𝑇 Ŵ𝑚m + 2m𝑇 Ŵ𝑇

𝑟 h + h𝑇 Ŵℎh

= m𝑇 (𝜴̂/𝜴̂ℎ)−1m − 2m𝑇 (𝜴̂/𝜴̂ℎ)−1𝜴̂
𝑇

𝑟 𝜴̂
−1
ℎ h

+ h𝑇 (𝜴̂−1
ℎ + 𝜴̂

−1
ℎ 𝜴̂𝑟 (𝜴̂/𝜴̂ℎ)−1𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ )h

= (m − 𝜴̂
𝑇

𝑟 𝜴̂
−1
ℎ h)𝑇 (𝜴̂/𝜴̂ℎ)−1 (m − 𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ h)

+ h𝑇
𝜴̂

−1
ℎ h.

Lemma 2 can be interpreted as a separability result, since
h𝑇

𝜴̂
−1
ℎ h is not a function of 𝜽 if a suitable 𝜴̂ℎ is used, e.g,

𝜮̂ℎ = 1
𝑛

∑𝑛
𝑖=1 h(z𝑖)h(z𝑖)𝑇 or the sample covariance matrix

Ŝℎ = 1
𝑛−1

∑𝑛
𝑖=1 (h(z𝑖) − h) (h(z𝑖) − h)𝑇 . In these cases, 𝜴̂ℎ

can be calculated from the data and external information
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alone. Note that the matrix Ŝℎ can be computed even
without knowing the true external value. Both matrices are
asymptotically identical if the null hypothesis of correctly
specified external values holds, but different if it does not.
The following important result holds for these examples.

Theorem 3 Let the premises and notation of Lemma 2 be
given. If 𝜴̂ℎ is not a function of 𝜽 and if there is a 𝜽ℎ ∈ 𝜣,
for which m − 𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ h = 0 holds, it follows that

−𝑄̂𝑛 (𝜽̂𝑒𝑥) = h𝑇
𝜴̂

−1
ℎ h.

Proof By Definition 1 we get

−𝑄̂𝑛 (𝜽̂𝑒𝑥) = −max
𝜽∈𝜣

𝑄̂𝑛 (𝜽) = min
𝜽∈𝜣

−𝑄̂𝑛 (𝜽).

For 𝜽ℎ given in the premises, it follows from Lemma
2, that −𝑄̂𝑛 (𝜽ℎ) = h𝑇

𝜴̂
−1
ℎ h. Since 𝜴̂ is positive-

definite, (𝜴̂/𝜴̂ℎ)−1 is also positive-definite. Therefore,
(m − 𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ h)𝑇 (𝜴̂/𝜴̂ℎ)−1 (m − 𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ h) is a positive

quadratic form and reaches its global minimum at 0, which
is achieved by the given 𝜽ℎ . Since h𝑇

𝜴̂
−1
ℎ h is not a function

of the parameter 𝜽 , the proof is complete.

Theorem 3 shows the reduction of the Sargan-Hansen
test based on external information to a test of the fit of
the external information and the data alone, without the
model. Moreover, under the conditions of Theorem 3 the test
statistic −𝑛𝑄̂𝑛 (𝜽̂𝑒𝑥) has the form of a Wald statistic, and the
Sargan-Hansen test is then equivalent to aWald test of linear
restrictions [4, p. 136]. The condition m − 𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ h = 0

is equivalent to the main separability result of Ahu and
Schmidt [1], if the external information is interpreted as a
parameter with only one possible value. Their result gives an
indication of the meaning ofm − 𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ h = 0, since they

proved that it always holds when the first-order conditions
for the GMM are satisfied. As an important special case, this
result applies to OLS estimation in multiple linear models
when the design matrix X has full rank, because the result
then has the form 1

𝑛
X𝑇 (y − X𝜷) − 𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ h = 0, which

can be directly resolved to 𝜷. This is the mathematical form
of logical independence mentioned in Section 1.
Finally, h, if the external information is correct, will in

general almost surely be arbitrarily close to 0 for 𝑛 → ∞
as 𝐸 (h) = 0, in which case the disturbance term 𝜴̂

𝑇

𝑟 𝜴̂
−1
ℎ h

vanishes. Overall, the casem − 𝜴̂
𝑇

𝑟 𝜴̂
−1
ℎ h ≠ 0 for all 𝜽 ∈ 𝜣

seems to be rather pathological for models that are just-
identified by their moment conditions, which is why it will
not be treated in the rest of the paper and only the case of
just-identified models, 𝑞 = 𝑝1, will be treated.

