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Appendix A. Technical Lemmas and Proofs

Lemma 18 For any non-degenerate prequential situation

E = (8,F) 2 (�A ⇥⌫)⇤ and any non-negative superfarthin-

gale � 2 F , � (E)  Œ |F |
:=1

1
(max ]: )F: (1�min ]: )1�F:

� (⇤).

Proof Consider any non-degenerate prequential situation
E�AG 2 (�A ⇥⌫)⇤. If G = 1 then 0 < max �A  1, and

� (E�AG)

 1
max �A

⇥
max �A� (E�A1) + (1 � max �A )� (E�A0)

⇤

 1
max �A

⇢ �A (� (E�A ·)) 
1

max �A
� (E).

If G = 0 then 0  min �A < 1, and

� (E�AG)

 1
1 � min �A

⇥
min �A� (E�A1) + (1 � min �A )� (E�A0)

⇤

 1
1 � min �A

⇢ �A (� (E�A ·)) 
1

1 � min �A
� (E).

Above, the first, second and third inequalities follow
from the non-negativity of �, Equation (1) and the su-
perfarthingale property, respectively. Hence, � (E�AG) 

1
(max �A )G (1�min �A )1�G � (E). A simple induction argument
now leads to the desired result.

Lemma 19 For every non-degenerate computable forecast-

ing system i 2 Q there’s a recursive natural map⇠ : ⌫⇤ !
N such that for every test supermartingale ) 2 T (i) it

holds that ) (F)  ⇠ (F) for all F 2 ⌫⇤
.

Proof Define the map ⇠0 : ⌫⇤ ! R by letting ⇠0 (F) BŒ |F |
:=1

1
i (F1::�1 )F: (1�i (F1::�1 ) )1�F:

for allF 2 ⌫⇤. This map
is real-valued, since 0 < i and i < 1 by the non-degeneracy
of i. Since i is computable,⇠0 is computable as well. Let’s
now prove that ) (F)  ⇠0 (F) for all F 2 ⌫⇤. Fix any
situation F 2 ⌫⇤ and any G 2 ⌫. If G = 1, then

) (FG)  1
i(F)

⇥
i(F)) (F1) + (1 � i(F))) (F0)

⇤

 1
i(F) ⇢ i (F) () (F ·))  1

i(F)) (F).

If G = 0, then

) (FG)  1
1 � i(F)

⇥
i(F)) (F1) + (1 � i(F))) (F0)

⇤

 1
1 � i(F) ⇢ i (F) () (F ·))  1

1 � i(F)) (F).

Above, the first, second and third inequalities follow from the
non-negativity of ) , Equation (1) and the supermartingale
property, respectively. Hence,

) (FG)  1
i(F)G

�
1 � i(F)

�1�G ) (F).

A simple induction argument now shows that indeed) (F) 
⇠0 (F) for all F 2 ⌫⇤.

Since ⇠0 is a computable real map, there’s a recursive
rational map @ : ⌫⇤⇥N0 ! Q such that |⇠0 (F)�@(F, =) | 
2�= for all F 2 ⌫⇤ and = 2 N0. Let⇠ : ⌫⇤ ! N be defined
as ⇠ (F) B max{1, d@(F, 1) + 1e} for all F 2 ⌫⇤, with
d•e : R ! Z the ceiling function and Z the set of integer
numbers. It’s easy to see that ⇠ is natural-valued, positive
and recursive. Furthermore, we have that ) (F)  ⇠0 (F) 
@(F, 1) + 1/2  ⇠ (F) for all F 2 ⌫⇤.

Lemma 20 There’s a single algorithm that, upon the input

of a code for a lower semicomputable map � : (�A⇥⌫)⇤ !
[0, +1], outputs a code for a lower semicomputable test

superfarthingale �0 2 F such that

(i) �0 (E) = 0 for all degenerate prequential situations

E 2 (�A ⇥⌫)⇤;
(ii) for any rational forecasting system iA 2 QA ,

�0 (iA [F],F) = � (iA [F],F) for all F 2 ⌫⇤
for

which (iA [F],F) is non-degenerate, provided that

the map � (iA [•], •) : ⌫⇤ ! R is a positive test

supermartingale for iA .

