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Abstract

Diffusion auction refers to an emerging paradigm
of online marketplace where an auctioneer utilises
a social network to attract potential buyers. Diffu-
sion auction poses significant privacy risks. From
the auction outcome, it is possible to infer hidden,
and potentially sensitive, preferences of buyers. To
mitigate such risks, we initiate the study of differen-
tial privacy (DP) in diffusion auction mechanisms.
DP is a well-established notion of privacy that pro-
tects a system against inference attacks. Achieving
DP in diffusion auctions is non-trivial as the well-
designed auction rules are required to incentivise
the buyers to truthfully report their neighbourhood.
We study the single-unit case and design two differ-
entially private diffusion mechanisms (DPDMs):
recursive DPDM and layered DPDM. We prove
that these mechanisms guarantee differential pri-
vacy, incentive compatibility and individual ration-
ality for both valuations and neighbourhood. We
then empirically compare their performance on
real and synthetic datasets.

1 INTRODUCTION

New technological shift in AI and data science has given rise
to an imminent need to address data privacy issues in online
platforms. Indeed, a Gartner survey shows that 41% of the
surveyed organisations have experienced a privacy breach or
security incident1. Data privacy issues have been especially
serious and impactful around the use of social commerce
platforms such as Instagram and Facebook. As users of such
a platform find, browse and buy products through the social
network, they are also exposed to a significant risk of privacy
leakage. A recent PCI Pal survey shows that fewer than 7%

1https://blogs.gartner.com/avivah-litan/2022/08/05/ai-
models-under-attack-conventional-controls-are-not-enough/

of users are confident about their data security on social
commerce sites2. Thus designing new tools to facilitate safe
and private use of social commerce platforms is of crucial
importance.

Auction is important in facilitating online commerce. Auc-
tions have been applied in many contexts, e.g., radio spec-
trum, sponsored search ads, virtual resource allocation. In
an auction, buyers submit their (private) valuations in bids
to the auctioneer. The bids often imply buyers’ preferences
and confidential business strategies, and competitors may
exploit them to gain an advantage. Hence, there is a need
to protect the privacy of bid information. The privacy is-
sues in auctions have recently been studied in [McSherry
and Talwar, 2007, Jian et al., 2018, Ni et al., 2021, Zhang
et al., 2020a, 2023]. To mitigate privacy risks, these studies
employ the well-established notion of differential privacy
(DP) [Dwork et al., 2006]. Here, DP is used to protect in-
dividual’s bid information when the auction outcome is
published. To achieve DP on bids, the work of McSherry
and Talwar [2007] proposed exponential mechanism. The
mechanism randomises auction results so that a change in a
buyer’s bid does not significantly affect the auction outcome.
In this way, the mechanism prevents the bid from being in-
ferred from the auction outcome. This mechanism has so far
been a predominant method to protect privacy in auctions.

Diffusion auction is an emerging form of auction. In this set-
ting, a seller is able to harness the power of social network
to diffuse auction information, inviting friends, friends-of-
friends, etc., to join the auction, thereby attracting a large
number of potential buyers. This differs from a standard
auction (without social network) where the participants are
fixed beforehand. Thus, diffusion auction is especially suit-
able for facilitating online social commerce platforms where
the social network [Liu and Wei, 2017] plays a prominent
role. A challenge in diffusion auctions lies in resolving the

2https://www.pcipal.com/knowledge-centre/resource/fewer-
than-10-of-people-are-confident-about-their-data-security-on-
social-media-according-to-survey-from-pci-pal/
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Figure 1: A social network with a seller s and seven buyers.
The number beside each node is the valuations of the buyer.
The seller s has an item to sell, and initially knows only
a, b, c. The mechanism will construct a probability distribu-
tion over potential buyers which determines how likely a
buyer is to win the item.

conflict between the seller who wants to attract more parti-
cipants for better revenue and the buyers who are reluctant
to invite their friends to avoid competition. Thus there is
a need to extend incentive compatibility (IC) for hidden
valuations in classical auctions, to diffusion IC for hidden
valuation as well as social ties. Numerous studies, e.g., [Li
et al., 2017, 2019, Zhang et al., 2020c,b], have proposed
mechanisms for diffusion auction that achieve diffusion IC.

Diffusion auctions are prone to the aforementioned privacy
risks for auctions in general. However, no study has focused
on the privacy issues for diffusion auctions. Here we close
this gap by investigating the following question:

How do we design a differentially private diffu-
sion mechanism (DPDM) that guarantees desir-
able properties and preserves valuation privacy?

Answering this question is not a trivial task. As mentioned
above, the exponential mechanism is the main approach to
ensure DP for auctions. An exponential mechanism firstly
creates a probability distribution over all possible auction
results such that more preferable result is associated with a
higher probability, and then outputs an auction result accord-
ing to the distribution. However, this mechanism can not
be directly extended to diffusion auctions as it fails to en-
sure diffusion IC property. For instance, run the exponential
mechanism to the scenario in Figure 1 (See Example 4.1 for
a detailed implementation). Assume that all buyers except
buyer b reveal their neighbours truthfully. From b’s perspect-
ive, revealing her neighbour f means getting a lower probab-
ility of winning the auction, as the exponential mechanism
would distribute the winning probabilities over 7 buyers
instead of 5. Therefore, the buyers are not incentivised to
diffuse auction information to their friends.