2.2. The Interval-Valued Case

The assumption of point-value external information is now
weakened by the assumption that a (possibly multidimen-
sional) closed interval I𝑒𝑥 is known, for which we want to
test the null hypothesis that it contains the true value of the
external moments. The nature of this external interval is
that it is based on external data that is affected by random
noise. Thus, it reflects the current state of knowledge
about the (moments of the) variables. Now the regularity
conditions of the GMM apply to this true value, but it is
not known which value in I𝑒𝑥 it is. Therefore, I𝑒𝑥 can be
interpreted as coarse data, and cautious data completion
can be applied to the test statistic 𝑛 · h𝑇

𝜴̂
−1
ℎ h to derive the

set of possible test statistics without further assumptions
[2, p. 182]. If I𝑒𝑥 is bounded and the test statistic is a
continuous function of the external information, the result is

a bounded and closed interval [𝑛 · h𝑇
𝜴̂

−1
ℎ h, 𝑛 · h𝑇

𝜴̂
−1
ℎ h],

since in this case I𝑒𝑥 is compact and connected. The

interval [𝑛 · h𝑇
𝜴̂

−1
ℎ h, 𝑛 · h𝑇

𝜴̂
−1
ℎ h] is denoted by [𝜒2, 𝜒2].

However, if I𝑒𝑥 is unbounded, the cautious data completion
may result in a right-unbounded interval [𝜒2,∞), e.g,
if 𝜴̂ℎ = Ŝℎ is used. The test statistic interval cannot be
left-unbounded because the test statistic 𝑛 · h𝑇

𝜴̂
−1
ℎ h is a

positive-definite quadratic form and therefore cannot be
less than zero. In the following, we will focus on the case
where the set of possible test statistics is an interval [𝜒2, 𝜒2].

One strategy for computing [𝜒2, 𝜒2] for a given data
set is to use quadratic programming, as we will show
now. To reflect the dependence of h on the external value
e ∈ I𝑒𝑥 , it is now written as a function h(e). If 𝜴̂−1

ℎ is
not a function of e, e.g, 𝜴̂ℎ = Ŝℎ, the objective function
𝑛 · h(e)𝑇 𝜴̂−1

ℎ h(e) = h(e)𝑇 (𝜴̂ℎ/𝑛)−1h(e) is already in
quadratic form based on the variable h(e). The feasible
region becomes h(I𝑒𝑥), the image of I𝑒𝑥 under h(e). If
h(e) can be written as h(e) = ĥ − e, where ĥ represents
the sample moment, then h(I𝑒𝑥) = ĥ − I𝑒𝑥 holds (Again,
ĥ − I𝑒𝑥 denotes the image of ĥ − 𝑒 on I𝑒𝑥 .). In this case,
the feasible region is an interval. Taken together, the opti-
mization problem is now a quadratic programming problem.

If 𝜴̂ℎ depends on e, for example 𝜴̂ℎ = 𝜮̂ℎ , the optimiza-
tion problem is more complex. Again, the dependence on e
is denoted by the notation 𝜴̂ℎ (e). In this case, the problem is
not necessarily convex, as Figure 1 shows. Another problem
is that the matrix 𝜴̂ℎ (e) must be nonsingular for each e for
the problem to be well-defined. In the case 𝜴̂ℎ (e) = 𝜮̂ℎ (e)
both problems can be solved by

Theorem 4 The matrix 𝜮̂ℎ (e) is positive-definite for each
e ∈ I𝑒𝑥 if Ŝℎ is positive-definite. Assuming that Ŝℎ is
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Figure 1: Graph of the objective function
𝑛 · h(e)𝑇 𝜮̂ℎ (e)−1h(e) as a function of the
external value e in the context of Example 1,
i.e, ℎ(𝑧) = 𝑦 − 𝑒, based on a sample of 50 i.i.d
random variables 𝑦1, . . . , 𝑦50 distributed like
𝑁 (3, 1)

positive-definite, the objective function (2) becomes

𝑛 · h(e)𝑇 𝜮̂ℎ (e)−1h(e) = 𝑛 · h(e)𝑇 Ŝ−1
ℎ h(e)

𝑛−1
𝑛

+ h(e)𝑇 Ŝ−1
ℎ h(e)

and reaches its minimum over I𝑒𝑥 at the same point as the
objective function 𝑛 · h(e)𝑇 Ŝ−1

ℎ h(e).