Proof Start from a code for the map � : (�A ⇥ ⌫)⇤ !
[0, +1] that is lower semicomputable. By Corollary 6, we
can invoke a single algorithm that outputs a code @ : (�A ⇥
⌫)⇤ ⇥ N0 ! Q for � such that @(E, •) % � (E) and
@(E, =) < @(E, = + 1) for all E 2 (�A ⇥ ⌫)⇤ and = 2 N0.
We’ll now use the code @ to construct a code @0 for a lower
semicomputable test superfarthingale �0 2 F that satisfies
the requirements of the lemma.

Let @0 : (�A ⇥⌫)⇤⇥N0 ! Q be defined by @0 (⇤, =) B 1
and

@0 (E�AG, =) B(
max

�
�(E, �A , G, =) [ {0}

�
if E�AG is non-degenerate

0 if E�AG is degenerate,

for all E = (8,F) 2 (�A ⇥⌫)⇤, �A 2 �A , G 2 ⌫ and = 2 N0,
where � : (�A ⇥⌫)⇤⇥�A ⇥⌫⇥N0 ! {& ✓ Q : |& | < 1}
is defined by

�(E, �A , G, =) B
�
@(E�AG,<) 2 Q : 0  <  =,

0  @(E�A ·,<) and
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⇢ �A (@(E�A ·,<))  @0 (E, =)
 
. (6)

By construction, since the map � outputs finite sequences
of rationals, the map @0 is well-defined, non-negative and
rational. It’s not too difficult to see that the map �, and
therefore also the map @0, is recursive.

The map @0 is non-decreasing in its second argument,
as we now show by induction on its first argument. We
start by observing that @0 (⇤, =)  @0 (⇤, = + 1) for all
= 2 N0. For the induction step, fix any E = (8,F) 2
(�A ⇥⌫)⇤, �A 2 �A , G 2 ⌫ and = 2 N0, and assume that
@0 (E, =)  @0 (E, = + 1). We then have to show that also
@0 (E�AG, =)  @0 (E�AG, = + 1). This is trivial when E�AG is
degenerate; when E�AG is non-degenerate, it follows readily
from the inequality �(E, �A , G, =) ✓ �(E, �A , G, =+1), which
is itself immediate from Equation (6).

For any = 2 N0, the map @0 (•, =) : (�A ⇥ ⌫)⇤ ! R
is a test superfarthingale. To prove this, we may clearly
concentrate on the superfarthingale condition. Fix any
E 2 (�A ⇥ ⌫)⇤, �A 2 �A and = 2 N0, and infer from
Equation (6) that �(E, �A , 1, =) = ; , �(E, �A , 0, =) = ;,
so we only need to consider two cases. If �(E, �A , 1, =) =
�(E, �A , 0, =) = ;, then @0 (E�A ·, =) = 0, and therefore trivi-
ally ⇢ �A (@0 (E�A ·, =)) = ⇢ �A (0) = 0  @0 (E, =), where
the second equality follows from C1. Otherwise, because
the map @ is increasing in its second argument, there’s
an < 2 {0, . . . , =} such that ⇢ �A (@(E�A ·,<))  @0 (E, =),
with @(E�A ·,<) = max(�(E, �A , ·, =) [ {0}) � @0 (E�A ·, =),
where the last inequality takes into account that there may
be some G 2 ⌫ such that E�AG is degenerate. Hence, indeed,
in this case also

⇢ �A (@0 (E�A ·, =))
C5
 ⇢ �A (@(E�A ·,<))  @0 (E, =).

As a final preliminary step, we infer from Lemma 18
that for every (non-degenerate) prequential situation E 2
(�A⇥⌫)⇤ there’s some real ⌫E 2 R such that @0 (E, =)  ⌫E

for all = 2 N0.
With this set-up phase completed, let �0 be defined as

@0 (E, •) % �0 (E) for all E 2 (�A⇥⌫)⇤; note that �0 (⇤) = 1.
This map is well-defined, real-valued, non-negative and
lower semicomputable due to the non-decreasingness,
boundedness, non-negativity and recursiveness of @0 re-
spectively, so we only need to check the superfarthin-
gale property explicitly in order to conclude that �0 is
a lower semicomputable test superfarthingale. To this
end, fix any E 2 (�A ⇥ ⌫)⇤ and �A 2 �A . If we recall
that the map @(•, =) : (�A ⇥ ⌫)⇤ ! R is a test super-
farthingale for every = 2 N0, we immediately infer from
C6 and the real-valuedness of �0 that ⇢ �A (�0 (E�A ·)) =
lim=!1 ⇢ �A (@0 (E�A ·, =))  lim=!1 @0 (E, =) = �0 (E).

