IMPRECISION IN MARTINGALE-THEORETIC PREQUENTIAL RANDOMNESS

Appendix A. Technical Lemmas and Proofs

Lemma 18 For any non-degenerate prequential situation
v ={(i,w) € (F XX)* and any non-negative superfarthin-
gale F € F, F(v) < 1" __1 F(D).

k=1 (max ¢ )"k (1-min ¢z ) ="k

Proof Consider any non-degenerate prequential situation
v, x € (F XxX)".If x =1then 0 < max I, < 1, and

F(vIx)
< [maxIrF(vI,1)+ (1 —maxl,)F(vI,O)]
max I,
— 1
< Ep (F(vl. ")) < F(v).
max [, max I,

Ifx=0then0 < min/, <1, and

F(vl,x)

< —— [min I, F(vI,1) + (1 = min [,) F (v1,0)]
1 — min I,

<—— E/(F I,) < —F(v).

~ 1 -min/, 1 (FOIr) 1 —min I, )

Above, the first, second and third inequalities follow
from the non-negativity of F, Equation (1) and the su-
perfarthmga]e property, respectively. Hence, F(vI,x) <
F(v). A simple induction argument
|

(max I, )X(l —min 7,.)1-%
now leads to the desired result.

Lemma 19 Forevery non-degenerate computable forecast-
ing system ¢ € @ there’s a recursive natural map C: X" —
N such that for every test supermartingale T € T(¢) it
holds that T(w) < C(w) forallw € I*.

Proof Define the map C’': £* — R by letting C’(w) =

[wl 1 £ PR
[ O LT T T forallw € &*. This map

isreal-valued, since 0 < g and ¢ < 1 by the non-degeneracy
of ¢. Since ¢ is computable, C” is computable as well. Let’s
now prove that 7(w) < C’(w) for all w € X*. Fix any
situation w € " and any x € &'. If x = 1, then

T(wx) < _( )[cp(W)T(Wl) +(1 —<,o(w))T(w0)]
< —— _( ) Eyw)(T(w+) < Zor )T(W)
If x =0, then
T(wx) < _ [f(w)T(wl) +(1- f(W))T(WO)]
1—(w)
1 — 1
< 1_—8(W)Etp(w)(T(W ) < I_—E(W)T(W).
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Above, the first, second and third inequalities follow from the
non-negativity of 7', Equation (1) and the supermartingale
property, respectively. Hence,

1
B0 (1= )

T(wx) < T(w).

A simple induction argument now shows thatindeed T (w) <
C’'(w) forallw e .

Since C’ is a computable real map, there’s a recursive
rational map g : £*xXNg — Qsuchthat |C'(w)—g(w,n)| <
27" forallw € L*andn € Ny. Let C: £* — N be defined
as C(w) = max{l,[g(w,1) + 1]} for all w € I*, with
[¢]: R — Z the ceiling function and Z the set of integer
numbers. It’s easy to see that C is natural-valued, positive
and recursive. Furthermore, we have that T(w) < C’(w) <
qgw, 1)+ 12 < C(w) forallw € I*. |

Lemma 20 There’s a single algorithm that, upon the input
of a code for a lower semicomputable map F: (F XX)* —
[0, +o0], outputs a code for a lower semicomputable test
superfarthingale F’ € F such that

(i) F’(v) = 0 for all degenerate prequential situations
vEe(SFH XX

(ii) for any rational forecasting system ¢, € D,
F'(or[w],w) = F(or[w],w) for all w € X* for
which (¢, [w], w) is non-degenerate, provided that
the map F(@,[¢],*): * — R is a positive test
supermartingale for ¢,.

Proof Start from a code for the map F: (f X )" —
[0, +00] that is lower semicomputable. By Corollary 6, we
can invoke a single algorithm that outputs a code ¢: (% X
) xNg — Q for F such that g(v,») / F(v) and
qv,n) < glv,n+1)forallv € (F XxZ)" and n € Ny.
We’ll now use the code g to construct a code ¢’ for a lower
semicomputable test superfarthingale F’ € F that satisfies
the requirements of the lemma.

Letq’: (7 X2)**xNy — Qbedefined by ¢’ (O,n) =1
and

g’ (vlyx,n) =
max(A(v, I, x,n) U{0}) if vI,x is non-degenerate
0 if vI,.x is degenerate,

forallv = (i,w) € (SF- X X)", I, € F,x € L and n € Ny,
where A: (F XX)* X I XL xNg — {Q € Q: |Q] < oo}
is defined by

AW, Ir,x,n) = {qg(vl,x,m) € Q: 0 <m < n,
0 < g(vl,-,m) and
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Er (gl m)) < ¢'(v,n)}. (6)

By construction, since the map A outputs finite sequences
of rationals, the map ¢’ is well-defined, non-negative and
rational. It’s not too difficult to see that the map A, and
therefore also the map ¢’, is recursive.