Proof For brevity, we will denote h(e) by h during the
proof of the first statement. The first statement is clear by
definition, since

𝜮̂ℎ (e) =
1
𝑛

𝑛∑︁
𝑖=1

h(z𝑖)h(z𝑖)𝑇

=
1
𝑛

𝑛∑︁
𝑖=1

(h(z𝑖) − h + h) (h(z𝑖) − h + h)𝑇

=
𝑛 − 1
𝑛

Ŝℎ + hh𝑇

(3)

is a sum of the positive-definite matrix 𝑛−1
𝑛

Ŝℎ and the posi-
tive semi-definite matrix hh𝑇

, and hence positive-definite.
Using (3) and applying the formula (13.72) in Puntanen
et al. [16, p. 301] to 𝑛−1

𝑛
Ŝℎ + hh𝑇

now yields

𝑛 · h𝑇
𝜮̂ℎ (e)−1h = 𝑛 · (h𝑇 ( 𝑛 − 1

𝑛
Ŝℎ)−1h

−
(h𝑇 ( 𝑛−1

𝑛
Ŝℎ)−1h)2

1 + h𝑇 ( 𝑛−1
𝑛

Ŝℎ)−1h
).

The second statement follows after a little algebra. The last
statement follows from the fact, that the function 𝑓 (𝑥) =

𝑥
𝑛−1
𝑛

+ 𝑥
𝑛

is strictly increasing for every 𝑛 > 1 in 𝑥 ≥ 0. Thus,

the extrema of quadratic form 𝑥 = 𝑛 · h(e)𝑇 Ŝ−1
ℎ h(e) over

I𝑒𝑥 and the extrema of 𝑓 (𝑥) over I𝑒𝑥 are attained by the
same values in I𝑒𝑥 .

Theorem4 effectively reduces the case 𝜴̂ℎ = 𝜮̂ℎ (e) to the
case 𝜴̂ℎ = Ŝℎ , which is solvable by quadratic programming.
To extend the Sargan-Hansen test to the case of an exter-

nal interval I𝑒𝑥 , it is necessary to consider the distributional
properties of the test statistic interval [𝜒2, 𝜒2]. Each value
e ∈ I𝑒𝑥 can be specified correctly or incorrectly. If it is
specified correctly, 𝑛 · h(e)𝑇 𝜴̂−1

ℎ h(e) 𝑑→ 𝜒2𝑝2 , since the
results of Section 2.1 apply. If it is not specified correctly,
𝑛 · h(e)𝑇 𝜴̂−1

ℎ h(e) 𝑑→ ∞ [4, p. 248], showing the inherent
point value assumption. Only for values in a shrinking
neighborhood around the true value, i.e, e = e0 + 𝜹/𝑛,
where e0 is the correctly specified value and 𝜹 is a constant
representing the bias, the asymptotic distribution of the
test statistic is a noncentral 𝜒2𝑝2−distribution [4, p. 249].
The noncentral 𝜒2𝑝2− distribution with the noncentrality
parameter 𝜆 is denoted by 𝜒2𝑝2 (𝜆). The interval I𝑒𝑥 is
assumed to be constant because it is constructed outside the
data, so the problem of degenerate asymptotic distributions
arises. To avoid this problem, the focus is on 𝜒2, the
minimum value of the test statistic over I𝑒𝑥 , using the
heuristic that it should not go to ∞ if e0 ∈ I𝑒𝑥 . To justify
this decision and to develop a test based on 𝜒2, two
arguments are given.

First, the task is to decide whether an external interval
I𝑒𝑥 is coherent with the data, i.e. whether it contains a value
that is ’close enough’ to its sample equivalent. If a test
decides that this is false for I𝑒𝑥 , it should also decide that
this is false for all intervals contained in I𝑒𝑥 as well. For
example, if a test decides that the true value is negative, one
should conclude that the test would also decide that it is not
in [0, 1]. This requirement is satisfied when 𝜒2 is used as a
single test statistic, because if 𝜒2 is greater than a critical
value, then all values within [𝜒2, 𝜒2] are greater than it.
Under the null hypothesis e0 ∈ I𝑒𝑥 , this critical value could
be derived from the central 𝜒2−distribution to account for
the fact that any value within [𝜒2, 𝜒2] could be the true one.