Contribution. In this paper, we design DPDM for the case
where a single seller sells an indivisible item to multiple
potential buyers. The seller and the buyers are assumed to be
nodes in a social network with their connections represented
as edges. The seller initially only has access to her direct
neighbours, and must incentivise the buyers to truthfully

report their valuations of the item, and diffuse the auction in-
formation to their neighbours. At the same time, the DPDM
should ensure the DP property for buyers’ bids.

To this end, we design two DPDMs: recursive DPDM and
layered DPDM. The idea for these two mechanisms is
market division that partitions the buyers into sub-markets.
The mechanism then associates a probability with each sub-
market. To ensure diffusion IC, the probability should be
monotonic on the size of the sub-markets:

• The recursive DPDM maps the network into a tree that
captures information flow among buyers. Then it recurs-
ively divides the market such that each sub-tree is a sub-
market and its probability is non-decreasing on the size
of the sub-tree.

• The layered DPDM also relies on the tree above, except
the market is not partitioned by sub-trees, but rather by
buyers’ distances from the seller. In this way, each layer
is a sub-market and its probability is fixed.

These two mechanisms are proven to meet desirable incent-
ive and privacy properties. The layered DPDM has a lower
bound on expected social welfare. The recursive DPDM
achieves a better social welfare empirically. We demonstrate
this using a series of experiments that simulate diffusion
auctions over three real-world social network datasets. Our
experiments reveal that in most cases, the recursive DPDM
reaches comparable social welfare as the theoretical upper
bound. We now highlight our contributions:

1. We expand diffusion mechanisms adding the DP condi-
tion. This builds a bridge between diffusion auctions and
privacy preservation. See Section 3.

2. Using the idea of market division, we design recursive
DPDM (Section 4) and layered DPDM (Section 5). These
mechanisms are IC and differentially private.

3. We empirically evaluate our two mechnaisms on real-
world network datasets. See Section 6.

2 RELATED WORK

Differentially private mechanism. Differential privacy
(DP) is proposed to protect individual data from inference
attacks on aggregate queries over a database [Dwork et al.,
2006]. The notion has since been extended to various do-
mains such as statistical data inference [Dwork, 2008] and
decision trees [Fletcher and Islam, 2019]. McSherry and
Talwar [2007] extend DP to auctions and propose exponen-
tial mechanism. This mechanism ensures a weaker version
of IC, approximate IC, which ensures any user can only
gain a bounded extra utility from misreporting. This solu-
tion concept is adopted in subsequent studies [Zhu et al.,
2014] and [Diana et al., 2020] on multi-item auctions and
double auctions. As approximate IC allows bidders to have
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non-zero incentives to lie, these methods would not meet
the requirements in our problem.

Many work design DP auctions that ensure the classical
version of IC [Huang and Kannan, 2012, Xiao, 2013, Zhu
and Shin, 2015, Jian et al., 2018]. Specifically, Xiao [2013],
Huang and Kannan [2012] proposes general methods to
transform a classical IC mechanism to a privacy preserving
counterpart that is still IC. However, [Xiao, 2013]’s method
works only when the valuation space is small and can not
be applied to general problems, including ours. In contrast,
[Huang and Kannan, 2012]’s method can be seen as a gen-
eralisation of Vickrey-Clarke-Groves (VCG) mechanism
[Groves, 1973] paired with a carefully designed payment
rule, and thus is applicable to general problems. Yet, when
the mechanism is applied to auctions, it is only approxim-
ately IC. Later, Zhu and Shin [2015] and Xu et al. [2017],
Jian et al. [2018] propose mechanisms that combine the
exponential mechanism with the payment rule in [Archer
and Tardos, 2001], applying to combinatorial auctions and
reverse auctions, respectively.

No mechanism above can be applied as DPDM in our prob-
lem because they fail to ensure diffusion IC.

Diffusion auction mechanisms. Diffusion auction is an
emerging topic in mechanism design. Li et al. [2017] are
the first to investigate diffusion auction and they propose
information diffusion mechanism (IDM), a mechanism for
single-unit auction in a social network. The basic idea is to
give monetary reward to buyers who are critical to diffusion,
and it ensures diffusion IC. Following this idea, Li et al.
[2019], Zhang et al. [2020c,b] study single-unit diffusion
auction from other various aspects. Later, Zhao et al. [2018],
Kawasaki et al. [2020] extend single-unit diffusion auctions
to multiple-unit cases and propose generalised IDM and
DNA-MU, resp. All of these mechanisms are deterministic
and none addresses privacy leakage risks.

3 PROBLEM FORMULATION

3.1 PRELIMINARIES

Consider the following setup: There is a seller, denoted by
s, and n buyers, denoted by N = {1, 2, 3, ..., n}. Seller s
has a single indivisible item to sell. Each buyer i ∈ N is
willing to buy the item and attaches a valuation vi to the
item. Valuation vi is the maximum amount of money that i
is willing to pay. This value is private to the buyer.

The seller and the buyers form a social network, represented
by a graph G = (V,E), where V = N ∪ {s} and E ⊆ V 2.
Each node i ∈ V has a neighbour set, denoted by ri :=
{j ∈ V | (i, j) ∈ E}. This set is a private for buyer i. The
pair (vi, ri) is called the true profile of the buyer i.

During an auction, the seller would like to attract more

buyers to the auction and spread the auction information.
Initially, only the seller’s neighbours are invited to the auc-
tion. Each buyer i ