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Abstract

Marked temporal point processes (MTPPs) are a
general class of stochastic models for modeling the
evolution of events of different types (“marks”) in
continuous time. These models have broad appli-
cations in areas such as medical data monitoring,
financial prediction, user modeling, and commu-
nication networks. Of significant practical inter-
est in such problems is the issue of missing or
censored data over time. In this paper, we focus
on the specific problem of inference for a trained
MTPP model when events of certain types are not
observed over a period of time during prediction.
We introduce the concept of mark-censored sub-
processes and use this framework to develop a
novel marginalization technique for inference in
the presence of censored marks. The approach is
model-agnostic and applicable to any MTPP model
with a well-defined intensity function. We illus-
trate the flexibility and utility of the method in
the context of both parametric and neural MTPP
models, with results across a range of datasets in-
cluding data from simulated Hawkes processes,
self-correcting processes, and multiple real-world
event datasets.

1 INTRODUCTION

Stochastic models for event data evolving in continuous time
are typically referred to as temporal point processes. An im-
portant class within this general family is marked temporal
point processes (MTPPs), where each event in time is asso-
ciated with a random outcome known as a mark. In general,
the mark can either be discrete or continuous; in this work
we focus on discrete marks. The flexibility of MTPPs has
allowed them to be applied to a broad range of applications,
including medical diagnosis [Islam et al., 2017], epidemic

spread models [Marmarelis et al., 2022], environmental data
analysis [Brillinger, 2000], financial data prediction [Zhu
et al., 2021, Shi and Cartlidge, 2022], communication net-
work modeling [Mishra and Venkitasubramaniam, 2013],
user behavior analysis [Yang et al., 2021, Hatt and Feuer-
riegel, 2020], misinformation spread models [Zhang et al.,
2021], and activity prediction [Fortino et al., 2020].

The foundations for MTPP models have their origins in
the statistical literature (e.g., Cox and Lewis [1972], Da-
ley and Vere-Jones [2003], Andersen et al. [2012]), with
subsequent development of specific classes of MTPPs such
as multivariate self-exciting Hawkes processes [Hawkes,
1971] and multivariate self-correcting processes [Zheng and
Vere-Jones, 1991]. More recently, there has been significant
activity in the development of machine learning methods
for MTPPs, with a significant emphasis on approaches that
take advantage of neural representation learning, such as
recurrent MTPPs [Du et al., 2016], neural Hawkes processes
[Mei and Eisner, 2017], stochastic variants of deep MTPPs
[Hong and Shelton, 2022], scalable deep MTPPs [Türkmen
et al., 2020], as well as general approaches to forecasting
with deep MTPP models [Deshpande et al., 2021].

An important practical aspect of working with real-world
event data is that censoring of observations can occur in a
number of different ways. For example, a common example
of right-censoring often occurs in survival analysis (a sub-
field of temporal point processes) in which a patient’s event
of interest is unobserved due to the end of a data collection
period. This particular type of censoring is well-studied
and there are well-known methods for accommodating this
during training and inference. More recently, there has been
work on handling broader categories of censoring for neural
MTPP models, for example, censoring where each event
has a type-specific probability of being missing [Mei et al.,
2019].

In this paper we focus on a different problem, the problem of
making predictions when some, or all, marks are censored
over (potentially open-ended) intervals of time, i.e., there
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Figure 1: Visualization of an example sequence with four
possible marks. M is the vocabulary of possible event types,
Hk is the history of events with types equal to k. Boxes over
sequences represent different modes of censoring that could
occur during generation: (1) mark-agnostic censoring for
a particular interval, (2) censoring of green and red marks
over an open interval, and (3) censoring of blue and orange
marks over a finite interval. The occurrence of an event or
the total count of events during an interval is not known,
differentiating our scenarios from the typical “interval cen-
soring” in survival analysis or MTPPs.

is partial censoring of a specific subset of marks. We will
refer to this type of censoring as mark-censoring. To our
knowledge, there has been no prior work that addresses this
problem of adapting MTPPs to mark-censored sequences
at inference time. The problem is motivated by the real-
world scenario where an MTPP model has been trained on
a known set of marks with fully-observed data, but where at
prediction time some of the marks (and their associated tim-
ing) are no longer observable. For example, in medical data
analysis, certain types of events that were measured in the
training dataset at a particular hospital might no longer be
recorded when the model is deployed at a different hospital.
Or, in system monitoring, all events of a certain type could
be censored over a window of time due to events such as
network and power outages, and accommodating such gaps
is important for modeling future dynamics once outages are
resolved.