Second, this decision rule (reject the null hypothesis if
𝜒2 is greater than a critical value resulting from the central
𝜒2−distribution) amounts to a 𝛤−maximin decision rule
[8, p. 193] for choosing the p-value. To recognize this, the
corresponding set of gambles and the credal set must be
specified. For an observed test statistic 𝜒2e ∈ [𝜒2, 𝜒2], its
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p-value is the probability of the event {𝜒2 > 𝜒2e } under the
validity of the null hypothesis, where e is fixed. Therefore,
the indicators of the events {𝜒2 > 𝜒2e } for all e ∈ I𝑒𝑥 form
the set of gambles. The possible asymptotic distributions
for 𝑛 · h(e)𝑇 𝜴̂−1

ℎ h(e) under the null hypothesis are 𝜒2𝑝2 (𝜆)
for 𝜆 ∈ [0,∞), so these distributions form the credal set.
Now, the probabilities 𝑃𝜒2𝑝2 (𝜆)

({𝜒2 > 𝜒2e }) are increasing
in 𝜆 if 𝜒2e is fixed [6], so the lower probability is reached at
𝜆 = 0. Note that this is equivalent to cumulative distribution
functions that decrease pointwise in 𝜆. But 𝜒2𝑝2 (0) is just
the central 𝜒2𝑝2−distribution. Note that the above degenerate
distributions at 𝑛 → ∞ are the limits for 𝜆 → ∞ and thus
the lower probability includes these ’distributions’ as well.
Finally, the lower probability 𝑃𝜒2𝑝2

({𝜒2 > 𝜒2e }) is maximal
at 𝜒2e = 𝜒2, because

{𝜒2 > 𝜒2e } ⊂ {𝜒2 > 𝜒2}

for all e ∈ I𝑒𝑥 .
Taken together, we calculate the maximum of the respec-

tive lower probabilities of the events {𝜒2 > 𝜒2e } for e ∈ I𝑒𝑥
and compare it with the significance level 𝛼. Thus, the
Sargan-Hansen test based on external intervals is

1. 𝑃𝜒2𝑝2
({𝜒2 > 𝜒2}) ≥ 𝛼

⇒ maintain null hypothesis e0 ∈ I𝑒𝑥

2. 𝑃𝜒2𝑝2
({𝜒2 > 𝜒2}) < 𝛼

⇒ reject null hypothesis e0 ∈ I𝑒𝑥 .

This test is conservative, but ensures that the asymptotic
significance level is at most 𝛼, regardless of which value in
I𝑒𝑥 is the true value under the null hypothesis.

The results obtained so far are asymptotic in nature. To
derive a test for information-data conflict in small samples,
distributional assumptions for h(e) are required. So sup-
pose that h(e) is normally distributed for each e ∈ I𝑒𝑥 . If
h(e) = ĥ − e holds, as assumed above for the application
of quadratic programming, it is sufficient to assume that
the sampling moment ĥ is normally distributed. Under this
normality assumption, the test statistic 𝑛 · h(e)𝑇 Ŝ−1

ℎ h(e)
at a fixed e ∈ I𝑒𝑥 has the scaled noncentral F-distribution
(𝑛−1) 𝑝2
𝑛−𝑝2 𝐹𝑝2 ,𝑛−𝑝2 (𝜆), where 𝜆 is again the noncentrality pa-
rameter [15, p. 889].2 If the cumulative distribution func-
tions of (𝑛−1) 𝑝2

𝑛−𝑝2 𝐹𝑝2 ,𝑛−𝑝2 (𝜆) for 𝜆 ∈ [0,∞) are pointwise
decreasing in 𝜆, the same arguments used in the above
construction of the Sargan-Hansen test based on external
intervals can be applied. Now, the cumulative distribution

2The notation of Phillips [15] is very different from ours, so we
explain it here: Their 𝑇 is our 𝑛, their 𝑝 is 1 in our case, and their 𝑞 is our
𝑝2.

function of 𝐹𝑝2 ,𝑛−𝑝2 (𝜆) is decreasing in 𝜆 [6]. This prop-
erty carries over to (𝑛−1) 𝑝2

𝑛−𝑝2 𝐹𝑝2 ,𝑛−𝑝2 (𝜆) since the scaling by
(𝑛−1) 𝑝2
𝑛−𝑝2 is a strictly increasing transformation and can be
inverted using the definition of pushforward measures, i.e,

𝑃 (𝑛−1) 𝑝2
𝑛−𝑝2

𝐹𝑝2 ,𝑛−𝑝2 (𝜆)
(𝐴) = 𝑃𝐹𝑝2 ,𝑛−𝑝2 (𝜆) (

𝑛 − 𝑝2
(𝑛 − 1)𝑝2

· 𝐴).

