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Abstract

The logic FP(L,L) was introduced by L. Godo and T.
Flaminio as an expansion of Lukasiewicz logic with
a modality, to reason about the probability of vague
events. We prove that FP(L,L) is complete with respect
to a class of two-sorted algebras, called equational
states. They are an equational presentation of the well-
known theory of states over lattice ordered groups.
Keywords: Lukasiewicz logic, state, completeness,
two-sorted algebras

1. Introduction

Lukasiewicz logic, denoted by L, has been introduced in
the Thirties as a three-valued logic by J. Lukasiewicz and
subsequently extended by J. Lukasiewicz and A. Tarski
allowing for infinitely many degrees of truth. Nowadays,
L is understood in the more general framework of mathe-
matical fuzzy logic. This framework has its origin in the
work of Lotfi Zadeh, that in 1965 introduced the notion of
a fuzzy set, laying the groundwork for the birth of fuzzy
logics as we know them. Soon after fuzzy sets were defined,
researchers started to wonder whether a relation between
fuzzy sets and probability theory existed. Zadeh himself
argued that probability theory and fuzzy logic are com-
plementary rather than competitive, highlighting the fact
that using only classical logic to deal with probability has
limitations, while the use of fuzzy logic can provide a more
useful framework, see e.g. [10, 11].

Over the years, the merging of logic and probability has
been approached in several ways; the most relevant for our
work are to be found in [6, 4]. In [6], P. Hajek, L. Godo
and F. Esteva defined a two-layer logic, called FP(L), to
reason formally about probabilities of classical events, using
FLukasiewicz logic. In FP(L) the atomic components are
formulas that read as ¢ is probable. In [4], T. Flaminio
and L. Godo extended FP(L) to the logic FP(L,L), in
which one can formally reason about the probabilities of
vague events, using Lukasiewicz logic. Also in FP(L,L)
the atomic formulas are interpreted as ¢ is probable, but
now ¢ is a Lukasiewicz formula that codifies a vague event.
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In the same [6], the authors give a semantics for FP(L)
based on measurable sets and probabilities and they prove
completeness of the logic. Similarly, in [4] the authors
define a semantics for FP(L, L.) based on the notion of state
[8] with the goal of interpreting probability measures and
expectations in Lukasiewicz logic. States are, essentially,
additive and normalized [0, 1]-valued functions defined
upon appropriate abstract algebras.

At the time of [4], the authors did not obtain a com-
pleteness result for FP(L,L). In [2], Flaminio proved a
non-standard completeness with respect to a different class
of models, in which states are allowed to take values in
an ultrapower of [0, 1]. Recently, in [3], the author finally
obtained a standard completeness theorem for FP(L, L),
i.e., completeness with respect to models in which states
take values in [0, 1]. This shows that FP(L, L) is indeed the
logic of real-valued states on Lukasiewicz events.

In this work, we propose a different semantics for
FP(L, L) that is purely algebraic, rather than relying on the
primitive notion of state and it is based on the equational
presentation of states given by T. Kroupa and V. Marra in [7].
After briefly recalling some preliminary notions in Section
2, we prove the completeness of the FP(L, L.) with respect
to our semantics in Section 3. Finally, in Section 4 we prove
that the ad-hoc model used to prove completeness is the
free algebra in the two-sorted variety of equational states.
We conclude the paper by remarking that our semantics
is not the equivalent algebraic semantics of FP(L,L) in
classical sense of Blok and Pigozzi and we discuss some
consequences.

2. Preliminaries
2.1. Lukasiewicz Logic and MV-Algebras

We start by recalling some basic facts in the theory of
Fukasiewicz logic and MV-algebras. For further details we
refer the reader to [1]. The syntax of Lukasiewicz logic L
is built as in classical logic starting from an infinite set of
propositional variables Var and the primitive connectives
{—,—}. The axioms of L are a subset of the axioms of
propositional classical logic, precisely:
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*D) ¢ = (W - 9);

Xr2) (¢ = y) = (W = x) = (¢ = X))
L3) (¢ = ¥) = ¥) = (¥ = ¢) > 9);
X4 (¢ = =p) = (¢ = ¥).