Previous work such as Linderman et al. [2017] focuses on
special cases of missingness patterns and/or only applies to
specific model architectures (as will be discussed in more
detail in Section 2). In contrast, our work is able to handle
all of the scenarios shown in Figure 1. The basis of our
approach is a novel marginalization technique that can cor-
rect the intensity for the censoring of marks. Our proposed
method is model-agnostic in that it can be applied to any
MTPP with a well-defined intensity function. We demon-
strate this by employing our method on different types of
MTPP models and evaluating predictive performance and
simulation behavior under a censored-mark regime.

2 RELATED WORK

A broad range of temporal censoring scenarios have been
studied in the literature, such as asynchronous event times

[Upadhyay et al., 2018, Trouleau et al., 2019] and interval-
censored point process data [Fan, 2009, Rizoiu et al., 2022].
Here we focus the discussion of related work to MTPPs
where the marks are from a fixed vocabulary. Existing work
on missingness in this context can broadly be divided into
three categories.

The first category considers various incomplete intervals,
regardless of event types, and focuses on novel tasks such
as imputing missing events and sequential representation
learning. For example, Shchur et al. [2019] proposed a flow-
based mixture model that enables closed-form sampling and
handles missing data through imputation. Xu et al. [2017]
assumes that a proportion of each short doubly-censored
event sequence is observed, and in turn proposes a sampling-
stitching data synthesis method based on parametric Hawkes
processes to sample long training sequences that improve
predictions.

The second category considers the scenario in which each
individual event, regardless of mark or time of occurrence,
has a chance of being censored. For the Hawkes process,
for example, sampling methods were developed to identify
latent structure in the data [Shelton et al., 2018] or to cor-
rect for biased marks that are underrepresented [Zhou and
Sun, 2021]. In neural settings, Gupta et al. [2021, 2022]
proposed the use of two MTPPs to model missing events
in order to make better predictions. Mei et al. [2019] pro-
posed bidirectional-LSTM models that are conditioned on
future observations to apply particle smoothing to impute
unobserved events.

The third category of prior work assumes that events are
observed but the mark and/or the exact event time is un-
known. For instance, Deutsch and Ross [2020] developed
an approximate Bayesian algorithm to fit Hawkes processes
in the presence of noisy event times, and Calderon et al.
[2021] addressed partially interval-censored Hawkes pro-
cesses, where the total event counts on the censored intervals
are available. For the case of Hawkes models, Linderman
et al. [2017] imputed latent marks and developed a sequen-
tial Monte Carlo approach for latent Hawkes processes that
can also be applied to multiple types of censoring.

In summary, previous approaches to censoring in MTPPs
either focus on specific types of missingness mechanisms
during training time or focus on one specific type of model
such as parametric or neural Hawkes process models. In
contrast, our approach considers a broad range of interval-
and mark-censoring mechanisms (see Fig. 1) and is model-
agnostic in that it can work with any MTPP model with a
marked intensity function at prediction time. Furthermore,
the results of our method yield a well-defined intensity func-
tion of a MTPP that can be used just the same as any other
MTPP, meaning various statistics can be computed such
as expected next event (time and mark), log likelihood of
partially observed sequences, etc.
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3 MARK-CENSORED TEMPORAL
POINT PROCESSES

3.1 PRELIMINARIES

Notation Let τ1, τ2, · · · ∈ R≥0 be a sequence of contin-
uous random variables that are ordered, or more formally
∀i : τi < τi+1. These variables represent the time of oc-
currence for events of interest. Alongside each time of an
event is an accompanying piece of information, such as a
label or location, that is commonly referred to as a mark.
We will represent each mark as a random variable drawn
that takes on discrete values from a fixed set of M values:
κi ∈M ≡ {1, . . . ,M}.

Let the history of events up until, but not including, time t be
denoted asH(t) = {(τi, κi) |τi < t for i = 1, 2, . . . }. This
implies thatH(τi) = {(τ1, κ1), . . . , (τi−1, κi−1)}. For our
purposes, we will often refer to histories over specific ranges
of time such asH[a, b) for all events with times occurring
in the interval [a, b). Additionally, it is often convenient to
consider mark-specific histories (i.e., sequences that only
contain events of specified marks). These will be denoted
as either HA := {(τ, κ) ∈ H|κ ∈ A} or Hk := {(τ, κ) ∈
H|κ = k} for A ⊂M and k ∈M.

Marked Temporal Point Processes The generative mech-
anisms for these event sequences are generally referred to as
marked temporal point processes (MTPPs). MTPP models
define a probability distribution over a given sequence of
N events, p(H[0, τN ]).1 These models are typically con-
structed in an autoregressive fashion,

p(H[0, τN ]) =

N∏
i=1

p(τi, κi |H[0, τi−1]),

where the joint distribution for the next event (τi, κi) con-
ditioned on all prior events is modeled by the expected,
instantaneous rate of change for each mark. This is referred
to as the marked intensity function and is defined formally
as

λk(t |H(t))dt := Ep [1(|Hk[t, t+ dt)| = 1) |H(t)] .

For brevity, we typically use the following ∗ convention to
suppress the conditional: λ∗k(t) := λk(t |H(t)). Addition-
ally, the following notation will be used to represent the
sum of different marked intensities: λ∗A(t) :=

∑
k∈A λ

∗
k(t)

for A ⊂ M. Note that these functions not only condi-
tion on the preceding events, but also on the fact that no
events have occurred since the last event up until time t, i.e.,
p(· |H[0, t)) 6= p(· |H[0, τi−1]).

The total intensity function λ∗(t) := λ∗M(t), also referred to
as the ground intensity, is sufficient to describe the timing of

1For brevity and consistent notation, we will be using p(·) in
reference to both probability density and mass when appropriate.

the next event τi. The distribution of the mark conditioned
on the timing of the next event is naturally described as
p(κi = k | τi = t,H(t)) ≡ λ∗

k(t)
λ∗(t) . We will be assuming

that the native output of any model we are working with
will produce a vector of marked intensity functions over the
mark space M evaluated at time t.

Lastly, the likelihood of a given sequence H of length N
over an observation window [0, T ] can be computed in terms
of intensity values:

p(H[0, T ]) =

(
N∏
i=1

λ∗κi(τi)

)
exp

(
−
∫ T

0

λ∗(s)ds

)
.

(1)

Sampling Any well-behaved MTPP can be easily sam-
pled by using a thinning procedure [Ogata, 1981], if not
directly. This procedure relies on the fact that the super-
position of two point processes can be characterized as
another point process whose total intensity is the sum of
individual total intensities. As such, one can sample candi-
date event times from a homogenous Poisson process with
rate D that dominates the total intensity of the MTPP of
interest. These times will be accepted iteratively with prob-
ability λ∗(t)/D, and subsequent marks are sampled from
p(κi = k |τi = t,H(t)).

3.2 MARK-CENSORED SUB-PROCESS

Problem Statement Assume that we have access to a
trained MTPP with intensity functions λ∗k(t) for k ∈M. We
are interested in performing inference on such a model in
the presence of censoring. In particular, we are interested
in a type of censoring we term mark-censoring in which
only events of types k ∈ O ⊂ M are observed, while
all events of types k ∈ C := M \ O are censored and
unobserved. In particular, we assume in mark-censoring that
we know (a) the time-interval where censoring occurs and
(b) which kinds of marks are missing (e.g., knowing the
time intervals and colors of marks in the censoring boxes
displayed in Fig. 1). Below we develop the framework for
the case when censoring takes place over all of time (i.e., t ∈
[0,∞)); however, as we will discuss later in this section, the
general approach can be directly applied to a range of more
complicated censoring schemes (such as those illustrated in
Fig. 1).

On Censoring The term “censoring” can be quite a loaded
concept with regards to statistical models. In our work we
assume the absence of certain marks over a time interval
to correspond to missing completely at random (MCAR)
[Heitjan and Basu, 1996], i.e., we assume that the realized
sequence H (both observed and unobserved portions) are
independent of why it is censored in the first place. We leave
handling of more informative censoring to future work.
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Figure 2: Intensity visualizations (lines) alongside conditioned sequences (dots) for a sequence sampled from a self-correcting
point process (top), the same process with blue marks censored from time 3 to 7 (middle), and the naive intensity results for
the censored sequence (bottom). The middle sequence displays both the observed sequence as opaque dots and the various
censored continuations sampled from the importance distribution as transparent dots. Note that the intensity of the censored
mark (blue) after the censoring interval (at time 7) does not necessarily equal the intensity before censoring (at time 3).

Censored Intensity Function Since we have access to
the original MTPP, which models the entire distribution for
event sequences as a whole, embedded within this model is a
well-defined sub-process that represents an MTPP that only
observes events of types k ∈ O. We refer to this embedded
model as a mark-censored sub-process. This sub-process
can be thought of as the original model with the censored
information marginalized out of it. Had this sub-process
been our intended model from the beginning, we could have
achieved comparable results by censoring the original train-
ing data and training a model on what remains. There is one
key difference, however, which is that the mark-censored
sub-process still allows for conditioning on events of types
C even if they are censored moving forward in time (e.g.,
in the case that the censoring interval only started at time
t > 0 instead of at t = 0—see case 3 in Fig. 1).

