
Proceedings of Machine Learning Research 215:426–437, 2023 ISIPTA 2023

On Distinct Belief Functions in the Dempster-Shafer Theory

Prakash P. Shenoy pshenoy@ku.edu
University of Kansas School of Business, Lawrence, KS 66045 USA

Abstract
Dempster’s combination rule is the centerpiece of the
Dempster-Shafer (D-S) theory of belief functions. In
practice, Dempster’s combination rule should only be
applied to combine two distinct belief functions (in
the belief function literature, distinct belief functions
are also called independent belief functions). So, the
question arises: what constitutes distinct belief func-
tions? We have an answer in Dempster’s multi-valued
functions semantics for distinct belief functions. The
probability functions on the two spaces associated with
the multi-valued functions should be independent. In
practice, however, we don’t always associate a multi-
valued function with belief functions in a model. In this
article, we discuss the notion of distinct belief func-
tions in graphical models, both directed and undirected.
The idea of distinct belief functions corresponds to no
double-counting of non-idempotent knowledge seman-
tics of conditional independence. Although we discuss
the notion of distinct belief functions in the context of
the DS theory, the discussion is valid more broadly to
many uncertainty calculi, including probability theory,
possibility theory, and Spohn’s epistemic belief theory.
Keywords: distinct belief functions, Dempster-Shafer
belief function theory, belief-function directed graphi-
cal model, belief-function undirected graphical model

1. Introduction
The centerpiece of the Dempster-Shafer (DS) theory of
belief functions is Dempster’s combination rule [6, 22].
In practice, Dempster’s combination rule should only be
applied to combine two “distinct” belief functions. So, the
question arises: what constitutes distinct belief functions1?
We have an answer in Dempster [6]’s multi-valued functions
semantics for belief functions. The probability functions
on the two spaces that are the domains of the multi-valued
functions (of the two belief functions) should be indepen-
dent. In practice, however, we don’t always associate a
multi-valued function with every belief function in a belief
function model. In this article, we discuss the notion of dis-

1The concept of distinct belief functions is also referred to as indepen-
dent belief functions in the literature. The terminology of distinct belief
functions is due to Smets [30]. As independence is usually associated with
variables and not functions, we prefer the terminology of distinct belief
functions.

tinct belief functions in graphical models, both directed and
undirected. The idea of distinct belief functions corresponds
to no double-counting of non-idempotent knowledge seman-
tics of conditional independence [26]. Although we discuss
the notion of distinct belief functions in the context of the
DS theory, the discussion is valid more broadly to many
uncertainty calculi, including probability theory, possibility
theory, and Spohn’s epistemic belief theory.
One of the earliest to discuss the notion of distinct belief

functions is Shafer [23]2. There is no formal definition of
distinct belief functions, and the discussion is about combin-
ing non-distinct belief functions. Shafer advocates sorting
out the common knowledge among two non-distinct pieces
of evidence by refining the state spaces of the pieces instead
of seeking generalizations of Dempster’s combination rule
to combine non-distinct evidence.
Smets [30] discusses Dempster’s combination rule as a

(matrix) multiplication of two matrices called specializa-
tions. Given a specialization representation of a piece of
evidence, say a basic probability assignment (BPA) 𝑚𝐴

for 𝑋 , he defines a canonical factorization of the matrix
𝑚𝐴 into 𝑄𝑚 · 𝛥𝐴 · 𝑄−1

𝑚 , where 𝑄𝑚 is a matrix consisting
of 0’s and 1’s that converts a BPA into a corresponding
commonality function (CF) 𝑄𝑚, and 𝛥𝐴 is a diagonal ma-
trix whose values are the CF values of 𝑚𝐴. If the matrix
representations of two pieces of evidence, say 𝛥𝐴 and 𝛥𝐵,
includes a common matrix 𝑚0 that is vacuous, then 𝑚𝐴

and 𝑚𝐵 are defined to be distinct. 𝑚0 is referred to as a
correlation matrix. If 𝑚0 is not vacuous, then 𝑚𝐴 and 𝑚𝐵

are non-distinct. The idea of distinct evidence is the same as
in [23]. He writes: “The problem of recognizing distinctness
become essentially a problem of acknowledging that there
is a vacuous correlation . . . It can not be achieved by only
comparing 𝑚𝐴 and 𝑚𝐵.”
Several studies propose to deal with combining non-

distinct evidence by modifying Dempster’s combination
rule by making some assumptions about the nature of the
non-distinctness of the pieces of evidence being combined
[33, 8, 19, 7, 20, 9, 4]. Like Shafer, we agree that sorting
the dependence among pieces of evidence is a better strat-
egy for combining non-distinct evidence than modifying
Dempster’s rule. Otherwise, we would need a meta-rule to

2[23] was published (almost verbatim) as [24]
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decide which variant of Dempster’s rule should be used to
combine non-distinct evidence.
The main goal of this article is to discuss the notion

of distinct belief functions, especially in belief-function
graphical models, both directed and undirected. We start
with the definition stated by Dempster [6] in his multi-
valued semantics of a BPA.We provide heuristics suggested
by Dempster’s definition for determining whether the belief
functions in a graphical model are distinct. Two or more
belief functions are distinct if there is no double-counting
of non-idempotent knowledge. In graphical models, this
implies that the set of belief functions in a graphical model
are distinct only if the conditional independence conditions
implied by the factorization of the joint belief function are
valid.
An outline of the remainder of the paper is as follows.

Section 2 reviews the basics of D-S theory, including ba-
sic probability assignments and commonality functions,
marginalization and Dempster’s combination rule, condi-
tional belief functions, the removal operator, conditional
independence relations, and graphical models. Section 3 has
Dempster [6]’s formal definition and a discussion of distinct
belief functions in the context of directed and undirected
belief function models. Finally, Section 4 concludes with a
summary and comments on further work.

2. Basics of D-S theory of Belief Functions
This section sketches the basics of the D-S theory of belief
functions [6, 22].

Representations We represent knowledge using basic
probability assignments, belief functions, plausibility func-
tions, and commonality functions. Here, we only define
basic probability assignments and commonality functions.

Notation LetV denote the set of all variables. Let 𝑋 , 𝑌 ,
𝑍 , etc., denote elements of V. Let 𝑟, 𝑠, 𝑡, 𝑣, etc., denote
subsets of V. Consider 𝑠 ⊆ V. For each 𝑋 ∈ 𝑠, let 𝛺𝑋

denote its finite state space, and let 𝛺𝑠 = ×𝑋 ∈𝑠𝛺𝑋 denote
the state space of 𝑠. Let 2𝛺𝑠 denote the set of all subsets of
𝛺𝑠 . ∅ denotes the empty set.

Basic Probability Assignment A basic probability as-
signment (BPA) 𝑚 for 𝑠 is a function 𝑚 : 2𝛺𝑠 → [0, 1]
such that

𝑚(∅) = 0, and (1)∑︁
∅≠a⊆𝛺𝑠

𝑚(a) = 1. (2)

𝑚 represents some knowledge about the variables in 𝑠, and
we say the domain of𝑚 is 𝑠.𝑚(a) is the probability assigned
to the proposition represented by subset a of 𝛺𝑠. Subsets
a such that 𝑚(a) > 0 are called focal elements of 𝑚. If all

the focal elements of 𝑚 are singleton subsets of 𝛺𝑠, we
say 𝑚 is Bayesian. There is a 1-1 correspondence between
a Bayesian BPA 𝑚 and a corresponding probability mass
function (PMF) 𝑃 for 𝑎 such that 𝑃(𝑎) = 𝑚({𝑎}) for all
𝑎 ∈ 𝛺𝑠. If 𝑚 has only one focal element (with probability
1), we say 𝑚 is deterministic3. If the focal element of a
deterministic BPA is 𝛺𝑠 , we say 𝑚 is vacuous. Sometimes,
we denote the vacuous BPA for 𝑠 by 𝜄𝑠 .