Taken together, the test for information-data conflict in small
samples based on Ŝℎ and the assumption of normality is

1. 𝑃𝐹𝑝2 ,𝑛−𝑝2
({𝜒2 > 𝑛−𝑝2

(𝑛−1) 𝑝2 𝜒
2}) ≥ 𝛼

⇒ maintain null hypothesis e0 ∈ I𝑒𝑥
2. 𝑃𝐹𝑝2 ,𝑛−𝑝2

({𝜒2 > 𝑛−𝑝2
(𝑛−1) 𝑝2 𝜒

2}) < 𝛼

⇒ reject null hypothesis e0 ∈ I𝑒𝑥 .
At first glance, one might think that the choice of 𝜴̂ℎ is

always important when working with small samples. This
is not necessarily the case, as we will show now. From the
fact that the function 𝑓 (𝑥) from the proof of Theorem 4 is
strictly increasing for 𝑥 ≥ 0, it follows that for every 𝑐 ≥ 0
the inequality 𝑛 · h(e)𝑇 Ŝ−1

ℎ h(e) > 𝑐 is satisfied iff

𝑛 · h(e)𝑇 𝜮̂ℎ (e)−1h(e) = 𝑓 (𝑛 · h(e)𝑇 Ŝ−1
ℎ h(e)) > 𝑓 (𝑐)

holds. Both inequalities represent the same event in
the common underlying probability space, and both are
assigned the same probability. Therefore, 𝑐 and 𝑓 (𝑐) can
be interpreted as quantiles with the same level 𝛼, and the
small sample tests for information-data conflict based on
Ŝℎ and 𝜮̂ℎ , respectively, are the same.

The tests developed in this section are either asymptotic
or assume a normal distribution. Therefore, it is important
to check their properties in small samples when there is
no normal distribution. Since a conservative 𝛤−Maximin
decision rule was used, it would be interesting to compare
the expected type I error rates with the significance level
𝛼. On the one hand, the use of lower probabilities could
correct for the small sample bias of the asymptotic test
or for the errors caused by deviations from the normal
distribution. This is due to the fact that all distributions in
the credal set and their convex combinations are undercut
by the lower probability. On the other hand, the type I error
rate could become very low if I𝑒𝑥 is very broad, possibly
leading to low power of the tests for a fixed 𝑛. Regarding to
the use of multiple external moments, the question is how
this affects the type I error rate and the power of the tests.
The inclusion of additional moments increases the degrees
of freedom 𝑝2, which may increase the critical values for
a given significance level 𝛼. Thus, if the interval of the
added moment includes or is close to the true value, the
power may decrease. On the other hand, if the interval of
the added moment is far from the true value, this could
increase the power. We will analyze these issues through a
short simulation study.
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3. A Simulation Study to Investigate Small
Sample Properties

First, we choose sample sizes 𝑛 = 30 and 𝑛 = 50 so that
each scenario occurs twice and the effect of increasing
sample size can be analyzed. Based on Example 1, we
use a simple linear regression model under Gauss-Markov
assumptions and normally distributed errors. The slope is
𝛽2 = 1 and the intercept is 𝛽1 = 16. The sample values for
the independent variable 𝑥 and the dependent variable 𝑦
are drawn i.i.d. as 𝑥 ∼ 𝑁 (4, 4) and 𝑦 = 𝛽1 + 𝛽2𝑥 + 𝜖 with
𝜖 ∼ 𝑁 (0, 60), where the second terms (4 and 60) are the
variances. In these settings, the actual correlation between
𝑥 and 𝑦 is 0.25, which is low but quite typical for applied
research, e.g, in psychology. The sample values are denoted
by 𝑥𝑖 and 𝑦𝑖 for 𝑖 = 1, . . . , 𝑛. As external information, the
moments 𝐸 (𝑦), 𝐸 (𝑥), and Var(𝑦) are used individually
or in combination of two or more of them, resulting in
7 moment scenarios. For Var(𝑦), the moment function
ℎ(z) = 𝑛