The only deduction rule is Modus Ponens, i.e., from ¢ and
¢ — Y it is possible to deduce . We denote with Fm the
set of all formulas of £. and we use the notation I" +y, ¢
to indicate that there exists a deduction of ¢ from I". This
means that ¢ is obtained from instances of the axioms
(£1)-(14) and the formulas in I" using Modus Ponens. A
formula ¢ is a theorem if it can be deduced by (L.1)—(L4)

without further hypothesis. If ¢ is a theorem, we write Fy, .

By I' ¢t ¢ < ¢ we mean that both I" r, ¢ — ¥ and
' — @ hold.
The equivalent algebraic semantics of L is given by the

variety of MV-algebras, defined by C.C. Chang in 1958.

An MV-algebra is an algebra A = (A, ®, —,0) such that
(A, ®,0) is a commutative monoid; — is involutive, meaning
that for any x € A, =—x = x; and such for any x, y € A, the
following equality holds

“(x@y)dy=-(-ydx)®x.
In this work we use the following derived operations:

XOy =-(x®-y), x0y:=x0-y,

x>y =-x®y, 1 = -0.
Each MV-algebra has an underlying lattice order defined by
setting x < y if and only if x — y = 1. The joins and meets

of this order are definable as follows:
XAy =x0(x—>yandxVy:==(-xdy)®y.

We also use the above abbreviations to define additional
Fukasiewicz connectives. We call MV-chain any totally
ordered MV-algebra. The standard example of an MV-
algebra is ([0, 1], &, =, 0) where the operations are defined,
for any x,y € [0, 1], as

x@®y:=min(x+y,1)and =x =1 —x.

Homomorphisms are defined, as usual, as functions that
preserve all operations and constants.

For any MV-algebra A, we call A-valuation of the vari-
ables Var any function v: Var — A. Notice that v is readily
extended to all formulas of L. by setting v(*(p1, ..., pn)) =
*(v(p1),...,v(pn)), with py,..., p, € Var and x being
any connective of L.

Theorem 1 (Completeness) The following conditions are
equivalent for every ¢ € Fm:
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1. FE @,

2. for any MV-algebra A and any A-valuation v, v(¢) =
lA,'

To prove the previous theorem, one builds the so-called
Lindenbaum-Tarski algebra as follows. Let I" be a set of
formulas and define on Fm the following relation

p=r¢yifandonlyif I' by, ¢ < ¢

The relation = is an equivalence relation and the quotient
Fm/= can be endowed with the structure of an MV-algebra,
that we denote by LT (Var). When I" = 0, we simply write
LT(Var). Its elements are denoted simply by [¢] for ¢ a
formula. Notice that A-evaluations are in bijection with
homomorphisms from LT(Var) to A.

2.2. The Logic FP(L,L.)

The system FP(L, L), defined in [4], is obtained by expand-
ing Fukasiewicz logic with a modality 0. The intended
meaning of the formula O(¢p) is “¢ is probable”. The set of
all FP(L, L) formulas, denoted by PFm, is the union of the
disjoint sets EFm and MFm, defined as follows:

e EFmis the set of formulas of Lukasiewicz logic, called
event formulas. We explicitly add to the language the
logical constants T; and L; and we denote again by
Var the set of propositional variables used to defined
the formulas in EFm;

* MFm is the smallest set containing all formulas O(¢),
for any ¢ € EFm, the logical constants T, and L, and
closed under the connectives of Lukasiewicz logic. The
formulas in MFm are called modal formulas, the ones
of the form O(¢) are called atomic modal formulas.

The axioms and rules of the logic are:

« all axiom schemes of Lukasiewicz (for both modal and
non-modal formulas);

¢ the modal axioms:
(FPL1) O(—¢) «& —0O(yp);

(FPL2) O(¢ — ¢) — O(p) — O(Y);
(FPL3) o(¢ @ ¢) < ((O(p) — 0(p 0¢)) — O¥));

¢ and the rules:

(MP) Modus Ponens: from @ and @ — ¥ derives ¥.

(N) Necessitation: from ¢ derives O(¢).
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Deductions in FP(L, L) are defined similarly to £.. When a
formula @ has a deduction in FP(L, L) we write +gpy 1) @
and we call @ a theorem of FP(L,L.).