Commonality Function The commonality function (CF)
𝑄𝑚 corresponding to BPA𝑚 for 𝑠 is such that for all a ⊆ 𝛺𝑠 ,

𝑄𝑚 (a) =
∑︁
b⊇a

𝑚(b). (3)

Some comments about the definition of 𝑄𝑚 in Eq. (3):

1. 𝑄𝑚 (a) represents the probability mass that could move
to every state in a.

2. It follows from Eq. (3) that 0 ≤ 𝑄𝑚 (a) ≤ 1.

3. It follows from Eqs. (1)–(2) that 𝑄𝑚 (∅) = 1.

4. CFs are non-increasing in the sense that if a ⊆ b, then
𝑄(a) ≥ 𝑄(b).

5. A CF has the same information as in a BPA. Given a
CF𝑄 for 𝑠, let 𝑚𝑄 denote the corresponding BPA. We
can recover 𝑚𝑄 from 𝑄 as follows [22].

𝑚𝑄 (a) =
∑︁

b⊆𝛺𝑠 : b⊇a
(−1) |b\a |𝑄(b). (4)

6. Thus, it follows that𝑄 : 2𝛺𝑠 → [0, 1] is a well-defined
CF iff for all ∅ ≠ a ⊆ 𝛺𝑠

𝑄(∅) = 1, (5)∑︁
b⊆𝛺𝑠 : b⊇a

(−1) |b\a |𝑄(b) ≥ 0, and (6)∑︁
∅≠a⊆𝛺𝑠

(−1) |a |+1𝑄(a) = 1. (7)

The left-hand side of Eq. (6) is 𝑚𝑄 (a), and the
left-hand side of Eq. (7) can be shown to be∑

∅≠a∈2𝛺𝑠 𝑚𝑄 (a). Eq. (7) can be regarded as a nor-
malization condition for a CF. If we have a func-
tion 𝑄 : 2𝛺𝑠 → [0, 1] that satisfies Eqs. (5) and
(6), but not (7), then we can divide each of the val-
ues of the function for non-empty subsets in 2𝛺𝑠 by
𝐾 =

∑
∅≠a⊆𝛺𝑠

(−1) |a |+1𝑄𝑚 (a), and the resulting func-
tion will then qualify as a CF.

3Deterministic BPAs are also called categorical or logical in the D-S
literature.
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7. In some cases, we could have a CF that doesn’t satisfy
Eq. (6) but satisfies Eqs. (5) and (7). In such cases,
we call such CFs pseudo-CFs. If we convert a pseudo-
CF to a BPA using Eq. (4), then such a BPA will
have negative masses that add to 1. We will call such
BPAs pseudo-BPAs. Pseudo-CFs have been studied in
[16, 17].

8. For the vacuous BPA 𝜄𝑠 for 𝑠, the CF𝑄 𝜄𝑠 corresponding
to BPA 𝜄𝑠 is given by 𝑄 𝜄𝑠 (a) = 1 for all a ⊆ 𝛺𝑠 .

9. If 𝑚 is a Bayesian BPA for 𝑠, then 𝑄𝑚 is such that
𝑄𝑚 (a) = 𝑚(a) if |a| = 1, and 𝑄𝑚 (a) = 0 if |a| > 1.

Inference Operators There are three basic inference
operators in the D-S theory—marginalization, combination,
and removal. The marginalization operator allows us to
coarsen knowledge by removing variables. The combination
operator enables us to combine distinct knowledge. The
removal operator is an inverse of the combination operator
and allows us to remove a marginal from a BPA.

Marginalization Suppose 𝑚 is a BPA for 𝑠 and suppose
𝑡 ⊆ 𝑠. The marginalization operator transforms a BPA 𝑚
for 𝑠 to a BPA 𝑚↓𝑡 for 𝑡 by eliminating variables in 𝑠 \ 𝑡.
Projection of states means dropping some coordinates.

If (𝑥, 𝑦) ∈ 𝛺𝑋,𝑌 , then (𝑥, 𝑦)↓𝑋 = 𝑥. The projection of a
subset of states is achieved by projecting every state in the
subset. Suppose 𝑎 ⊆ 𝛺𝑋,𝑌 . Then,

a↓𝑋 = {𝑥 ∈ 𝛺𝑋 : (𝑥, 𝑦) ∈ a}.

Definition 1 (Marginalization) Suppose 𝑚 is a BPA for 𝑠,
and 𝑡 ⊆ 𝑠. Then, the marginal for 𝑚 for 𝑡, denoted by 𝑚↓𝑡 ,
is a BPA for 𝑡 such that for each a ⊆ 𝛺𝑡 ,

𝑚↓𝑡 (a) =
∑︁

b⊆𝛺𝑠 :b↓𝑡=a

𝑚(b). (8)

The marginalization operator satisfies the following prop-
erty. Suppose 𝑚 is a BPA for 𝑠 and suppose 𝑋1 and 𝑋2 are
two distinct variables in 𝑠. Then

(𝑚↓𝑠\{𝑋1 })↓𝑠\{𝑋1 ,𝑋2 } = (𝑚↓𝑠\{𝑋2 })↓𝑠\{𝑋1 ,𝑋2 } . (9)

Thus, the order in which variables are eliminated does not
matter.

Definition 2 (Dempster’s combination rule) Suppose
𝑚1 is a BPA for 𝑠1, 𝑚2 is a BPA for 𝑠2, and 𝑚1 and 𝑚2 are
distinct4. Then, 𝑚1 ⊕ 𝑚2 is a BPA for 𝑠1 ∪ 𝑠2 such that

4The notion of distinct BPAs is discussed in Section 3. Intuitively,
𝑚1 and 𝑚2 are distinct if combination of 𝑚1 and 𝑚2 doesn’t result in
double-counting of non-idempotent knowledge.

for all a ⊆ 𝛺𝑠1∪𝑠2 = (a1 × 𝛺𝑠2\𝑠1 ) ∩ (a2 × 𝛺𝑠1\𝑠2 ) : a ≠ ∅
where a1 ⊆ 𝛺𝑠1 and a2 ⊆ 𝛺𝑠2 ,

(𝑚1 ⊕ 𝑚2) (a) = 𝐾−1
∑︁

a1 ,a2:a≠∅
𝑚1 (a1) 𝑚2 (a2), (10)

where K is a normalization constant given by

𝐾 =
∑︁

a1 ,a2:a≠∅
𝑚1 (a1) 𝑚2 (a2). (11)

We assume 𝐾 > 0. If 𝐾 = 0, then 𝑚1 and 𝑚2 are said to be
in total conflict and cannot be combined. If 𝐾 = 1, we say
𝑚1 and 𝑚2 are non-conflicting.