We are done if we can show that �0 satisfies the con-
ditions (i) and (ii). For (i), fix any degenerate prequential

situation E 2 (�A ⇥⌫)⇤ and note that then @0 (E, =) = 0 for
all = 2 N0 by construction. Hence, indeed, �0 (E) = 0.

For (ii), fix any rational forecasting system iA 2 QA ,
consider the map ) : ⌫⇤ ! R defined by ) (F) B
� (iA [F],F) for all F 2 ⌫⇤, and assume that ) is a
positive test supermartingale. We must now show that
�0 (iA [F],F) = ) (F) for all F 2 ⌫⇤ for which the pre-
quential situation (iA [F],F) is non-degenerate.

By construction, �0 (iA [F],F)  � (iA [F],F) = ) (F)
for all F 2 ⌫⇤. Assume towards contradiction that there’s
some F 2 ⌫⇤ for which (iA [F],F) is non-degenerate and
�0 (iA [F],F) < ) (F), implying that there’s some n > 0
such that @0 ((iA [F],F), =)+n < ) (F) for all = 2 N0. We’ll
use an induction argument to show that this is impossible.

Since by assumption @((iA [F],F), •) % ) (F) > 0 and
@((iA [F],F), =) < @((iA [F],F), = + 1) for all = 2 N0,
there are n0, n1, . . . , n |F | 2 R and =0, =1, . . . , = |F | 2 N0
such that

0 < n0 < n1 < · · · < n |F | < n (7)
) (F1:✓) < @((iA [F1:✓],F1:✓), =✓) + n✓ (8)

0  @((iA [F1::]iA (F1::),F1:: ·), =:+1) (9)
@((iA [F1::]iA (F1::),F1:: ·), =:+1) + n: < ) (F1:: ·)

(10)

for all : 2 {0, 1, . . . , |F | � 1} and ✓ 2 {0, 1, . . . , |F |}. The
argument starts with ✓ B |F | and : B |F | � 1, finding
n✓ such that (7) is satisfied, and finding =:+1 such that (8)
and (9) are satisfied. We then move to ✓ B |F | � 1 and
: B |F | � 2, find n✓ such that (7) and (10) are satisfied, and
find =:+1 such that (8) and (9) are satisfied. And so on . . . ;
these conditions are depicted below for a situation F 2 ⌫⇤

for which |F | = 5.

✓1 2 3 4 5

1

2

3

0

n0

n1
n2

n3

n4

n5

) (F1:✓ )
@((iA [F1:✓ ],F1:✓ ), =✓ )

Now, let # B max{=0, =1, . . . , = |F | }. To start the induction
argument, observe that, trivially, @0 (⇤, #) = 1 > ) (⇤) � n0.
For the induction step, we fix any : 2 {0, 1, . . . , |F | � 1}
and assume that @0 ((iA [F1::],F1::), #) > ) (F1::) � n: .
It then follows that

⇢ iA (F1:: )
�
@((iA [F1::]iA (F1::),F1:: ·), =:+1)

�

12
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(10),C5
 ⇢ iA (F1:: ) () (F1:: ·) � n:)
C4= ⇢ iA (F1:: ) () (F1:: ·)) � n:
 ) (F1::) � n:
 @0 ((iA [F1::],F1::), #),

where the penultimate inequality follows form the assump-
tion that ) is a supermartingale, and the last inequality from
the induction hypothesis. Hence, by Equations (6) and (9),

@((iA [F1::+1],F1::+1), =:+1) 2
�((iA [F1::],F1::), iA (F1::),F:+1, #),

which implies that

@0 ((iA [F1::+1],F1::+1), #)
� max �((iA [F1::],F1::), iA (F1::),F:+1, #)
� @((iA [F1::+1],F1::+1), =:+1)
(8)
> ) (F1::+1) � n:+1.