𝑛−1 (𝑦− 𝑦̄)2 − 𝑒 is used, where 𝑦̄ is the sample mean
of 𝑦 and 𝑛

𝑛−1 corrects for degrees of freedom. Note that using
Var(𝑦) leads to ℎ(𝑒) = 1

𝑛−1
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦̄)2 − 𝑒, which is not
normally distributed. Finally, two scenarios are chosen with
respect to I𝑒𝑥 to investigate the type I error and the power,
respectively. For the first scenario, I𝑒𝑥 = [0.95 ·e0, 1.05 ·e0]
and for the second, I𝑒𝑥 = [1.2 · e0, 1.3 · e0].
To analyze the effect of the proximity of I𝑒𝑥 to the true

value on the power of the tests, we use distributions for
𝑥 and 𝑦 that differ in terms of their standardized mean
difference. To justify this, note that the square root of the
test statistic can be simplified when using only one of the
selected moments, as follows:√︃

𝑛 · h(e)𝑇 𝜴̂−1
ℎ h(e) =

√
𝑛
| ℎ̂ − 𝑒 |
√
𝜔̂ℎ

, (4)

where all expressions are not written in bold because they
are now single-valued. Now, (4) resembles a t-test statistic
and the typical effect size used for this test statistic is the
standardized mean difference 𝑑 =

|𝑒0−𝑒 |√
Var(ℎ (z))

[5]. The value

in I𝑒𝑥 that is closest to e0 is 1.2 · e0. For the Sargan-Hansen
test based on external intervals using 𝜴̂ℎ = Ŝℎ , it holds for
𝐸 (𝑥) that 𝑑 =

|4−1.2·4 |
2 = 0.4, a small effect size, and for

𝐸 (𝑦) that 𝑑 =
|20−1.2·20 |

8 = 0.5, a medium effect size [5].
Thus, using 𝐸 (𝑦) alone should result in higher power than
using 𝐸 (𝑥) alone. For Var(𝑦) the calculation of 𝑑 is a bit
more complex. Under the above conditions, 𝑛

𝑛−1 (𝑦− 𝑦̄)2 has
a scaled 𝜒21−distribution. However, 𝑑 is scale invariant, so
we can assume without loss of generality that 𝑛

𝑛−1 (𝑦− 𝑦̄)2 is
𝜒21− distributed. This leads to 𝑑 = 0.2 1√

2
= 0.1414, which

is below the threshold for small effects according to Cohen
[5]. Note that the effect size for Var(𝑦) does not depend on

the value of any moment, which is a consequence of using
a normally distributed 𝑦.
Taken together, these are 2 (sample sizes) × 7 (moment

combinations) × 2 (choices of I𝑒𝑥) = 28 scenarios. For
each scenario, the rejection rates of the null hypothesis are
calculated for three tests, namely the Sargan-Hansen test
based on external intervals using 𝜴̂ℎ = Ŝℎ (abbreviated
SH(Ŝℎ)), the Sargan-Hansen test based on external intervals
using 𝜴̂ℎ = 𝜮̂ℎ (abbreviatedSH(𝜮̂ℎ)), and the small sample
test for information-data conflict (IDC). The significance
level is always set to 𝛼 = 0.05. For SH(Ŝℎ) and IDC, the
test statistic 𝜒2 is computed using quadratic programming
as described in Section 2.2, and for SH(𝜮̂ℎ) it is computed
using Theorem 4.
Simulations were performed in R, version 4.2.1 [17]. The

R package quadprog [19] was used to perform quadratic
programming. To calculate rejection rates, each simulation
scenario was repeated 10000 times. The associated R script
can be found in the electronic supplementary material. The
results concerning type I error rates are presented in Table 1
and Table 2 and the results concerning power are presented
in Table 3 and Table 4.

Table 1: Type I error rates for 𝑛 = 30

Moments SH(Ŝℎ) SH(𝜮̂ℎ) IDC

𝐸 (𝑦) 0.0085 0.0061 0.0065
Var(𝑦) 0.0752 0.0657 0.0674
𝐸 (𝑥) 0.0162 0.0121 0.0124

𝐸 (𝑦),Var(𝑦) 0.0573 0.0429 0.0460
Var(𝑦), 𝐸 (𝑥) 0.0578 0.0456 0.0482
𝐸 (𝑦), 𝐸 (𝑥) 0.0115 0.0057 0.0069

𝐸 (𝑦),Var(𝑦), 𝐸 (𝑥) 0.0487 0.0302 0.0345

Table 2: Type I error rates for 𝑛 = 50

Moments SH(Ŝℎ) SH(𝜮̂ℎ) IDC

𝐸 (𝑦) 0.0055 0.0043 0.0044
Var(𝑦) 0.0554 0.0502 0.0508
𝐸 (𝑥) 0.0089 0.0070 0.0075