Dempster’s combination rule can also be described using
commonality functions. Consider two distinct BPAs 𝑚1 for
𝑠1 and𝑚2 for 𝑠2, and let𝑄1 and𝑄2 denote the corresponding
commonality functions. Then, as showed in [22], for all
∅ ≠ a ⊆ 𝛺𝑠1∪𝑠2 ,

(𝑄1 ⊕ 𝑄2) (a) = 𝐾−1𝑄1 (a↓𝑠1 )𝑄2 (a↓𝑠2 ), (12)

where 𝐾 is a normalization constant defined as follows:

𝐾 =
∑︁

∅≠a∈𝛺𝑠1∪𝑠2

(−1) |a |+1𝑄1 (a↓𝑠1 )𝑄2 (a↓𝑠2 ). (13)

The normalization constant in Eq. (13) is precisely the same
as in Eq. (11).
It is easy to show that Dempster’s combination is

commutative and associative: 𝑚1 ⊕ 𝑚2 = 𝑚2 ⊕ 𝑚1, and
(𝑚1 ⊕ 𝑚2) ⊕ 𝑚3 = 𝑚1 ⊕ (𝑚2 ⊕ 𝑚3). Also, marginalization
and Dempster’s combination rule satisfy a vital property
called the local computation property [28].

Local Computation Property Suppose 𝑚1 is a BPA for
𝑠1 and 𝑚2 is a BPA for 𝑠2. Suppose 𝑋 ∈ 𝑠1 and 𝑋 ∉ 𝑠2.
Then,

(𝑚1 ⊕ 𝑚2)↓(𝑠1∪𝑠2)\{𝑋 } = (𝑚1)↓𝑠1\{𝑋 } ⊕ 𝑚2 (14)

This property is the basis of computing marginals of joint
belief functions. Giang and Shenoy [10] describes an imple-
mentation of a local computation algorithm inMatlab called
“Belief Function Machine” for calculating the marginals of
D-S belief function models.
The removal operator is discussed in Subsection 2.3.

2.1. Conditional Independence

Shenoy [25] describes conditional independence relation in
the framework of valuation-based systems using factoriza-
tion semantics. Here, we describe it for the D-S theory of
belief functions.
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Definition 3 (Conditional independence) Suppose V
denotes the set of all variables, and suppose 𝑟, 𝑠, and
𝑡 are disjoint subsets of V. Suppose 𝑚 is a joint BPA for
V. We say 𝑟 and 𝑠 are conditionally independent given
𝑡 with respect to BPA 𝑚, written as 𝑟⊥⊥𝑚 𝑠 | 𝑡, if and only
if 𝑚↓𝑟∪𝑠∪𝑡 = 𝑚𝑟∪𝑡 ⊕ 𝑚𝑠∪𝑡 , where 𝑚𝑟∪𝑡 is a BPA for 𝑟 ∪ 𝑡,
𝑚𝑠∪𝑡 is a BPA for 𝑠 ∪ 𝑡, and 𝑚𝑟∪𝑡 and 𝑚𝑠∪𝑡 are distinct.

This definition generalizes the CI relation in probabil-
ity theory [5]. There are other definitions of conditional
independence in the D-S theory (e.g., [31, 2, 3]) using the
semantics of non-interactivity. Still, these are not useful in
describing CI in belief-function graphical models.
The definition of CI in Def. 3 satisfies the graphoid

properties of probabilistic conditional independence [21].
Specifically, suppose 𝑚 is a BPA for V, and 𝑟, 𝑠, 𝑡, 𝑣 are
disjoint subsets ofV.

1. 𝑟⊥⊥𝑚 𝑠 | 𝑡 if and only if 𝑠⊥⊥𝑚 𝑟 | 𝑡 (symmetry).

2. If 𝑟⊥⊥𝑚 (𝑠 ∪ 𝑣) | 𝑡, then 𝑟⊥⊥𝑚 𝑠 | 𝑡 (decomposition).

3. If 𝑟⊥⊥𝑚 (𝑠 ∪ 𝑣) | 𝑡, then 𝑟⊥⊥𝑚 𝑠 | (𝑡 ∪ 𝑣) (weak union).

4. If 𝑟⊥⊥𝑚 𝑠 | 𝑡 and 𝑟⊥⊥𝑚 𝑣 | (𝑡 ∪ 𝑠), then 𝑟⊥⊥𝑚 (𝑠 ∪ 𝑣) | 𝑡
(contraction).

5. If 𝑚 is such that 𝑄𝑚 (a) > 0 for all 𝑎 ⊆ 𝛺V , then
𝑟⊥⊥𝑚 𝑠 | (𝑡∪𝑣) and 𝑟⊥⊥𝑚 𝑣 | (𝑡∪𝑠), then 𝑟⊥⊥𝑚 (𝑠∪𝑣) | 𝑡
(intersection).

Proofs of these properties can be found in [25].

2.2. Conditional Belief Functions

This subsection defines a conditional belief function similar
to a conditional probability table in probability theory. The
definition of a conditional belief function in this subsection
is taken from [14].

Definition 4 (Conditionals) Suppose 𝑟 and 𝑠 are disjoint
subsets of variables and suppose 𝑟 ′ ⊆ 𝑟. Suppose 𝑚𝑠 |𝑟 ′ is
a BPA for 𝑟 ′ ∪ 𝑠. We say 𝑚𝑠 |𝑟 ′ is a conditional BPA for 𝑠
given 𝑟 ′ if and only if

1. (𝑚𝑠 |𝑟 ′)↓𝑟
′ is a vacuous BPA for 𝑟 ′, and

2. for any BPA 𝑚𝑟 for 𝑟 , 𝑚𝑟 and 𝑚𝑠 |𝑟 ′ are distinct5. Thus,
𝑚𝑟 ⊕ 𝑚𝑠 |𝑟 ′ is a BPA for 𝑟 ∪ 𝑠.

We call 𝑠 the head of the conditional, and 𝑟 the tail.

In a directed graphical belief function model, we have a
conditional associated with each variable 𝑋 . The head of
the conditional is 𝑋 , and the tail consists of the parents of

5The notion of distinct BPAs is discussed in Section 3. As we will
see, 𝑚𝑟 and 𝑚𝑠 |𝑟′ are distinct if and only if 𝑠⊥⊥(𝑚𝑟 ⊕𝑚𝑠 |𝑟′ ) (𝑟 \ 𝑟 ′) | 𝑟 ′.

𝑋 . For variables with no parents, we have priors associated
with such variables. For convenience, priors can be regarded
as conditionals with empty tails. For such BPAs, the first
condition in the definition is trivially true as the sum of the
probability masses in a BPA is 1.
In graphical models, the joint is constructed from the

conditionals. We don’t start with a joint. The definition
of a conditional belief function in Def. 4 reflects this fact.
Other definitions of conditional belief functions start from
a joint and then factor the joint into a marginal and a con-
ditional (see, e.g.,[1]). These other definitions do not help
in constructing graphical models. Our definition, however,
is consistent with these other definitions for the joint that a
graphical belief function model implicitly defines [14].

Non-informative BPAs The notion of non-informative
BPAs is taken from [13].

Definition 5 (Non-informative belief functions)
Suppose 𝑚1 is a BPA for 𝑟1 and 𝑚2 is a BPA for 𝑟2.
We say 𝑚1 and 𝑚2 are mutually non-informative if
𝑚

↓(𝑟1∩𝑟2)
1 = 𝑚

↓(𝑟1∩𝑟2)
2 = 𝜄𝑟1∩𝑟2 . Also, given a set of BPAs,

the set of BPA is non-informative if every pair of BPAs in
the set are mutually non-informative.

Some comments about non-informative belief functions:

• Suppose BPA𝑚1 for 𝑟1 and𝑚2 for 𝑟2 are mutually non-
informative. Then,𝑚1 can be regarded as a conditional
for 𝑟1 \ (𝑟1 ∩ 𝑟2) given 𝑟1 ∩ 𝑟2, and 𝑚2 can be regarded
as a conditional for 𝑟2 \ (𝑟1 ∩ 𝑟2) given 𝑟1 ∩ 𝑟2.