In the next proposition we collect some theorems of
FP(L,L) which will be useful in Section 3 to prove the
completeness of our algebraic semantics.

Proposition 2

(T1) vpper) O(Ly) & Ly,

(T2) trpeep) O(T1) © To;

(T3) trp@rp) O(e © ¥) — O() © OW);
(T4) ¢ © ¥ Frpep) O(p) © OW);

(T5) Frpee) D(@ @ ¢) © O(p) ® DY A =@).

Proof For (T1), (T2) see [5, Proposition 15]. For (T3) it
is sufficient to apply (FPL2) twice. (T4) follows from (T3)
and Modus Ponens. It remains to prove (T5). Observe that
e®Y — 9@ (Y A—p) is a theorem in Lukasiewicz logic,
therefore using (T4):

FepLL) O(@ @ Y) © O(9 & (¥ A ~p)),

and using (FPL3):

O(e@(YA-p)) & (O(¢) = O(eO(YA=p))) — O A-p).

It is easy to prove that ¢ © (y A ) <> L is also a theorem
of L, therefore

(@(p) = (e © (Y A=p))) = O A-p) &
(@(p) — O(L1)) = O A —p) &

(@(p) = 12) = O A —p) &

(-o(p) = O A —g)) & (D(p) ®T(Y A -p)).

Combining the derivations above we obtain the claim. W

In [3, Definition 3.6 and Theorem 4.1] two semantics for
FP(L,L) are presented. Both make use of the concept of
state on MV-algebras. Below, in Definition 5, we propose
an algebraic semantics.

2.3. Equational States on MV-Algebras

Equational states are defined in [7] with the aim of providing
an equational description of states. Since equational states
are two-sorted algebras, we briefly recall some basic facts
on many-sorted algebras. For further details see e.g. [9,
Section 2.1 and 2.2].

Let S be a set, whose elements will be called sorts. An
S-sorted set is a family of sets indexed by S, in symbols
X = {Xs | s € S}. We write x € X as a shorthand
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forx € X; for some s € S. If X = {X; | s € S} and
Y ={Y, | s € S} are S-sorted sets, an S-sorted function from
X into Y is a family of functions {f;: Xy — ¥, | s € S}.

Standard constructions like subsets, unions, equivalence
relations, and quotients straightforwardly generalise to S-
sorted sets.

Definition 3 A many-sorted signature is a triple X =
(S, 2, a), where:

» Sis a set (called the set of sorts of X);
* Qs a set (called the set of functions symbols of X');

e aisafunctiona: Q — S* X S, where S* is the set of
all finite sequences of elements of S.

Given a many-sorted signature 2 = (S, Q, a), a X-algebra
A consists of an S-sorted set A and, for any f € Q with
a(f) =(s1,...,5n,S), an S-sorted function fA: Ag XX
A, — A

Example 1 Since an algebraic language must contain only
function symbols, graphs, i.e., sets with a binary rela-
tion, are not algebraic structures in a 1-sorted language.
However, they can be presented in the 2-sorted algebraic
signature ({v, e}, {dom, cod}, a), where a(dom) = (e, v)
and a(cod) = (e, v). Therefore, a graph in this language
is a pair of sets (E,V), understood as the set of vertices
and the set on edges, and the interpretations of dom and
cod are the functions giving, for any edge, its starting and
arriving vertex, respectively.

The equational states of our interested can be presented in the
2-sorted signature (which we fix henceforth) 2 := (S, 2, a),
where § = {1,2}, Q = {®1, 1,01, ®2,—2,02,5}, and
a(s) = (1,2) —the other values of a being the obvious
ones.

Definition 4 ([7, Definition 3.1]) An equational state is a
2-algebra

A= (A1 Ar). @, 2,00, &, =4 08, 5
such that:
1. Ap = (A4, 69/1\, 41*’ 0’1\) is an MV-algebra;
2. Ay = (A, @), 5,05) is an MV-algebra;

35" A > Ayisa unary operation, called state-
operation, such that, for each a,b € A;:

(S1) sH(0%) =05,
($2) sh(=Ra) = -hsh(a);

(53) s”(a @f b) = s”(a) @9 sA(b /\? (—{\a)).
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When the context suffices to disambiguate we simply write
A = (A4, Ay) to indicate an equational state as above.