The censored sub-process is a fully-fledged MTPP, and as
such it has its own set of marked intensity functions. We
will denote these as λ∗k(t) for k ∈ O (should k ∈ C then
λ∗k(t) = 0). Likewise, the total intensity for a censored sub-
process is defined as λ∗(t) := λ∗O(t). These will be referred
to as the censored intensity from here forward. Note that for
any MTPP with well-defined intensity functions λ∗k, by the
point process superposition property it is justified for the
censored intensity λ∗k to exist for any arbitrary censoring
[Daley and Vere-Jones, 2003].

High Level Intuition for Censored Intensity Later in
this section we will present a formal definition of the cen-
sored intensity, as well as a tractable estimator for it that
solely relies on the original underlying MTPP with likeli-
hood p and intensity λ∗k(t) functions for k ∈M. However,
prior to presenting these, we will first give an informal

overview to help understand the arguments at a high level.

We start by recognizing that we are interested in obtaining
the intensity at time t for a censored point process where
we only observe events of types k ∈ O and no events of
types k ∈ C. To accomplish this, we would prefer to directly
marginalize out all possible sequences ofHC(t); however,
for most MTPPs this is unobtainable analytically. Instead,
we can approximate the censored intensity λ∗k(t) for k ∈ O
with the original intensity by simply sampling a possible
sequence H̃C(t) from the original point process:

λ∗k(t) ≈ λk(t |HO(t), H̃C(t)),

where H̃C(t) ∼ p(· |HO(t)). Naturally, we cannot directly
perform this sampling, so we will do the next best thing and
simply sample from the model as usual except that we will
prevent any new event with types k ∈ O from occurring
(i.e., set λ∗k(t) = 0 when sampling).

To get a better approximation, this should be done many
times with different sampled trajectories: H̃(i)

C (t) for i =
1, . . . , n. One could simply compute a standard average
where λ∗k(t) ≈ 1/n

∑n
i=1 λk(t |HO(t), H̃(i)

C (t)); however,
since we did not sample H̃(i)

C (t) perfectly from the model
without adjustments we must account for the fact that some
samples will be more likely under the original model than
others.

As such, we can instead perform a weighted average:

λ∗k(t) ≈

∑n
i=1 λk

(
t |HO(t), H̃(i)

C (t)
)
ω
(
H̃(i)

C (t)
)

∑n
i=1 ω

(
H̃(i)

C (t)
)

where ω(·) determines the weight of a sampled trajectory.
We define this weight to be the probability of the imposed
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sampling restriction (i.e., no new events of types k ∈ O
allowed) being satisfied under the original model. This can
be computed for a given sample and is equal to

ω(H̃C(t)) = exp

(
−
∫ t

0

λO(s |HO(s), H̃C(s))ds

)
.

As an illustration of this censored intensity λ∗k(t), Fig. 2
shows the original, censored, and naive intensities for an
example sequence sampled from a self-correcting process.
After the censoring interval (in gray) ends at t = 7, the
censored intensity tracks the original true intensity (top)
much more closely than the naive intensity (bottom) does.
In this context, naive intensity is referring to the original in-
tensity being computed while treating the partially observed
sequenceHO as if it were the fully observed sequenceH.

The approximation of λ∗k(t) is for finite samples and is
a ratio estimator [Tin, 1965]. Taking the limit as n → ∞
converts each summation into an expected value with respect
to the proposal distribution, as ratio estimators are consistent.
This description matches what will formally be derived
below in Eq. (4). Please refer to the Appendix for an in
depth analysis on the bias and variance of this estimator
when using finite samples.

Formal Definition of λ Without loss of generality, we will
assume that any prior events being conditioned on have been
shifted to end at t = 0 such that H(0) contains all of the
previous events. It can be shown that the censored intensity
function for the sub-process is just a specific marginalization
of the original intensity function:

λ∗k(t) := λk(t |H(0),HO[0, t) = ∅) for k ∈ O

= lim
∆↓0

1

∆
p(hit(k) ∈ [t, t+ ∆) |H(0),HO[0, t) = ∅)

= lim
∆↓0

1

∆
Ep(HC[0,t) |H(0),HO[0,t)=∅)

[
p(hit(k) ∈ [t, t+ ∆) |H(0),HO[0, t) = ∅,HC[0, t))

]
= lim

∆↓0

1

∆
Ep(HC[0,t) |H(0),HO[0,t)=∅)

[
p(τi ∈ [t, t+ ∆), κi = k |H(t))

]
, |H(t)| = i− 1

= Ep(HC[0,t) |H(0),HO[0,t)=∅)
[

lim
∆↓0

1

∆
p(τi ∈ [t, t+ ∆), κi = k |H(t))

]
by DCT

= Ep(HC[0,t) |H(0),HO[0,t)=∅) [λ∗k(t)]

where in this context, hit(k) refers to the first occurrence
time of event k, and H(t) := H(0) ∪ HO[0, t) ∪ HC[0, t).
The Dominated Convergence Theorem (DCT) holds true
because we assume that there exists some value D that is
greater than λ∗k(t) for any given t. Note that this assumption
is typically made to sample from arbitrary MTPPs.