• Notice that if 𝑟1∩ 𝑟2 = ∅, then 𝑚1 and 𝑚2 are mutually
non-informative.

We will encounter mutually non-informative BPAs in the
Haenni and Lehmann [11]’s Communication Network ex-
ample discussed in Section 3.3.

Where do conditionals come from? A conditional BPA
𝑚𝑟 |𝑠 describes the relationship between the variables in 𝑟
and 𝑠. One source of conditionals is Smets’ conditional
embedding [29]. To describe conditional embedding, con-
sider the case of two variables, 𝑋 and 𝑌 . To describe the
dependency between 𝑋 and 𝑌 , suppose that when 𝑋 = 𝑥,
our belief in 𝑌 is described by a BPA 𝑚𝑌𝑥

for 𝑌 . Thus,
𝑚𝑌𝑥

: 2𝛺𝑌 → [0, 1] such that ∑∅≠a⊆𝛺𝑌
𝑚𝑌𝑥

(a) = 1. The
BPA 𝑚𝑌𝑥

for 𝑌 needs to be embedded into a BPA for 𝑚𝑌 |𝑥
for (𝑋,𝑌 ) such that

1. 𝑚𝑌 |𝑥 is a conditional BPA for (𝑋,𝑌 ), i.e., (𝑚𝑌 |𝑥)↓𝑋
is the vacuous BPA for 𝑋 , and

2. whenwe combine the belief that 𝑋 = 𝑥 andmarginalize
the result to 𝑌 , we obtain 𝑚𝑌𝑥

.
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One way to do this is to take each focal element b ⊆ 𝛺𝑌

of 𝑚𝑌𝑥
and convert it to the corresponding focal element

({𝑥} × b) ∪ ((𝛺𝑋 \ {𝑥}) × 𝛺𝑌 ) ⊆ 𝛺𝑋,𝑌 (15)

of BPA 𝑚𝑌 |𝑥 for (𝑋,𝑌 ) with the same mass. It is easy to
confirm that this embedding method satisfies both condi-
tions mentioned above. Suppose we have several distinct
conditionals, e.g., 𝑚𝑌 |𝑥1 , 𝑚𝑌 |𝑥2 , etc. obtained by condi-
tional embedding, where 𝑥1, and 𝑥2 are distinct values of
𝑋 . In this case, we combine the conditionals by Dempster’s
combination rule to obtain 𝑚𝑌 |𝑋 . An implicit assumption
is that 𝑚𝑌 |𝑥1 and 𝑚𝑌 |𝑥2 are distinct BPAs for {𝑋,𝑌 }.
Other sources of belief function conditionals are de-

scribed in [12, 14]. Conditionals can also be constructed
using the removal operator, discussed in the following
subsection.

2.3. Removal Operator

The removal operator (also called ‘decombination’ in [32])
allows us to remove knowledge [25]. Suppose we construct
a joint belief function for 𝑋 and 𝑌 using BPA 𝑚𝑋 for 𝑋 and
a conditional 𝑚𝑌 |𝑋 for 𝑌 given 𝑋 . Thus, the joint BPA for
(𝑋,𝑌 ) is 𝑚𝑋,𝑌 = 𝑚𝑋 ⊕ 𝑚𝑌 |𝑋 . Notice that the marginal of
𝑚𝑋,𝑌 for 𝑋 is𝑚𝑋 , i.e., (𝑚𝑋,𝑌 )↓𝑋 = 𝑚𝑋 . If we are given the
joint BPA 𝑚𝑋,𝑌 for (𝑋,𝑌 ), can we recover the conditional
𝑚𝑌 |𝑋? The answer is yes, using the removal operator.

Definition 6 (Removal) Suppose𝑚𝑋,𝑌 is a BPA for (𝑋,𝑌 )
such that𝑚𝑋,𝑌 = 𝑚𝑋⊕𝑚𝑌 |𝑋 , where𝑚𝑋 is a BPA for 𝑋 , and
𝑚𝑌 |𝑋 is a conditional for𝑌 given 𝑋 . Notice that (𝑚𝑋,𝑌 )↓𝑋 =

𝑚𝑋 . Let 𝑄𝑋,𝑌 and 𝑄𝑋 denote the CFs corresponding to
𝑚𝑋,𝑌 and 𝑚𝑋 respectively. Then, the removal of 𝑄𝑋 from
𝑄𝑋,𝑌 , written as 𝑄𝑋,𝑌 	 𝑄𝑋 , is defined as follows:

(𝑄𝑋,𝑌 	 𝑄𝑋 ) (a) = 𝐾−1𝑄𝑋,𝑌 (a)/𝑄𝑋 (a↓𝑋 ) (16)

for all a ⊆ 𝛺𝑋,𝑌 , where 𝐾 is a normalization constant
defined by

𝐾 =
∑︁

∅≠a⊆𝛺𝑋,𝑌

(−1) |a |+1𝑄𝑋,𝑌 (a)/𝑄𝑋 (a↓𝑋 ) (17)

In Eqs. (16) and (17), if 𝑄𝑋,𝑌 (a) = 0, then 𝑄𝑋 (a↓𝑋 ) = 0,
and 0/0 is defined to be 0.

Some comments on Def. 6:

1. The definition of the removal operator in Def. 6 is
restricted to the case where the CF 𝑄𝑋 being removed
is explicitly included in𝑄𝑋,𝑌 in the sense that𝑄𝑋,𝑌 =

𝑄𝑋 ⊕ 𝑄𝑌 |𝑋 . This guarantees that 𝑄𝑋,𝑌 	 𝑄𝑋 is a
well-defined CF [12, 14].

2. It follows from Eq. (16) that

(𝑄𝑋,𝑌 	 𝑄𝑋 ) (a) = ((𝑄𝑋 ⊕ 𝑄𝑌 |𝑋 ) 	 𝑄𝑋 ) (a)
= 𝑄𝑋 (a↓𝑋 )𝑄𝑌 |𝑋 (a)/𝑄𝑋 (a↓𝑋 )
= 𝑄𝑌 |𝑋 (a)

Thus, the removal operator can recover the conditional
from the joint.

3. Removal can be defined more generally where the
marginal CF 𝑄𝑋 = (𝑄𝑋,𝑌 )↓𝑋 being removed from
𝑄𝑋,𝑌 is not explicitly included in 𝑄𝑋,𝑌 . In this case,
removal will result in a pseudo-CF as Eq. (6) will be
violated [12, 14]. Pseudo-CFs are useful in inference
[17]. This is because (𝑄𝑋,𝑌 	 𝑄𝑋 ) ⊕ 𝑄𝑋 = 𝑄𝑋,𝑌 .

4. Some properties of the removal operator are as follows
[25]:

• Suppose𝑄 is a CF for 𝑟 and 𝑠 ⊆ 𝑟 . Then𝑄 	𝑄↓𝑠

is a CF for 𝑟 , assuming it is well-defined.
• Suppose𝑄 is a CF for 𝑟 . Then𝑄 	𝑄 = 𝜄𝑟 , where
𝜄𝑟 is the vacuous CF for 𝑟 .

• Suppose𝑄1,𝑄2 are CFs for 𝑟 and 𝑠, respectively,
and suppose 𝑡 ⊆ 𝑠. Then (𝑄1 ⊕ 𝑄2) 	 𝑄↓𝑡

2 =

𝑄1 ⊕ (𝑄2 	 𝑄↓𝑡
2 )

3. Distinct Belief Functions
This section discusses the notion of distinct belief func-
tions. We start with Dempster [6]’s multi-valued mapping
semantics associated with BPAs.