By [7, Proposition 3.1] the unary operation s is order-
preserving.

Example 2 Let £, be the n-element MV-chain on

-

1 |i€NandiSn—1},

where the operations are inherited from the MV-algebra
[0, 1]. The algebra A = (£32, E5), where s is defined by:

s2(0,0) =0
sh(1/2,0) = 5(0,1/2) = 1/4

sA(1,0) = s(0,1) = s(1/2,1/2) = 1/2
sA(1,1/2) = s(1/2,1) =3/4

sA(1L 1) = 1.

is an equational state.

Example 3 Let h: Ay — A, be a homomorphism of MV-
algebras. The structure (A1, Ay) with state-operation h is
an equational state.

Example 4 Let A| be the MV-algebra of continuous func-
tions from [0, 1] into [0, 1], with operations defined point-
wise and let Ay be the MV-algebra [0, 1] defined in Section
2. The algebra A = (A1, Ay) with s” defined as the Riemann
integral is an equational state.

3. The Logic FP(¥.,%.) and Equational States

In this section we prove that equational states provide an
algebraic semantics for FP(L,L).

Definition 5 A S-sorted model is a pair ((A, B), v), where:
* (A, B) is an equational state,
* v is A-valuation of Lukasiewicz logic.

Let @ be a formula of FP(L, £). A valuation in ((A,B),v)
of @, denoted by ||D||, is defined as follows:

* if @ = @ is an event formula, then ||¢|| = v(¢);

s if @ O(y) is an atomic modal formula, then

Il = s(v(e));

o if® =71[0(¢1),...,0(pn)], where T is an MV-term,
then ||@|| = 7% (lo(e)ll, - . ., IB(en)).

Finally, we say that @ is valid in ((A,B),v) if:

o ||@|| =14 if D is a event formula;
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e ||@|| = 1g if @ is a modal formula.

We start by proving the soundness of the two-sorted
semantics for the logic FP(L,L).

Proposition 6 (Soundness) Let be @ € PFm. If Fpp(z 1)
D, then every S-sorted model verifies .

Proof It is sufficient to prove soundness of the Necessita-
tion rule and of the axioms (FPL1)—(FPL3). The proofs for
(FPL1) and (FPL2) are easy computations. The Necessita-
tion rule is sound because, by the completeness of L, every
event formula ¢ such that Frp(y 1) ¢ satisfies v(p) = 14 for
every A-valuation. Thus

Bl = s(v(e)) = s(1a) = 1.

The only case that remains is (FPL3). It is enough to prove
that

la(e @)l = (Bl = lale o)) — lIB)ID.

By straightforward computation, we have

(Bl = late o)) — lo@)ll
=-(=llat)l @ [[ole o) @ (o)l
=(=s(v(g) @ s(v(e O ¥))) & s(v(¥)).

Furthermore, we have

s(-v(p)ev(p 0 y))
==s(v(p)) @ s(v(p) Av(e O Y))
==s(v(p) ® s(v(p OY)).

Then

“[s(v(e) @s(v(eoy))] @s(v(y))
=-[s(-w(p) @v(eoy))] @s(v(y))
=[s(-w(p) & (v(e) O v(¥)))] & s(v(¥))
=s[v(e) © (=v(p) @ ~w(y))] @ s(v(¥))

s(v(e) A () & s(v(¥))

s(vip) @v(y)) =s(v(g @ ¥)).

Since |[O(e @ ¥)|| = s(v(¢ & ¥)), the thesis is proved. W

A key step to prove completeness is to translate modal
formulas into Lukasiewicz formulas, as done in [5, Section
4.1]. We briefly recall here the translation, which is defined
inductively on PFm.

* If ¢ € EFm then ¢* = ¢;
(M) =T;

* For any atomic formula O(¢) in MFm, we pick a fresh
propositional variable p, and set O(¢)" = py;
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* For any compound modal formula @ := x(®y, ..., D,),
with % any connective of Lukasiewicz logic, we set
D = *(DY, ..., D).