The map ¢’ is non-decreasing in its second argument,
as we now show by induction on its first argument. We
start by observing that ¢’(0,n) < ¢’(0,n + 1) for all
n € Np. For the induction step, fix any v (i,w) €
(I x ), I, € S, x € X and n € Ny, and assume that
q'(v,n) < ¢q’(v,n+1). We then have to show that also
q'(vl,x,n) < ¢’ (vl,x,n+1). This is trivial when vI,x is
degenerate; when v/, x is non-degenerate, it follows readily
from the inequality A(v, I,-,x,n) € A(v, I,,x,n+1), which
is itself immediate from Equation (6).

For any n € Ny, the map ¢’(s,n): (F X XL)* —» R
is a test superfarthingale. To prove this, we may clearly
concentrate on the superfarthingale condition. Fix any
v € (S x ), I, € S and n € Ny, and infer from
Equation (6) that A(v,I,,1,n) = 0  A(v,1,,0,n) = 0,
so we only need to consider two cases. If A(v, I, 1,n) =
A, I.,0,n) =0, then ¢’ (vI, -,n) = 0, and therefore trivi-
ally E; (¢’(vI,-,n)) = E;(0) = 0 < ¢'(v,n), where
the second equality follows from C1. Otherwise, because
the map ¢ is increasing in its second argument, there’s
anm € {0,...,n} such that E; (q(vI, -,m)) < ¢’ (v,n),
with g(vI, -,m) = max(A(v, I, -,n) U{0}) = ¢’ (vl -, n),
where the last inequality takes into account that there may
be some x € & such that vI,.x is degenerate. Hence, indeed,
in this case also

E, (¢’ Wl -on) < By (gl -om)) < ¢ (v.n).

As a final preliminary step, we infer from Lemma 18
that for every (non-degenerate) prequential situation v €
(S XZ)* there’s some real B, € R suchthatq’(v,n) < B,
for all n € Nj.

With this set-up phase completed, let F’ be defined as
q’'(v,*) / F'(v)forallv € (F-XZ)*;note that F’(O) = 1.
This map is well-defined, real-valued, non-negative and
lower semicomputable due to the non-decreasingness,
boundedness, non-negativity and recursiveness of ¢’ re-
spectively, so we only need to check the superfarthin-
gale property explicitly in order to conclude that F’ is
a lower semicomputable test superfarthingale. To this
end, fix any v € (S X )" and I, € 5. If we recall
that the map g(e,n): (F X L)* — R is a test super-
farthingale for every n € Ny, we immediately infer from
C6 and the real-valuedness of F’ that EI, (F'(vl, ")) =
lim, e Ef, (¢’ (v, -, 1)) < lim, e g’ (v,n) = F'(v).

We are done if we can show that F’ satisfies the con-
ditions (i) and (ii). For (i), fix any degenerate prequential
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situation v € (% X 2)* and note that then ¢’ (v, n) = 0 for
all n € Ny by construction. Hence, indeed, F’(v) = 0.

For (ii), fix any rational forecasting system ¢, € @,,
consider the map 7: X* — R defined by T(w) :=
F(pr[w],w) for all w € X, and assume that T is a
positive test supermartingale. We must now show that
F'(¢,[w],w) = T(w) for all w € & for which the pre-
quential situation (¢, [w], w) is non-degenerate.

By construction, F’ (¢, [w], w) < F(gp,[w],w) =T(w)
for all w € '*. Assume towards contradiction that there’s
some w € & for which (¢, [w], w) is non-degenerate and
F’(¢,[w],w) < T(w), implying that there’s some € > 0
such that ¢’ ((¢, [W], W), n)+e < T(w) foralln € Ny. We’ll
use an induction argument to show that this is impossible.

Since by assumption g ((¢, [W],w),*) / T(w) > 0 and
q((er[w], w),n) < q((¢r[w],w),n+1) for all n € Ny,
there are €, €1,...,€w € R and ng,ny,...,055 € Ny
such that

O<e<e < - <em<e ()
T(wie) < q((@r[Wrel,Wie),ne) + €0 (8)
0 < q((@r [WirlerWin), Wik ), nixs1) (9)
q((@r [Wikler(Wik), Wik ), 1) + € < T(Wik -)

(10)
forallk € {0,1,...,|w|—1}and € € {0, 1,...,|w|}. The
argument starts with ¢ = |w| and k := |w| — 1, finding

€¢ such that (7) is satisfied, and finding ny.; such that (8)
and (9) are satisfied. We then move to £ = |w| — 1 and
k := |w| -2, find €, such that (7) and (10) are satisfied, and
find ng41 such that (8) and (9) are satisfied. Andsoon...;
these conditions are depicted below for a situation w € &*
for which |[w| = 5.