Figure 1: Dempster’s multi-valued semantics for BPAs.

Definition 7 (Distinct belief functions) Consider two
discrete finite variables 𝑋1 and 𝑆1 with state spaces 𝛺𝑋1

and 𝛺𝑆1 . Assume that we have a probability mass func-
tion (PMF) 𝑃1 on 𝑋1. We have a multi-valued mapping
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𝛤1 : 𝑋1 → 2𝛺𝑆1 such that for each 𝑥 ∈ 𝛺𝑋1 , we associate a
non-empty subset of 𝑆1, 𝛤1 (𝑥) ∈ 2𝛺𝑆1 \ ∅. The multi-valued
mapping 𝛤1 defines the BPA 𝑚1 for 𝑆1 such that for all
a ∈ 2𝛺𝑆1 \ ∅,

𝑚1 (a) =
∑︁

𝑥∈𝛺𝑋1

{𝑃1 (𝑥) : 𝛤1 (𝑥) = a}. (18)

Suppose we have another pair of discrete and finite variables
𝑋2 and 𝑆2 with PMF 𝑃2 on 𝑋2, and another multi-valued
mapping 𝛤2 : 𝑋2 → 2𝛺𝑆2 \ ∅. The multi-valued mapping 𝛤2
defines the BPA 𝑚2 for 𝑆2 such that for all a ∈ 2𝛺𝑆2 \ ∅,

𝑚2 (a) =
∑︁

𝑥∈𝛺𝑋2

{𝑃2 (𝑥) : 𝛤2 (𝑥) = a}. (19)

We say 𝑚1 and 𝑚2 are distinct if and only if the random
variables 𝑋1 (with PMF 𝑃1) and 𝑋2 (with PMF 𝑃2) are
independent.

Some comments on Def. 7:

1. As 𝑃1, and 𝑃2 are PMFs, and the two multi-valued
mappings 𝛤1 and 𝛤2 map non-empty subsets of 𝑆1 and
𝑆2 respectively, it is clear that 𝑚1 and 𝑚2 are BPAs for
𝑆1 and 𝑆2, respectively.

2. In practice, not every belief function in a belief function
model is associated with a multi-valuedmapping. Thus
the definition of distinct belief function inDef. 7 cannot
be used directly in practice.

3. If we assume independence of variables 𝑋1 and 𝑋2
when they are not, then we are double-counting non-
idempotent knowledge6 [26]. Thus, the spirit of Def.
7 is that two belief functions are distinct if, when
combining them using Dempster’s combination rule,
we are not double-counting non-idempotent knowledge.
Wewill use this heuristic in discussingwhat constitutes
distinct belief functions in practice.

3.1. Directed Graphical Models

In this subsection, we discuss the idea of distinct belief
functions in a belief-function directed graphical model by
incorporating ideas from probability theory.
Before we define a belief-function directed graphical

model, we start with some notation. A directed graph 𝐺𝑑

is a pair 𝐺𝑑 = (V, E), where V = {𝑋1, . . . , 𝑋𝑛} denotes
the set of nodes and E denotes the set of directed edges
(𝑋𝑖 , 𝑋 𝑗 ) between two distinct variables inV. For any node

6We say BPA 𝑚 is idempotent if 𝑚 ⊕ 𝑚 = 𝑚. For example, if 𝑚 is
deterministic, then 𝑚 is idempotent. Idempotent knowledge is knowledge
encoded in a BPA𝑚 that is idempotent. Thus, double-counting idempotent
knowledge is not a problem; double-counting non-idempotent knowledge
is.

𝑋 ∈ V, let 𝑃𝑎𝐺𝑑
(𝑋) denote {𝑌 ∈ V : (𝑌, 𝑋) ∈ E}. A

directed graph is said to be acyclic if and only if there exists
a sequence of the nodes of the graph, say (𝑋1, . . . , 𝑋𝑛) such
that if there is a directed edge (𝑋𝑖 , 𝑋 𝑗 ) ∈ E then 𝑋𝑖 must
precede 𝑋 𝑗 in the sequence. Such a sequence is called a
topological sequence (as it depends only on the structure of
the directed graph).

Definition 8 (BF directed graphical model) Suppose we
have a directed acyclic graph 𝐺𝑑 = (V, E) with 𝑛 nodes in
V. A belief-function directed graphical model (𝐵𝐹𝐷𝐺𝑀)
is a pair (𝐺𝑑 , {𝑚1, . . . , 𝑚𝑛}) such that BPA 𝑚𝑖 associated
with node 𝑋𝑖 is a conditional BPA for 𝑋𝑖 given 𝑃𝑎𝐺𝑑

(𝑋𝑖),
for 𝑖 = 1, . . . , 𝑛. A fundamental assumption of a BFDGM is
that 𝑚1, . . . , 𝑚𝑛 are all distinct, and the joint BPA 𝑚 for V
associated with the model is given by

𝑚 =

𝑛⊕
𝑖=1

𝑚𝑖 . (20)

Some comments about Def. 8:

1. The assumption in Def. 8 that all conditionals are
distinct allows the combination in Eq. (20).

2. Given 𝑚, the joint BPA forV as defined in Eq. (20),
it follows from Def. 3 that the following CI relations
hold. Suppose (𝑋1, . . . , 𝑋𝑛) is a topological sequence
associated with BFDGM (𝐺𝑑 , {𝑚1, . . . , 𝑚𝑛}). Then
for each 𝑋𝑖 , 𝑖 = 2, . . . , 𝑛, given 𝑃𝑎𝐺𝑑

(𝑋𝑖), 𝑋𝑖 is con-
ditionally independent of {𝑋1, . . . 𝑋𝑖−1} \ 𝑃𝑎𝐺𝑑

(𝑋𝑖).

3. An example of a BFDGM is given in Section 3.1.

Consider the probabilistic directed graphical model
𝑋 → 𝑌 , with potentials7 𝑃(𝑋) and 𝑃(𝑌 |𝑋). 𝑃(𝑋) is a
prior PMF for 𝑋 , and 𝑃(𝑌 |𝑋) is called a conditional proba-
bility table (CPT) for 𝑌 . The joint probability function of
(𝑋,𝑌 ) is the probabilistic combination of these two poten-
tials, i.e., 𝑃(𝑋,𝑌 ) = 𝑃(𝑋) ⊗ 𝑃(𝑌 |𝑋). Here, ⊗ denotes the
probabilistic combination operator, pointwise multiplica-
tion followed by normalization. Thus, 𝑃(𝑋,𝑌 ) (𝑥, 𝑦) =

𝑃(𝑋) (𝑥) · 𝑃(𝑌 |𝑋) (𝑥, 𝑦). The directed graphical model
𝑋 → 𝑌 makes no conditional independence assumptions.
If we compute the marginal for 𝑋 from 𝑃(𝑋,𝑌 ), we obtain
𝑃(𝑋), i.e.,

𝑃(𝑋) = (𝑃(𝑋) ⊗ 𝑃(𝑌 |𝑋))↓𝑋 , (21)
= 𝑃(𝑋) ⊗ 𝑃(𝑌 |𝑋)↓𝑋 , (22)
= 𝑃(𝑋). (23)