Repeating this argument until we reach : = |F | � 1, we
eventually find that @0 ((iA [F],F), #) > ) (F) � n |F | >
) (F) � n , which is the desired contradiction.

The following result is now immediate.

Corollary 21 There’s a single algorithm that, upon the

input of a code for a lower semicomputable map � : (�A ⇥
⌫)⇤ ! [0, +1], outputs a code for a lower semicomputable

test superfarthingale �0 2 F such that, for all prequential

situations E 2 (�A ⇥⌫)⇤,

(i) �0 (E) = 0 if E is degenerate;

(ii) �0 (E) = � (E) if E is non-degenerate and � is a

positive test superfarthingale.

Proof of Theorem 17. We’ll give a proof for the first
inequality, the proof for the second one is similar. Assume
towards contradiction that there’s some real number n , with
0 < n < 1, such that

lim inf
=!1

Õ=�1
:=0 ((h1:: , ]:+1) [l:+1 � min ]:+1]Õ=�1

:=0 ((h1:: , ]:+1)
< �n .

Let the map � B (�A ⇥⌫)⇤ ! R be defined by

� (E) B
|E |�1÷
:=0

⇥
1 � n

3
((E1:: , 8:+1) [F:+1 � min 8:+1]

⇤

for all E = (8,F) 2 (�A ⇥⌫)⇤.

We’ll now show in a number of steps that � is a
lower semicomputable test superfarthingale for which

lim sup=!1 � (h1:=) = 1, implying that h can’t be game-
random.

Trivially, � (⇤) = 1, and also � � 0, since n < 1, |( |  1
and |G � min �A |  1 for all G 2 ⌫ and �A 2 �A . Moreover,
for any E 2 (�A ⇥⌫)⇤ and �A 2 �A , we have that

⇢ �A (� (E�A ·))
C2= � (E)⇢ �A

⇣
1 + n

3
((E, �A ) [min �A � -]

⌘
C2,C4
= � (E)

h
1 + n

3
((E, �A )⇢ �A (min �A � -)

i
C4= � (E)

h
1 + n

3
((E, �A ) (min �A + ⇢ �A (�-))

i
(2)
= � (E),

so we find that � is a test superfarthingale. From the recurs-
iveness of ( and the rational-valuedness of the forecasts
�A 2 �A and outcomes G 2 ⌫ it follows that � is recursive,
and therefore lower semicomputable as well. We conclude
that � is a lower semicomputable test superfarthingale.

By assumption, for any <," 2 N0, there’s some # > <
such that

Õ#�1
:=0 ((h1:: , ]:+1) � " and

Õ#�1
:=0 ((h1:: , ]:+1) [l:+1 � min ]:+1]Õ#�1

:=0 ((h1:: , ]:+1)
< �n . (11)

This will allow us to obtain a lower bound for � (h1:# ).
Since 1� n

3 ((E, �A ) [G�min �A ] > 1/2 for all E 2 (�A ⇥⌫)⇤,
�A 2 �A and G 2 ⌫, it holds that � (h1:# ) = exp( ), with

 B
#�1’
:=0

ln
⇣
1 � n

3
((h1:: , ]:+1) [l:+1 � min ]:+1]

⌘
.

Since ln(1 + G) � G � G2 for all G > �1/2, we infer that

 � � n
3

#�1’
:=0

((h1:: , ]:+1) [l:+1 � min ]:+1]

� n2

9

#�1’
:=0

((h1:: , ]:+1)2 [l:+1 � min ]:+1]2

and, also taking into account Equation (11), (2 = ( and
[l:+1 � min ]:+1]2  1,

� n2

3

#�1’
:=0

((h1:: , ]:+1) �
n2

9

#�1’
:=0

((h1:: , ]:+1)

=
2n2

9

#�1’
:=0

((h1:: , ]:+1).

Hence,

� (h1:# ) � exp
✓
2n2

9

#�1’
:=0

((h1:: , ]:+1)
◆
� exp

✓
2n2

9
"

◆
.
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After recalling that the inequality above holds for any
" 2 N0 and for arbitrarily large well-chosen # 2 N0, we
conclude that lim sup=!1 � (h1:=) = 1.
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