Let I" € MFm, we set

FPL* :={¥" | ¥ is a instance of (FPL1)—(FPL3)}U

U{pyo| rLoek
I ={®" |®erl}.

Theorem 7 ([5, Lemma 18]) Let be I' U {®} be a subset
of MFm, then

Ivppaepy @ ifandonlyif I'"UFPL* vy @°.

We are now ready to prove the completeness of FP(L, L)
with respect to two-sorted models.

Theorem 8 (Completeness) Let be @ € PFm. If every
S-sorted model validates @, then vpp(g p) P.

Proof We construct an S-sorted model that validates a for-
mula? if and only if FPL* +¢, ¥*. Let LT be the Lindenbaum-
Tarski MV-algebra of the event formulas. Notice that the
set B = {¥* | ¥ € MFm} is closed under Lukasiewicz
connectives, by the definition of the translation *. We define

@ =gpi+ P if and only if FPL" +p @ < ¥,

It is easy to see that =gp| + is an equivalence relation, which
under the standard Lindenbaum-Tarski construction, leads
to an MV-algebra LTy := 8B/=gp.-. We denote a generic
element of LT by [P*].

Observe that O induces a function sg: LT — LTy by
setting, for [¢].1 € LT,

so([elir) = [O(e)7].

Claim 3.1 The function sq is a state-operation from LT into
LTx.

The assignment sy is well-defined: if ry, ¢ < ¢ then
by Proposition 2(T4) and Theorem 7, FPL* +y O(¢)* <
O(¥)*. So we conclude

sa([elr) = [0(e)°] = [B(W)"] = sa([¢]wr).

Axiom (S1) holds because, by (T2), sq([Ti]ir)
[(@(T))*] = [(T2)*] = [T]. To prove axiom (S2), no-
tice that

sa(=[elr) = sa([~¢lir) by definition of LT
= [O(-¢)"] by definition of sy
=[-0(¢)'] using (FPL2)
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=-[o(e)’]
== (sa([elir)

by definition of LTy
by definition of sg.

Finally, reasoning as above and using (T5), we prove (S3).

so([elir @ [¥]r) = sa([e ® ¢lir)
= [o(e @ ¥)’]
= [0(p)*] ® [0y A —p)']
= so([elr) @ so([¢¥]r A =[e]ur).

This settles the Claim. Now, assuming that LT is generated by
the one-sorted set Y, consider the equational state ESy =
(LT, LTy) with state operation sy and the S-sorted model
(ESy,v), where v(p) = [¢]7. It is easy to see that if
¢ is a an event formula then ||¢|| = [¢]r and if ¥ is an
atomic modal formulas then ||7|| = [?*]. An easy induction
completes the proof that a formula ¥ is valid in (ESy, v)
if and only if Frpr 1) ¥.

We now prove the statement of the theorem by contrapo-
sition: assume ¥pp(z. 1) P, for some @ € PFm. By Theorem
7, FPL" ¥y, @* and hence @ is not valid in (ESy, v). [ |

4. Algebraic Proprieties of ESy

The following definitions are adaptations of the definitions
in [9, Section 2.2] to the particular case of equational states.

Definition 9 Let A == (A, Ay) and B = (B, B;) be two
equational states. An S-sorted function h = (hy, hy): A —
B is said to be a homomorphism of equational states (or
2-homomorphism) if h;: A; — B and hy: Ay — By are
homomorphisms of MV-algebras, and hs o s® = s8 o hy.

Definition 10 Let (S1, S2) be an S-sorted set. An equa-
tional state A is said to be the free state generated by (S, S2)
if it is generated by (S1, S»2) and for every equational state
B, any function f: (S1,S2) — B extends (uniquely) to a
2 -homomorphism h: A — B.

Henceforth, we fix a set of variables X := (X, X;). We
denote by Tx (X); the set of MV-terms over the variables in
X1 and by Tx (X); the set of terms of the form 7(¢1, ..., 1,),
where 7 is an MV-term and each #; is either an MV-term
in the variables X5 or one of the form s(r) for t € Tx (X);.
The S-sorted set of XZ-terms in X is given by Ts (X) =
(Ts(X)1,Ts(X)2). This set can be naturally endowed with
the structure of a X-algebra.