Tractable Estimation of Censored Intensity To ap-
proximate the censored intensity function λ∗k(t), we need

to perform a Monte Carlo estimation on the above
derived expected value, Ep(HC[0,t) |H(0),HO[0,t)=∅) [λ∗k(t)].
The only issue is that we cannot directly sample from
p(HC[0, t) |H(0),HO[0, t) = ∅) due to the autoregressive
nature of MTPPs.

Consider the proposal distribution q which is a MTPP with
intensity function

µ∗k(t) =

{
0 if k ∈ O and t ≥ 0

λ∗k(t) otherwise.
(2)

This can essentially be thought of as the original MTPP prior
to censoring, and then during sampling it only produces se-
quences of events that cannot be observed. The likelihood
for a sequence under this distribution is computed as fol-
lows:

q(HC[0, t)) := q(HC[0, t) |H(0)) (3)

=

[
N∏
i=1

µ∗κi(τi)

]
exp

(
−
∫ t

0

µ∗(s)ds

)

=

[
N∏
i=1

λ∗κi(τi)1(κi ∈ C)

]
exp

(
−
∫ t

0

λ∗C(s)ds

)
where |HC[0, t)| = N . Note that the proposal distribution
has the same support as p(HC[0, t) |H(0),HO[0, t) = ∅).2

Using importance sampling with this proposal distribution,
we can see that the censored intensity becomes tractable:

λ∗k(t) = Ep(HC[0,t) |H(0),HO[0,t)=∅) [λ∗k(t)]

= Eq(HC[0,t))

[
λ∗k(t)

p(HC[0, t) |H(0),HO[0, t) = ∅)
q(HC[0, t))

]
= Eq(HC[0,t))

[
λ∗k(t)

p(HC[0, t) |H(0))1(HO[0, t) = ∅)
p(HO[0, t) = ∅|H(0))q(HC[0, t))

]

=

Eq(HC[0,t))

[
λ∗k(t)

[
∏N
i=1 λ

∗
κi

(τi)] exp(−
∫ t
0
λ∗(s)ds)

[
∏N
i=1 λ

∗
κi

(τi)1(κi∈C)] exp(−
∫ t
0
λ∗
C(s)ds)

]
p(HO[0, t) = ∅|H(0))

=
Eq(HC[0,t))

[
λ∗k(t) exp

(
−
∫ t

0
λ∗O(s)ds

)]
p(HO[0, t) = ∅|H(0))

.

Note that in this context p(HC) is equivalent to the likeli-
hood ofHC under the original model p, as if it were a fully
observed sequenceH.

Now the expected value can be approximated with easy-to-
access Monte Carlo samples. The only immediate problem
is evaluating p(HO[0, t) = ∅ |H(0)) as this does not have
a closed form solution; however, as in the recent approach
of Boyd et al. [2023], we can estimate this statement using
importance sampling. Interestingly, we can actually utilize
the exact same proposal distribution q as specified in Eqs. (2)

2It follows that Eq(HC)[0,t) [1(HO[0, t) = ∅)] = 1, which be-
comes useful for subsequent derivations.
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and (3) to represent p(HO[0, t) = ∅ |H(0)) as a tractable
expected value:

p(HO[0, t) = ∅|H(0))=Ep(H[0,t) |H(0)) [1(HO[0, t) = ∅)]

= Eq(HC[0,t))

[
1(HO[0, t) = ∅)p(HC[0, t) |H(0))

q(HC[0, t))

]
= Eq(HC[0,t))

[
exp

(
−
∫ t

0

λ∗O(s)ds

)]
.

Thus, the censored intensity can be ultimately represented
as a ratio of two expected values:

=⇒ λ∗k(t) =
Eq(HC[0,t))

[
λ∗k(t) exp

(
−
∫ t

0
λ∗O(s)ds

)]
Eq(HC[0,t))

[
exp

(
−
∫ t

0
λ∗O(s)ds

)] . (4)

In practice, this censored intensity can be approximated
using Monte Carlo (MC) estimates for both the numerator
and denominator.

It is worth reiterating that this estimator, which accounts for
the censoring of marks C at inference time, only requires
a trained MTPP along with samples from it. No further
training, additional models, or specific architectures are
required to properly deal with the censoring.