7Potentials are unnormalized probability functions. A conditional
probability table is not a probability distribution but can be considered a
potential.
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Eq. (22) follows from Eq. (21) using the local computation
property of probabilistic combination. Eq. (23) follows from
Eq. (22) utilizing the property of conditionals (𝑃(𝑌 |𝑋)↓𝑋
is a vacuous potential for 𝑋). Also, assuming the poten-
tial 𝑃(𝑋) has no zeroes, if we compute the conditional
𝑃(𝑋,𝑌 ) ÷ 𝑃(𝑋,𝑌 )↓𝑋 from the joint, we obtain 𝑃(𝑌 |𝑋)
(here, ÷ denotes a pointwise division of the second poten-
tial from the first, the inverse of the ⊗ operator). Thus, we
can conclude that the probabilistic combination of poten-
tial 𝑃(𝑋) and 𝑃(𝑌 |𝑋) does not involve double counting
of non-idempotent knowledge, i.e., the potentials 𝑃(𝑋)
and 𝑃(𝑌 |𝑋) are always distinct (regardless of the numeric
values of these potentials).
Now, consider the probabilistic graphical model for 𝑋

and 𝑌 without a directed edge from 𝑋 to 𝑌 (or vice versa)
with potentials 𝑃(𝑋) and 𝑃(𝑌 ). This graphical model as-
sumes 𝑋 and 𝑌 are independent, and the joint PMF of
(𝑋,𝑌 ) is 𝑃(𝑋,𝑌 ) = 𝑃(𝑋) ⊗ 𝑃(𝑌 ). With the independence
assumption, 𝑃(𝑌 |𝑋) (𝑥, 𝑦) = 𝑃(𝑌 ) (𝑦) for all (𝑥, 𝑦) ∈ 𝛺𝑋,𝑌 .
Thus,

𝑃(𝑋,𝑌 ) = 𝑃(𝑋) ⊗ 𝑃(𝑌 |𝑋),
= 𝑃(𝑋) ⊗ 𝑃(𝑌 )

and there is no double counting of non-idempotent knowl-
edge.
Next, consider the case where we have a model consisting

of two probability potentials, PMFs 𝑃(𝑋) for 𝑋 , and 𝑃(𝑌 )
for𝑌 , and suppose 𝑋 and𝑌 are not independent. In this case,
the potentials 𝑃(𝑋) and 𝑃(𝑌 ) are not distinct. Since 𝑋 and
𝑌 are not independent, let 𝑃(𝑌 |𝑋) denote the dependency
of 𝑌 on 𝑋 . Thus, 𝑃(𝑌 ) = (𝑃(𝑋) ⊗ 𝑃(𝑌 |𝑋))↓𝑌 . Thus,

𝑃(𝑋) ⊗ 𝑃(𝑌 ) = 𝑃(𝑋) ⊗ (𝑃(𝑋) ⊗ 𝑃(𝑌 |𝑋))↓𝑌 . (24)

Notice that in Eq. (24), 𝑃(𝑋) is counted twice, and if
it is not idempotent, Eq. (24) will result in an incorrect
joint distribution of (𝑋,𝑌 ). We will illustrate this using an
example.

Example 1 (Double-counting of knowledge) Suppose 𝑋
and 𝑌 are random variables with state spaces 𝛺𝑋 = 𝛺𝑌 =

{0, 1}. Suppose 𝑃(𝑋) and 𝑃(𝑌 |𝑋) are as shown in Table
1. 𝑃(𝑌 |𝑋) represents the dependency 𝑌 = 𝑋 . Notice that
𝑃(𝑋) ⊗ 𝑃(𝑌 ) is different from the actual joint 𝑃(𝑋,𝑌 ).

For yet another example, consider the directed graphical
model 𝑋 → 𝑌 → 𝑍 with the potentials 𝑃(𝑋) for 𝑋 ,
conditionals 𝑃(𝑌 |𝑍) for𝑌 given 𝑋 , and conditional 𝑃(𝑍 |𝑌 )
for 𝑍 given 𝑌 . This graphical model assumes that 𝑋 and 𝑍
are conditionally independent (CI) given 𝑌 . With this CI
assumption, the three potentials in the model are distinct.
Without the CI assumption, the potentials are not distinct
(similar to the previous example where 𝑋 and 𝑌 are not
independent).

Table 1: Comparing 𝑃(𝑋,𝑌 ) with 𝑃(𝑋) ⊗ 𝑃(𝑌 ).

𝛺(𝑋,𝑌 ) 𝑃 (𝑋 ) 𝑃 (𝑌 |𝑋 ) 𝑃 (𝑋,𝑌 ) 𝑃 (𝑌 ) 𝑃 (𝑋 ) ⊗ 𝑃 (𝑌 )
{(0, 0)} 0.2 1 0.2 0.2 0.04
{(0, 1)} 0.2 0 0 0.8 0.16
{(1, 0)} 0.8 0 0 0.2 0.16
{(1, 1)} 0.8 1 0.8 0.8 0.64

In the case of D-S belief-function directed graphical
models, we have a situation similar to the probabilistic case.
Each graphical model is associated with a set of conditional
independence assumptions for the variables in the model.
The definition of conditional independence in the D-S belief
function theory is similar to that of probability theory [5, 25].
Also, associated with each variable 𝑋 in the model, we have
a conditional for 𝑋 given its parents. Unlike the probabilistic
case, some conditionals may not be known, so we have a
vacuous BPA associated with such variables [27]. As in the
probabilistic case, assuming the CI relations are valid, the
BPAs in the model are distinct.

3.2. An Example of a BFDGM

Example 2 (Almond [1]’s Captain’s Problem) A ship’s
captain is concerned about how many days his ship may
be delayed before arrival at a destination. The arrival
delay is the sum of the departure delay and sailing delay.
Departure delay may be a result of maintenance (at most
one day), loading delay (at most one day), or a forecast of
bad weather (at most one day). Sailing delays may result
from bad weather (at most one day) and whether repairs
are needed at sea (at most one day). If maintenance is
done before sailing, chances of repairs at sea are less
likely. The weather forecast says a slight chance of bad
weather (0.2) and a good chance of good weather (0.6).
The forecast is 80% reliable. The captain knows the loading
delay and whether maintenance is done before departure.
Figure 2 shows the directed acyclic graph associated with
this problem.

A topological ordering of the variables is as follows:
(𝑊, 𝐹, 𝐿, 𝑀, 𝐷, 𝑅, 𝑆, 𝐴). Let 𝑚 denote the joint BPA of this
model. The CI assumptions of this graphical model are as
follows:

1. 𝐿⊥⊥𝑚{𝑊, 𝐹};

2. 𝑀⊥⊥𝑚{𝑊, 𝐹, 𝐿};

3. 𝐷⊥⊥𝑚𝑊 | {𝐹, 𝐿, 𝑀};

4. 𝑅⊥⊥𝑚{𝑊, 𝐹, 𝐿} | 𝑀;

5. 𝑆⊥⊥𝑚{𝐹, 𝐿, 𝑀, 𝐷} | {𝑊, 𝑅}; and
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6. 𝐴⊥⊥𝑚{𝑊, 𝐹, 𝐿, 𝑀, 𝑅} | {𝐷, 𝑆}.

Assuming the CI relations are all valid, and the BPAs in the
model are all conditionals, the BPAs are distinct.

Figure 2: The directed acyclic graph for theCaptain’s Prob-
lem. The Greek alphabets adjacent to a variable
denote the prior or conditional associated with
the variable.

Table 2 shows the variables and their states. The condi-
tional BPAs are as follows.

Table 2: The variables, their state spaces, and associated
conditionals in the captain’s problem.