𝐸 (𝑦),Var(𝑦) 0.0330 0.0293 0.0302
Var(𝑦), 𝐸 (𝑥) 0.0358 0.0298 0.0305
𝐸 (𝑦), 𝐸 (𝑥) 0.0041 0.0029 0.0031

𝐸 (𝑦),Var(𝑦), 𝐸 (𝑥) 0.0264 0.0195 0.0213
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Table 3: Power for 𝑛 = 30

Moments SH(Ŝℎ) SH(𝜮̂ℎ) IDC
𝐸 (𝑦) 0.7811 0.7519 0.7564
Var(𝑦) 0.2530 0.2341 0.2364
𝐸 (𝑥) 0.5994 0.5604 0.5680

𝐸 (𝑦),Var(𝑦) 0.7421 0.6687 0.6852
Var(𝑦), 𝐸 (𝑥) 0.6027 0.5209 0.5409
𝐸 (𝑦), 𝐸 (𝑥) 0.8116 0.7404 0.7576

𝐸 (𝑦),Var(𝑦), 𝐸 (𝑥) 0.8076 0.6885 0.7189

Table 4: Power for 𝑛 = 50

Moments SH(Ŝℎ) SH(𝜮̂ℎ) IDC
𝐸 (𝑦) 0.9416 0.9339 0.9355
Var(𝑦) 0.2808 0.2677 0.2699
𝐸 (𝑥) 0.8048 0.7877 0.7906

𝐸 (𝑦),Var(𝑦) 0.9040 0.8807 0.8860
Var(𝑦), 𝐸 (𝑥) 0.7929 0.7526 0.7626
𝐸 (𝑦), 𝐸 (𝑥) 0.9607 0.9478 0.9508

𝐸 (𝑦),Var(𝑦), 𝐸 (𝑥) 0.9499 0.9219 0.9302

4. Discussion

4.1. Summary of the Simulation Results

All type I error rates were below the 𝛼 significance level,
except in the cases where Var(𝑦) was used. When Var(𝑦)
was used alone, the type I error rates of all tests were
above 𝛼, indicating that the tests could not compensate
for deviations from the normal distribution. A possible
explanation could be that I𝑒𝑥 was not large enough. In
practice, however, I𝑒𝑥 is determined externally and should
not be expanded carelessly, since a broader I𝑒𝑥 would result
in lower power. Nevertheless, a larger sample size would be
a possible solution, since in all our scenarios an increase in
sample size resulted in lower Type I error rates and higher
power. When Var(𝑦) was used in combination with other
moments, the type I error rates were below 𝛼 at 𝑛 = 30 for
the tests SH(𝜮̂ℎ) as well as IDC, and at 𝑛 = 50 for all tests,
showing that combinations of normally and non-normally
distributed sample moments can improve the type I error
rate. When in doubt, a simulation of the practical scenario
should be performed to analyze whether the significance
level is exceeded. For the scenarios using 𝐸 (𝑦) alone, the
smallest type I error rates were 0.0061 for 𝑛 = 30 and
0.0043 for 𝑛 = 50, showing that the tests can be much
more conservative than the significance level would suggest.
This is the expected consequence of using the conservative
𝛤−maximin rule. In all moment scenarios, there was a clear

order of the tests in terms of type I error rate. The test
SH(Ŝℎ) always had higher type I error rates than IDC and
IDC always had higher error rates than SH(𝜮̂ℎ).
As for the power of the tests, their order corresponds