More Complex Censoring Regimes All of the deriva-
tions thus far have been focused on having a static set of
marks C being censored for an indefinite amount of time;
however, there are many other types of censoring that can
occur for a given MTPP. For example, the censoring could
occur over a specific window of time for either some or
all marks M. This could occur, for instance, in settings
where the connection is briefly lost to some or all sensors
in a system. Furthermore, censoring could occur multiple
times over different windows, and the marks being censored
across each window need not be the same from censoring
to censoring. See Fig. 1 for example censoring scenarios.

We can easily extend our previous results to cover the most
general case allowing for censoring over arbitrarily many
time windows and arbitrarily different censored marks. To
do so, first we will define the censoring schedule. The ob-
served and censored marks, O and C, are no longer static
and will potentially change over time. This will be repre-
sented via O(t),C(t) ⊂ M for t ≥ 0. This results in the
proposal distribution q now being characterized by the in-
tensity function µ∗k(t) = λ∗k(t)1(k ∈ C(t)). Lastly, the
resulting censored intensity estimate also accommodates
this dynamic censoring:

λ∗k(t) =
Eq(H[0,t))

[
λ∗k(t) exp

(
−
∫ t

0
λ∗O(s)(s)ds

)]
Eq(H[0,t))

[
exp

(
−
∫ t

0
λ∗O(s)(s)ds

)] . (5)

This result is achieved effectively for free as the censored
intensity λ∗k(t) in the static setting is technically defined
individually for any given moment in time t, making the
swap from O to O(t) and C to C(t) for each t well defined.

More Complex Mark Spaces M Our setting of interest
has the marks being modeled come from some discrete,
finite mark space M := {1, . . . ,M}; however, that does
not have to be the case. We can easily extend our method
to apply for more complex mark spaces. Consider an arbi-
trary mark space M which could be finite, continuous, high-
dimensional, etc. and let ν be a reference measure for M
(e.g., the Lebesgue measure for M ≡ R). Assume we have
a MTPP model with marked intensity function λ∗(t,m) for
m ∈ M, and that under our framework we know the ob-
served and censored portions of the mark space at any given
time, O(t) ⊂M and C(t) := M \O(t) respectively. From
this, the censored intensity defined in Eq. (4) can be readily
used by letting λ∗O(t)(t) :=

∫
O(t)

λ∗(t,m)dν(m) which can
either be computed analytically or estimated with Monte-
Carlo samples. The proposal distribution stays the same
as previously defined and samples from it can be achieved
easily using either rejection sampling on top of the typical
thinning procedure.

4 EXPERIMENTS

We investigate experimentally the impact that mark-
censoring has on various MTPP models and the ability of our
proposed marginalization method to handle such censoring
relative to baseline. Our investigations are carried out across
both classical parametric models and neural network-based
models on both synthetic and real-world data, respectively.
We find, as a whole, that in the presence of mark-censoring,
the inference ability of a model (i.e., assigning likelihood
to observed sequences) suffers significantly in comparison
to properly accounting for the missing data via our method.
Not surprisingly, we also find that our method yields larger
improvements as the information being censored becomes
more influential with respect to the information observed.

We also investigate the effect that mark-censoring has on
next event (time and mark) prediction. We observe in general
systematic differences that our mark-censored model has on
these predictions, with positive improvements in real-world
settings. Lastly, we also perform a sensitivity analysis on
the effect of both the number of sequences sampled as well
as the resolution used in estimating integrals has on our
method. We find that our method is typically fairly robust
to these hyperparameters. More details and exact results for
both of these experiments can be found in the Appendix.

Censoring In each of the experiments, we analyze the
performance of models using various sequences H(T ) of
differing lengths T . For the synthetic setting, we utilize
sequences that have been drawn from the given models. For
the real-world data, we use held-out sequences from the
dataset that a given model was trained on.

For every sequence being used, we filter out events accord-
ing to a particular censoring scheme that is selected for each
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sequence individually to produceHO(T ). To ensure that the
chosen censoring scheme is relevant for a given sequence,
we randomly select a non-empty subset C(t) of the unique
marks that actually appear inH(T ) for t ∈ [0, T ]. The pro-
portion of marks to censor, relative to the total number of
unique marks in each sequenceH(T ), which we will refer
to as γ, is varied based on the particular sequence for the
experiment being conducted.

It is important to note that since information in H(T ) is
informing the censoring scheme C that we technically no
longer have data that is MCAR. As we will see, in spite
of violating this assumption the mark-censored model still
yields substantial performance gains.