Variable Name State Space Assoc. Conditional

𝑊 Actual weather {𝑔𝑤 , 𝑏𝑤 } vacuous for𝑊
𝐹 Forecasted weather {𝑔 𝑓 , 𝑏 𝑓 } 𝜙𝐹 |𝑊
𝐿 Loading delay? {𝑡𝑙 , 𝑓𝑙} 𝜆

𝑀 Maint. done? {𝑡𝑚, 𝑓𝑚} 𝜇

𝑅 Repair at sea? {𝑡𝑟 , 𝑓𝑟 } 𝜌1 and 𝜌2
𝐷 Dep. delay {0, . . . , 3} 𝛿𝐷 | {𝐹,𝐿,𝑀 }
𝑆 Sailing delay {0, . . . , 3} 𝜎𝑆 | {𝑊 ,𝑅}
𝐴 Arrival delay {0, . . . , 6} 𝛼𝐴 | {𝐷,𝑆 }

1. Weather forecast is 80% accurate. 𝜙𝐹 |𝑊 is a condi-
tional for 𝐹 given𝑊 .

𝜙𝐹 |𝑊 ({(𝑔𝑤 , 𝑔 𝑓 ), (𝑏𝑤 , 𝑏 𝑓 )}) = 0.8,
𝜙𝐹 |𝑊 (𝛺𝑊 ,𝐹 ) = 0.2.

2. Loading is delayed with a chance of 0.3 and on sched-
ule with a chance of 0.5. 𝜆 is a prior for 𝐿.

𝜆({𝑡𝑙)}) = 0.3,
𝜆({ 𝑓𝑙)}) = 0.5,
𝜆(𝛺𝐿) = 0.2.

3. Maintenance is not done. 𝜇 is a prior for 𝑀 .

𝜇({ 𝑓𝑚}) = 1.

4. If maintenance is done before sailing, the chances of
repair at sea are between 10 and 30%. 𝜌1 is a BPA for
R given 𝑀 = 𝑡𝑚.

𝜌1 ({𝑡𝑟 }) = 0.1,
𝜌1 ({ 𝑓𝑟 }) = 0.7,
𝜌1 (𝛺𝑅) = 0.2.

𝜌1 needs to conditionally embedded into a BPA for
{𝑅, 𝑀} before it is considered as a conditional.

5. If maintenance is not done before sailing, the chances
of repair at sea are between 20 and 80%. 𝜌2 is a BPA
for R given 𝑀 = 𝑓𝑚.

𝜌2 ({𝑡𝑟 }) = 0.2,
𝜌1 ({ 𝑓𝑟 }) = 0.2,
𝜌1 (𝛺𝑅) = 0.6.

𝜌2 needs to conditionally embedded into a BPA for
{𝑅, 𝑀} before it is considered as a conditional.

6. Bad weather and repair at sea each add a day to
sailing delay. This proposition is true 90% of the time.
𝜎𝑆 |𝑊 ,𝑅 is a conditional for 𝑆 given (𝑊, 𝑅).

𝜎𝑆 |𝑊 ,𝑅 ({(𝑔𝑤 , 𝑓𝑟 , 0), (𝑏𝑤 , 𝑓𝑟 , 1),
(𝑔𝑤 , 𝑡𝑟 , 1), (𝑏𝑤 , 𝑡𝑟 , 2)}) = 0.9,

𝜎𝑆 |𝑊 ,𝑅 (𝛺𝑊 ,𝑅,𝑆) = 0.1.

7. Departure delay may be a result of maintenance (at
most one day), loading delay (at most one day), or a
forecast of bad weather (at most one day). 𝛿𝐷 |𝐹,𝐿,𝑀

is a deterministic conditional for 𝐷 given {𝐹, 𝐿, 𝑀}.

𝛿𝐷 |𝐹,𝐿,𝑀 ({(𝑔 𝑓 , 𝑓𝑙 , 𝑓𝑚, 0), (𝑏 𝑓 , 𝑓𝑙 , 𝑓𝑚, 1),
(𝑔 𝑓 , 𝑡𝑙 , 𝑓𝑚, 1), (𝑔 𝑓 , 𝑓𝑙 , 𝑡𝑚, 1), (𝑏 𝑓 , 𝑡𝑙 , 𝑓𝑚, 2),

(𝑏 𝑓 , 𝑓𝑙 , 𝑡𝑚, 2), (𝑔 𝑓 , 𝑡𝑙 , 𝑡𝑚, 2), (𝑏 𝑓 , 𝑡𝑙 , 𝑡𝑚, 3)}) = 1.

8. The arrival delay is the sum of departure and sailing
delays. 𝛼𝐴 |𝐷,𝑆 is a deterministic conditional for 𝐴
given {𝐷, 𝑆}.
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𝛼𝐴 |𝐷,𝑆 ({(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3),
(1, 0, 1), (1, 1, 2), (1, 2, 3), (1, 3, 4),
(2, 0, 2), (2, 1, 3), (2, 2, 4), (2, 3, 5),
(3, 0, 3), (3, 1, 4), (3, 2, 5), (3, 3, 6)}) = 1.

Notice that all BPAs are conditionals.

3.3. Undirected Graphical Models

First, we start with some notation. Consider an undirected
graph 𝐺𝑢 = (V, E), whereV = {𝑋1, . . . , 𝑋𝑛} denotes the
set of nodes, and E denotes the set of undirected edges
{𝑋𝑖 , 𝑋 𝑗 } between two distinct variables in V. A clique
in 𝐺𝑢 is a maximal completely connected subgraph of 𝐺.
Given a variable 𝑋 ∈ V, the Markov blanket of 𝑋 , denoted
by 𝑀𝐵𝐺𝑢

(𝑋), is {𝑌 ∈ V : {𝑋,𝑌 } ∈ 𝐸}. The definition of a
belief-function undirected graphical model below is taken
from [13].

Definition 9 (BF undirected graphical model) A belief-
function undirected graphical model (BFUGM) is

(
𝐺𝑢 =

(V, E), {𝑚1, . . . , 𝑚𝑘 }
)
, where 𝐺𝑢 is an undirected graph

with cliques 𝑟1, . . . , 𝑟𝑘 , and for each 𝑖 = 1, . . . , 𝑘 , 𝑚𝑖 is a
BPA for 𝑟𝑖 . A fundamental assumption of a BFUGM is that
the BPAs are all distinct. Thus, a belief-function undirected
graphical model corresponds to the joint BPA 𝑚 for V
defined as follows:

𝑚 =

𝑘⊕
𝑖=1

𝑚𝑖 , (25)

assuming that 𝑚 as defined in Eq. (25) is a well-defined
BPA, i.e., the normalization constant 𝐾 in Dempster’s
combination (Eq. (11)) is non-zero.

Some comments about Def. 9.

1. The assumption in Def. 9 that the BPAs are all distinct
allows the combination in Eq. (25).

2. Given 𝑚, the joint BPA forV, it follows from Def. 9
that the following CI relations hold. For each 𝑋 ∈ V,
𝑋⊥⊥𝑚 (V \ 𝑀𝐵𝐺𝑢

(𝑋)) | 𝑀𝐵𝐺𝑢
(𝑋).

3.4. Examples of BFUGMs

In this subsection, we describe several examples of
BFUGMs.