to the order of the type I error rate. In all moment sce-
narios, SH(Ŝℎ) had the highest power, followed by IDC
and SH(𝜮̂ℎ). As expected, 𝐸 (𝑦) yielded the highest power
when used alone, followed by 𝐸 (𝑥) and Var(𝑦), clearly
reflecting the effect size 𝑑 calculated in Section 3. With
powers ranging from 0.7519 to 0.7811 for 𝑛 = 30 and from
0.9339 to 0.9416 for 𝑛 = 50, the moment 𝐸 (𝑦) shows that
the use of an external interval does not erase all of the
power of the tests in our simulation study. Even for the
small effect size exerted by the moment 𝐸 (𝑥), the power
ranged from 0.7877 to 0.8048 for 𝑛 = 50. However, using
combinations of moments does not always result in higher
power. Combinations with Var(𝑦) resulted in lower power
than the same combinations without Var(𝑦), with the sole
exception of Var(𝑦) and 𝐸 (𝑥) for the test SH(Ŝℎ) in the case
𝑛 = 30. The maximum power reduction due to the inclusion
of Var(𝑦) was 0.0832 for 𝑛 = 30 and 0.0532 for 𝑛 = 50,
respectively, for the moment 𝐸 (𝑦) for the test SH(𝜮̂ℎ). This
reduction property is explained by the very small effect
size when using Var(𝑦), which causes the increase in the
critical value due to the higher degrees of freedom 𝑝2 to
exceed the expected increase in the test statistic due to the
inclusion of Var(𝑦). Only for the test SH(𝜮̂ℎ) and 𝑛 = 30
did the combination of 𝐸 (𝑥) and 𝐸 (𝑦) result in lower power
than using 𝐸 (𝑦) alone. In all other cases, however, the
combination of 𝐸 (𝑥) and 𝐸 (𝑦) led to an increase in power,
although not as pronounced, since for 𝑛 = 30 the power
only increased by a maximum of 0.0305.
Despite the conservative 𝛤−maximin decision rule used

to construct them, the tests had good power for small sample
sizes at small and medium effect sizes in our simulation
scenarios. However, when a moment is not normally dis-
tributed, one should be very careful with its use, as it may
lead to too high a type I error rate when used alone and to a
lower power when used in combination with other moments.
The simulations suggest that in scenarios such as those used
here, one should select the single normally distributed mo-
ment with the largest effect size rather than using multiple
moments in combination. In particular, deviations from the
normal distribution, which are likely to occur frequently in
practice, need to be considered in further research.

4.2. Outlook

Most importantly, the robustness of the tests to deviations
from the normal distribution should be further investigated.
If only the variance of 𝑦 is used as the external moment,
one should correct for type I error rates by deriving the
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specific distribution of the test statistic in this case, given
normally distributed variables.
Since the 𝛤−maximin decision rule is conservative, one

could analyze the effect of using other p-value decision
rules on the tests developed here. There are some issues
regarding this endeavor. First, the upper probabilities of
the events in Section 2.2 would effectively be 1. This is
because the credal set includes distributions with arbitrarily
large noncentrality parameters. These distributions shift
the probability mass to infinity, while the interval of test
statistics for a fixed 𝑛 is bounded almost surely. One way to
deal with this problemwould be to set an upper bound on the
noncentrality parameter for a fixed 𝑛. Second, note that using
a 𝛤−maximax decision rule would result in higher p-values
and thus an even more conservative test. A more liberal
procedure would be to minimize the lower probabilities.
Since the external interval necessarily contains values that
are not the true moment value, the p-values for these would
asymptotically be 0, resulting in a test that always rejects
the null hypothesis even if the interval contains the true
moment value.
Another way to construct a more liberal test would be to

use different significance levels, possibly increasing with
𝑛, since the actual type I error rates appear to be low even
at 𝑛 = 50. However, one should keep in mind that the type
I error rate depends on where the true value lies within
the external interval. Therefore, it would be interesting to
analyze the type I errors for several locations of the true
value to calculate the worst case type I error.
Although the Sargan-Hansen test has been reduced to a

Wald test as shown here, there are still ways to use infor-
mation about model parameters in the tests constructed in
this paper, for example implementing the OLS estimator (a
function based only on the data) and an external interval
that represents the external information about the regression
parameter. It would be interesting to study the properties of
such ’indirect’ model moment conditions. In addition, other
tests or frameworks for using moment-type external infor-
mation could be used and compared to the tests developed
here, such as the Empirical Likelihood framework [13].
Finally, the results derived here may also be useful when

working with interval-valued information about moments in
other research areas, since the 𝛤−maximin decision rule for
the p-values is based on the stochastic order of the underlying
family of distributions of a test statistic. This is true for
many econometric and psychometric procedures, such as
theWald test for general linear and nonlinear hypotheses, the
likelihood ratio test, and the Langrange multiplier test, since
their test statistics are asymptotically chi-squared distributed
under the null hypothesis (see Cameron and Trivedi [4] for
more details). The algebraic results could help to derive
analytical formulas for the externally informed estimators of
Imbens and Lancaster [9] and combine them with the use of

external intervals. Since these estimators are more efficient
than OLS estimators and since external intervals are a more
realistic and robust representation of external information,
there could be an interesting interaction between the two.
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