Definition 11 A X-valuation in an equational state A is
simply an S-function from X into A. Any X-valuation v
extends, in a unique way, to a X-homomorphism from
Tx (X) into A, which we still indicate with v.
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A X-equation is a pair of terms (¢, ¢’) either both belong-
ing to Tx (X); or to Ts (X)>. We indicate equations just by
writing ¢ = ¢'.

Definition 12 Let A be an equational state, t = t’ be a
2-equation and let X be the two-sorted set of variables
appearing in t ort’. The equational state A validates t = t’
if for any X-valuation v: X — A the equality v(t) = v(t’)
holds in A.

In the general setting of many-sorted algebras extra
care is needed when defining the notion of equations and
validity, as sorts can be empty. However, in the case of
equational states, both sorts must be non-empty because
there is a constant symbol for each sort. Therefore, we can
safely use the standard definitions. We refer to [9] for a
detailed discussion on equations in the general many-sorted
setting. Finally, notice that by (the many-sorted version of)
Birkhoff’s Variety Theorem [9, Corollary 3.14] the class of
equational states is a variety of many-sorted algebras.

Letus fix a one-sorted set of variables Y. In this section we
write LT for the Lindenbaum-Tarski algebra of L. generated
by Y and LTy for the set obtained from LT as in Theorem 8.
We also write ESy for (LT, LTy). In this section we prove
that ESy is the free equational state generated by (Y, 0).

Lemma 13 The MV-algebra generated by so(LT) is LTy,
in symbols: LTy = (sg(LT))pmv .

Proof With the same notation of Theorem 8, if [y] € LT,
then O(y)* belongs to B and consequently, [O(i)*] belongs
to LTg. Hence, {so(LT))pv C LTg.

Conversely, assume [@*] € LTg. By the definition of LT,
@ is amodal formula, so there is an MV-term 7 and a n-tuple
@1, .-,pn € EFm such that @ = 7(0O(¢;),...,0(pn)).
Therefore, @* = v(Q(e1)",...,0(¢,)*). Then,

[@7] = [v(O(¢1)", ..., O(pn))]
=7([0(e1)’], ..., [B(en)']D
=1(sa([e1]ir), - sa(lenlir))-

Therefore [@*] € (sg(LT))pv. Consequently, LTy C
a(lTM)mv. u

Lemma 14 Let I be a set of Lukasiewicz formulas, A an
MV-algebra and v an A-valuation that validates I'. The
Sfunction h: LTr(Var) — A defined by h([¢]r) = v(g) is
an MV-homomorphism.

Proof For brevity, let us denote the elements of LT (Var)
by [¢]r. We first show that & is well defined. Let ¢ and
¢ be formulas such that [¢]r [¢]r. It follows that
I' +y, ¢ & Y, and since by hypothesis v(I") = 14, we have
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v(p & ) = 14. Notice that v(¢ & ) = 14 if and only
if v(¢) = v(¥). Therefore h([¢]r) = h([¥]r) and & is
well defined. Finally, 4 is a homomorphism because v is a
valuation and therefore it preserves all MV-operations. W

Theorem 15 Let Y be a set of variables. Then ESy is the
[free equational state generated by the S-sorted set (Y, 0).

Proof Since Y generates LT, it follows by Lemma 13 that
ESy is generated by (Y, 0). Hence, to settle the claim,
we prove that for every function f = (f, f2): (Y,0) —
(A,B) there exists exactly one X-homomorphism /& =
(A1, hy): (LT,LTg) — (A, B) that extends f. It is easy to
observe that there is exactly one h; that extends f;, and
every homomorphism from LT to B extends f5. It remains
to be proved that there is a unique homomorphism %, such
that 1 (sa([¢]ir)) = s(hi([¢]ir)). Since ((A,B), hy) is
an S-sorted model, it validates (FPL1)—(FPL3) and every
formula of the type O(¢), for k¢, ¢. Moreover, it is easy to
prove that a valuation of @ is also a valuation of @*. Then
we have a valuation that verifies FPL*. We apply Lemma
14 with I" := FPL" to obtain a homomorphism 4, such that
hy(sa([elir) = ha([O(e)*]) = s(hi([¢]ir).