Methods & Metric of Interest For the main set of experi-
ments, we primarily compared two approaches. Both rely on
an existing MTPP and are used to calculate the likelihood
of a given observed sequenceHO(T ).3

The first approach is our proposed mark-censored model, us-
ing λ∗k for k ∈ O. Since this is a well-defined MTPP, we can
calculate the likelihood ofHO(T ) using Eq. (1) in conjunc-
tion with the censored intensity. Results for this method will
be labeled as “Censored.” Synthetic and real-world experi-
ments use 128 and 64 MC samples to estimate the censored
intensity respectively; both use 1024 integration points for
numerically estimating integrals.

The second approach is a baseline method for comparison,
based on a slight adaptation to the original model that takes
advantage of knowing what marks are being censored for
a given sequence. This method uses the original intensity
λ∗k(t) for k ∈ O and sets the intensity to be 0 when k ∈ C.
Results for this method will be labeled as “Baseline.” In
general, we expect the two methods to be comparable should
p(HC(T ) = ∅ | HO(T )) ≈ 0 as the two methods would
produce similar intensity values.

We do not include results where we evaluate the likeli-
hood of the observed sequenceHO(T ) as if it were a fully
observed, uncensored sequence under the original model.
Since intensity values are always non-negative, likelihood
values using this approach will never be better than the base-
line. Because of this, we only compare against the baseline
as it effectively captures the original model’s inference capa-
bilities while still managing to leverage information about
the mark-specific censoring scheme to some degree. Note
also that none of the methods discussed earlier in Related
Work are used as baselines since none are applicable to
mark-censoring and model-agnostic.

Results are reported as likelihood ratios between the cen-
sored method and the baseline method for individual ob-

3Previous works are not compared against in these experiments
due to them largely having different goals and setups (such as learn-
ing from censored data during training time or imputing missing
data), as well as typically not having a proper likelihood.
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Figure 3: Distributions of likelihood ratios across number of
marks censored for the duration of the sequences used for
synthetic experiments with self-correcting, Hawkes (dense),
and Hawkes (block-diagonal) models. Values greater than 1
indicate higher likelihoods under the mark-censored model.

served sequences. These ratios directly quantify how much
more likely the censored method perceives a sequence to
be relative to the baseline. Values above 1 are evidence in
favor of the censored method, and below 1 for the baseline.
It should be noted that the sequences used in these exper-
iments are censored over the entire observation window
[0, T ].

4.1 EXPERIMENTS ON SYNTHETIC DATA

Models We evaluate our method on randomly instantiated
parametric MTPPs including Hawkes processes [Hawkes,
1971] and self-correcting processes [Isham and Westcott,
1979] (also known as stress release model [Zheng and Vere-
Jones, 1991]), where the sampled sequences are evaluated
on the same model.

For Hawkes processes with exponential kernels, the inten-
sity has the form λ∗k(t) = µk +

∑
τ,κ∈H(t) φκ,k(t − τ).

The kernel can be expressed as φi,j(z) = αij exp(−βijz),
where parameters αij , βij > 0 for i, j ∈ M specify the
excitation effects and decay rates respectively that events
of type i have on events of type j. We consider two dif-
ferent instantiations of this type of model; both with 20
marks. We refer to the first type as “Hawkes (dense)”
with all parameters drawn from the following distribu-
tions: αij

iid∼ Unif[0.075, 0.2], βij
iid∼ Unif[0.4, 1.2], and
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Figure 4: Distributions of likelihood ratios for a block-
diagonal Hawkes model with varying interaction strengths
applied to off-diagonal α terms. Values greater than 1 in-
dicate higher likelihoods under the mark-censored model
compared to the baseline.

µk
iid∼ Unif[0.1, 0.5]. To better emulate realistic settings

in which events correlate strongly with other events of
certain types, we also consider a sparsely-parameterized
version which we refer to as “Hawkes (block-diagonal)”
[Wu et al., 2020]. This model is instantiated by drawing
αij

iid∼ Unif[0.3, 0.8] when b i−1
5 c = b j−1

5 c and αij = 0
otherwise.4 This effectively imposes a block-diagonal struc-
ture on the matrix {αij}, resulting in four subgroups of
correlated marks. Values for µ and β are drawn similarly to
the dense model.

In contrast, self-correcting processes use the intensity func-
tion λ∗k(t) = exp

(
ηkt−

∑
τ,κ∈H(t) δκk

)
, where δκk > 0

determines the inhibition that past events of type κ have
on future events of type k. The model used for this class
also has 20 marks and is instantiated by drawing weights
δij

iid∼ Unif[0.3, 0.8]. Values for η are drawn similarly to µ.