T(lef)
31 q((er[Wrel, Wie)s ne)
2Ak
1
0 1 2 3 4 5 ¢

Now, let N := max{ng, n1, .. ., nyy|}. To start the induction
argument, observe that, trivially, ¢’ (0, N) = 1 > T(0O) — €.
For the induction step, we fix any k € {0, 1,...,|w| -1}
and assume that g’ ((¢r [Wi:k], Wi:k), N) > T(Wik) — k.
It then follows that

E g, o) (000 [W14]0r (W1:0), W1k ), 1)
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(10),C5 — .
< Eg ) (TWrk ) — €)
C4—= _
= Eg, w0 (T(Wik-) — €k
<ST(Wik) — €k
< g ((@r[Wik], Wik), N),

where the penultimate inequality follows form the assump-
tion that 7 is a supermartingale, and the last inequality from
the induction hypothesis. Hence, by Equations (6) and (9),

qU(@r [Wiks1], Wiiks1), Rik1) €
A((er Wikl Wik)s or (Wiik), Wiet, N),

which implies that

g ((er [Wik+1], Wike1), N)
> max A((¢r [Wikl, Wik)s @r (Wiik), Wis1, N)
> q((@r [Wike1]s Wiike1)s k1)
®)
> T(Wik+1) = €k+1-
Repeating this argument until we reach k = |[w| — 1, we
eventually find that ¢’ ((¢,[W],W),N) > T(W) — €| >
T(w) — €, which is the desired contradiction. ]

The following result is now immediate.

Corollary 21 There’s a single algorithm that, upon the
input of a code for a lower semicomputable map F : (%, X
Z)* — [0, +00], outputs a code for a lower semicomputable
test superfarthingale F’ € F such that, for all prequential
situations v € (I X )",

1 F'(v)=0
@ii) F’(v) = F(v) if v is non-degenerate and F is a
positive test superfarthingale.

if v is degenerate;

Proof of Theorem 17. We’ll give a proof for the first
inequality, the proof for the second one is similar. Assume
towards contradiction that there’s some real number e, with
0 < € < 1, such that

2o SWis tea1) [Wie1 — min ggep ]

i
Yico S(Wiks trr1)

(F X X)* — R be defined by

lim inf

n—oo

< —€.

Let the map F =

lvl-1

€ . -
l_[ [1= =Siks ike) [Weat — minige] ]
k=0 3

F(v) =

forallv = (i,w) € (S, x X)".

We’ll now show in a number of steps that F is a
lower semicomputable test superfarthingale for which
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limsup,,_,,, F(vi.n) = oo, implying that v can’t be game-
random.

Trivially, F(O) = 1,and also F > 0, sincee < 1, |S| < 1
and |x —min /.| < 1 forall x € & and I, € .%,. Moreover,
forany v € (F X Z)* and I, € .%,, we have that

E,(FOvl, ) G FOWE, (1 + §S(v, I,)[min1, — X])

R [1 + §S(v, 1,)E;, (min I, — X)]

< Fo) [1 + §S(V, 1) (min 1, +E,,(-X))]

D po).

so we find that F is a test superfarthingale. From the recurs-
iveness of S and the rational-valuedness of the forecasts
I, € %, and outcomes x € I it follows that F is recursive,
and therefore lower semicomputable as well. We conclude
that F' is a lower semicomputable test superfarthingale.

By assumption, for any m, M € Ny, there’s some N > m
such that ZL\I:B] S(vi:k, k1) = M and

SNl S(Wiiks o) [Wia1 — Min 1]
-
S Sk the)

< —€. an

This will allow us to obtain a lower bound for F(v;.n).
Since 1 - 5S8(v, I;)[x—minl,] > l/2forallv € (J, X Z)*,
I, € S and x € X, it holds that F(v.n) = exp(K), with

N-

1ﬂ(1 - —S(Ul do> tew) [@ra1 = mlnLk+1])
k=0

Since In(1 +x) > x — x2 for all x > -1/2, we infer that

=z

-1

K>- S(W1k» tka1) [Wie1 — MinLgy1]

W m
~
i
[
b4

-1

Sk tker1)? [@ks1 — min ggegp |2
0

|
ol M,
T

and, also taking into account Equation (11), §> = § and

[wrer —min g1 ]? < 1,
2 N-1 2 N-1

€ €
> 3 Z SWik, tes1) — — Z S(V1:ks tk1)

k=0

= — S(V1:ks k1)
=0

Hence,

2 N-1

2e 2€?
F(vin) 2 exp(? Z S(V1:ks Lk+1)) > exp(TM),
k=0
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After recalling that the inequality above holds for any
M e Ny and for arbitrarily large well-chosen N € Ny, we
conclude that lim sup,,_,, F(vi.) = co. |
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