Finally, we need to verify that 4, is unique with this pro-
priety. Let 4’ be a homomorphism such that s(&; ([¢]7)) =
W (sg([¢]ir)). We prove by induction on the complexity of
@ that hy(®@) = h' (D).

If @ = 0(yp), then

ha([B(e)™])

ha(sa([¢]ir))
s(hi([e]lir))
= ' (sa([¢]ir))
= ([o(e)]).

If® =7(0(¢1),...,0(pn)), then
hao([@7]) = T(ha([O(p1)"]),

=7(h' ([B(e)"D),
= n'([®"]).

- a([O(en)'D)
S ([Een) D)

Therefore h = h’. ]
To conclude this paper, we study the relations between 2 -
equations and the formulas of FP(L, L.). We have proved in
Theorem 15 that ESy is the free equational state generated
by (Y, 0). Thus ESy is isomorphic to the equational state
of equivalence classes of terms in Tz ((¥, 0)) because free
equational states are unique up to isomorphism. Moreover,
it is easy to see that an S-sorted model ((A, B), v1) can be
seen as a (Y, 0)-valuation v = (vy,vg): (Y,0) — (A,B).
Thus, every formula @ € PFm can be translated in
a X-term @'. The translation is obtained by structural
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induction starting from an assignment that maps Varin Y.
In particular, formulas in EFm are translated in MV-terms
in which the equational state-function s does not occur. If
@(O(ey), .- .,0(py)) is a formula in MFm, its translation
has the form 7(s(¢;),...,s(t,)), where 7,tq,...,t, are
MV-terms. We always denote the translation of a formula
& € PFm by @'

Corollary 16 Let @ be a formula and @~ be the equation
@' =1, where 1 is either 14 or 1 according to the sort of
@. The following are equivalent:

1. vpper) D
2. @7 isvalid in any equational state.

Proof It is a consequence of Theorem 8 and the definition
of validity of an equation. |

Remark 17 (From terms to formulas) As we mentioned
before, any formula in PFm can be translated in a X -term.
Moreover, if t is a X-term of the first sort, there exists
¢ € EFm such that the translation of t is ¢. This follows
Jfrom the remark that terms in the first sort are MV-terms
and formulas in EFm are tukasiewicz formulas.

However, a term like x & s(y) —where x is a variable
in the second sort and y is a variable in the first sort—
does not have a translation in FP(L, £). Consequently, only
some of the X-terms in the second sort can be viewed as a
valuation v: (Y,0) — ESy. When 7 is a term that can be
translated in a formula, we denote its translation by @ .

Remark 17 yields that equational states are not the equiv-
alent algebraic semantics (in the classical sense of Blok
and Pigozzi) of FP(L,L). Loosely speaking, an equivalent
algebraic semantics needs also an inverse translation from
terms to formulas, which satisfies an analogous of Corollary
16.

Since not every term can be translated into a formula,
we restrict to a subset of T (X). For any S-sorted set of
variables X, we define Trs(X) = (Trs(X)1, Trs(X)2) as
follows:

* (Tes(X) = (Ts (X))

* (Trs(X))2 is the set of terms of the form
7(s(ty),...,s(ty)), for 7 term in Lukasiewicz logic,
andtq,...1, € TQ(X)L

By the definitions of PFm and Trs(X), it is straightfor-
ward to see that belonging to Trs(X) is a necessary and
sufficient condition for a term to have a translation in a
formula of FP(L,L).

Definition 18 An equational state (A,B) such that
(s(A))pmv = B is called full state. We write FS for the
class of all full states.
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Theorem 19 Let 7 € Tps(X) and let 7= be the equation
T =1, where 1 is either 14 or 1 g according to the sort of T.
The following are equivalent:

1. vppe ) Pos

2. 77 is valid in any full state.

Proof Preliminary notice that by Remark 17 we can restrict
our attention to terms in Trgs(X)>. Moreover, by the defini-
tion of Trg(X), we can translate such terms into formulas.
One direction follows from Corollary 16. To prove the other
implication, suppose that ¥gp(t. 1) @-. Then by Theorem 8,
the inequality [@] # [T] holds in ESx. By Lemma 13,
ESx € FS, consequently 7 = 1 is not valid in FS, settling
the claim. |
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