Results We evaluated the likelihood ratio of 1000 cen-
sored sequences on all three models with interaction
strength fixed at 0.5 (a scalar that controls the interac-
tion between events of different types) for each value
γ ∈ {0.2, 0.4, 0.6, 0.8}. Each sequence prior to censoring
was sampled from each model (self-correcting, Hawkes
(dense), and Hawkes (block-diagonal)) over the time win-
dow t ∈ [0, 2] and contains at most 200 events. These results
are shown in Fig. 3, where the likelihood ratio of the cen-
sored method compared to the baseline is visualized with
respect to the number of marks censored. We see a system-
atic improvement in the estimated likelihood when using
the mark-censored model. Furthermore, the improvement in-
creases as more information is censored; however, it is clear
that the improvement depends on the relationship between

4Note that different ranges of values were chosen for α be-
tween the dense and block-diagonal Hawkes models to normalize
the effective rate of events overall. This is done by, in expectation,
having the same values for

∑
i∈M αij .

events and the underlying model dynamics (i.e., the form of
λ) as noted by the difference in results between models.

To further investigate this, for the block-diagonal Hawkes
model we artificially modulate the interaction strength be-
tween events of different types. To do this, we performed
the same likelihood ratio evaluation on 1000 sequences with
γ = 0.5 using the same block-diagonal Hawkes model but
with α′ij := cαij if i 6= j and αij otherwise for each value
of c ∈ {0.1, 0.2, . . . , 1.0}. This results in 10 different mod-
els that have the same diagonal values in α but different
scales of off-diagonal values. The results in Fig. 4 clearly
demonstrate that properly accommodating mark-censored
sequences yields the biggest impact when there is high cor-
relation between observed and censored events.

4.2 EXPERIMENTS ON REAL-WORLD DATA

Models Many real-world data involve working with large
vocabularies of possible marks, |M| = M . Because of this,
it can often be more parameter efficient to train a neural
network based MTPP rather than a classical parametric one.
The model architecture of choice for our experiments is the
neural Hawkes process, a continuous-time RNN that takes
inspiration from the parametric Hawkes process [Mei and
Eisner, 2017]. Details on model hyperparameters, optimizer,
training regime, etc. can be found in the Appendix.

Datasets We evaluate our censoring method on neural
Hawkes models that have been trained individually on four
different datasets. The Taobao user behavior dataset [Zhu
et al., 2018] contains page-viewing records of different cate-
gories (M = 1000) from users on an e-commerce platform.
The Reddit dataset [Baumgartner et al., 2020] contains
comments that users have made on various communities
(M = 1000) on the social media website reddit.com.
MemeTracker [Leskovec et al., 2009] contains records of
what websites (M = 5000) a common phrase, or meme,
was mentioned on over time. Lastly, the Email [Paranjape
et al., 2017] dataset contains sequences of sender addresses
of incoming emails (M = 808) for each recipient within a
research organization. More information on various aspects
of these datasets and details of data preprocessing can be
found in the Appendix. The following results are achieved
using models that have been sufficiently trained on their
respective datasets.

Results We evaluated the likelihood ratio of 1000 held
out, censored sequences for each dataset for each value
γ ∈ {0.2, 0.4, 0.5, 0.6, 0.8}. The results are shown in Fig. 5.
Similar to the results in the synthetic experiments, we see a
systematic trend towards a large improvement in likelihood
over censored sequences across the board. This improve-
ment increases significantly as more marks are censored.
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Figure 5: Same setup as Fig. 3 except with results produced on four real-world datasets with trained neural Hawkes models.
Note that we display the results with respect to the absolute amount of marks censored rather than the percentage censored
as we suspect this has a more direct impact on the likelihood ratios, especially when dealing with sequences that naturally
have few unique marks compared to the total mark space M—as is typical in real datasets.

5 CONCLUSIONS

In this work we proposed a novel marginalization tech-
nique for inference in the presence of mark-censoring, for
any black-box MTPP model trained on complete histories.
Our method demonstrates systematic improvements in log-
likelihood for both synthetic and real-world data settings.

A limitation of the approach is that it is restricted to predic-
tion time and is not practical for use during training with
mark-censored training data. The main hurdle that needs to
be overcome to make our method viable in this setting is that
current sampling methods for MTPPs are not differentiable.
In addition, while our approach is guaranteed to have higher
likelihood on average for MTPP models with no misspecifi-
cation, this guarantee does not hold for misspecified models
(e.g., on real data sources)—see Appendix for more details.

Aside from directly addressing these limitations, potential
future directions of this work include applying this approach
to applications such as assessing good-of-fit and comparing
models with different vocabularies, extending the method-
ology to the continuous mark setting, incorporating more
informative censoring schemes (e.g., assuming data is not
MCAR), and permanently applying censoring via model
distillation with a mark-censored process.
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