Example 3 (Two BFUGMs) Consider the BFUGM on the
left in Fig. 3. This UG has four cliques {𝑋1, 𝑋2}, {𝑋2, 𝑋3},
{𝑋3, 𝑋4}, {𝑋1, 𝑋4}. Suppose that the BPAs associated with
the corresponding cliques are𝑚12,𝑚23,𝑚34, and𝑚14. Then,
the joint BPA 𝑚 associated with this BFUGM is:

𝑚 = 𝑚12 ⊕ 𝑚23 ⊕ 𝑚34 ⊕ 𝑚14. (26)

Figure 3: Two BFUGMs

This BFUGM has two CI assumptions: 𝑋1⊥⊥𝑚 𝑋3 | {𝑋2, 𝑋4},
and 𝑋2⊥⊥𝑚 𝑋4 | {𝑋1, 𝑋3}. The first one follows from 𝑚 =

(𝑚12 ⊕ 𝑚14) ⊕ (𝑚23 ⊕ 𝑚34) and Def. 3. The second one
follows from 𝑚 = (𝑚12 ⊕ 𝑚23) ⊕ (𝑚34 ⊕ 𝑚14) and Def. 3.

Consider the BFUGM on the right in Fig. 3. This UG
has two cliques: {𝑋1, 𝑋2, 𝑋3} and {𝑋1, 𝑋3, 𝑋4}. Suppose
the BPAs associated with the corresponding cliques are
𝑚123 and 𝑚134. Then the joint BPA 𝑚 associated with this
BFUGM is:

𝑚 = 𝑚123 ⊕ 𝑚134 (27)

This BFUGM has one CI assumption: 𝑋2⊥⊥𝑚 𝑋4 | {𝑋1, 𝑋3}.
This follows directly from Eq. (27) and Def. 3.

One source of undirected graphical models is the “mor-
alization” of a directed graphical model (where we marry
parents and drop directions) [18]. The BPAs in the undi-
rected model are the same as (or some combination of)
the BPAs in the corresponding directed model. Therefore,
as the belief functions in a directed graphical model are
distinct, the belief functions in the corresponding undirected
graphical models are also distinct. For example, consider
the directed graphical model 𝑋 → 𝑌 → 𝑍 with BPAs 𝑚𝑋

for 𝑋 , conditional BPA 𝑚𝑌 |𝑋 for 𝑌 given 𝑋 , and condi-
tional 𝑚𝑍 |𝑌 for 𝑍 given 𝑌 . After moralization, we have
an undirected graphical model 𝑋 − 𝑌 − 𝑍 with two BPAs
𝑚𝑋,𝑌 = 𝑚𝑋 ⊕ 𝑚𝑌 |𝑋 for {𝑋,𝑌 } and conditional BPA 𝑚𝑍 |𝑌
for {𝑌, 𝑍}. The conditional independence assumption asso-
ciated with this model is: 𝑋 is conditionally independent
of 𝑍 given 𝑌 . Thus, we assume that the BPAs 𝑚𝑋,𝑌 and
𝑚𝑍 |𝑌 are distinct. We cannot take arbitrary BPAs 𝑚𝑋,𝑌 for
(𝑋,𝑌 ) and 𝑚𝑌 ,𝑍 for (𝑌, 𝑍) and claim that we have a model.
We implicitly assume that the belief functions are distinct
when using Dempster’s combination rule. If the BPAs are
not distinct, the result of Dempster’s combination rule may
lead to the double-counting of non-idempotent knowledge.
Fig. 4 shows the BFUGM obtained from the Captain’s

Problem (Fig. 2) by marrying parents and dropping direc-
tions. All the BPAs in this model are distinct.
Another source of undirected graphical models is where

the clique belief functions all have the same structure for
each clique. An example is Haenni and Lehmann [11]’s
Communication Network example, where each clique con-
sists of two linked variables, say 𝑋1 and 𝑋2, with state
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Figure 4: The BFUGM obtained from the BFDGM in Fig.
2 by marrying parents and dropping directions.

spaces 𝛺𝑋1 = {𝑡1, 𝑓1} and 𝛺𝑋2 = {𝑡2, 𝑓2}, respectively. The
BPA 𝑚12 for {𝑋1, 𝑌1} is as follows:

𝑚12 ({(𝑡1, 𝑡2), ( 𝑓1, 𝑓2)}) = 0.90, (28)
𝑚12 (𝛺 {𝑋1 ,𝑋2 }) = 0.1.

In words, the reliability of the link {𝑋1, 𝑋2} is 90%. Figure
5 shows the undirected graph associated with this model.
The reliabilities of the links {𝐴, 𝑋33} and {𝐵, 𝑋113} are
80%, and the reliabilities of all other links are 90%. The
structure (focal elements) of all BPAs in the model is similar
to the BPA 𝑚12 in Eq. (28).
Notice that any two adjacent cliques will intersect at a

single variable. Suppose𝑚12 is a BPA for {𝑋1, 𝑋2}, and𝑚23
is aBPA for {𝑋2, 𝑋3}. Notice that (𝑚12)↓𝑋2 is a vacuousBPA
for 𝑋2. Similarly, (𝑚23)↓𝑋2 is a vacuous BPA for 𝑋2. Thus,
(𝑚12 ⊕𝑚23)↓{𝑋1 ,𝑋2 } = 𝑚12 and (𝑚12 ⊕𝑚23)↓{𝑋2 ,𝑋2 } = 𝑚23.
Thus, 𝑚12 and 𝑚23 are mutually non-informative. Also, the
set of all BPAs in the communication network example is
non-informative.
One consequence of this property is that 𝑚23 can be

considered a conditional BPA for 𝑋3 given 𝑋2 (or for 𝑋2
given 𝑋3), and 𝑚12 can be considered a conditional BPA
for 𝑋1 given 𝑋2 (or for 𝑋2 given 𝑋1). Thus, 𝑚12 and 𝑚23
are distinct BPAs using the logic of conditionals in Def. 4.
Each BPA in this model models the reliability of a link

between two linked nodes. Suppose that the reliabilities of
all the communication links are independent and the CI
assumptions of the model are valid. In that case, we can
infer that the BPAs in the undirected model are distinct.
Another argument for distinct belief functions in this ex-

ample is as follows. As the set of all BPAs is non-informative,
it seems intuitive that there is no double-counting of non-
idempotent knowledge (assuming the CI assumptions are
valid).

Figure 5: The Communication Network undirected graphi-
cal model. The variable 𝑋𝑖 𝑗 is in the 𝑖𝑡ℎ column
(𝑖 = 1, . . . , 13), and 𝑗 𝑡ℎ row ( 𝑗 = 1, . . . , 5).

4. Summary & Conclusions

The main goal of this article is to discuss the notion of dis-
tinct belief functions in graphical models, both directed and
undirected. We start with the definition given by Dempster
[6] in his multi-valued semantics of a BPA. This cannot be
used literally in practice as we don’t associate a multi-valued
function with each belief function in a model.
We provide heuristics for determining whether the belief

functions in graphical models are distinct. The heuristics are
based on Dempster’s definition. For directed graphical mod-
els, we have conditionals associated with each variable in
the model given its parents. The conditionals are all distinct
if and only if the conditional independence assumptions
implied by the graphical model are valid.
It is also straightforward for undirected graphical models

derived from directed models by moralizing and dropping
directions [18]. For a class of undirected graphical models,
we have BPAs associated with each network clique with
the same structure. For example, in the communication
network example, all BPAs have the same structure, and
each represents the reliability of the corresponding link in
the communication network. Assuming that the reliabilities
are independent, we can conclude that the BPAs in this
example are distinct.
Unlike the case of directed graphical models, we do not

have a general criterion for when the BPAs in an undirected
graphical model are distinct. We have CI assumptions
associated with an undirected graphical model that must
be valid. The concept of a set of non-informative belief
functions may be useful. This needs further investigation.
For learning belief-function graphical models from data,

all existing structure learning algorithms in probability
theory [15] should also apply to D-S belief functions theory
as the definition of CI relations in D-S theory is the same as
in probability theory. For parameter learning (BPAs), this
remains to be done.
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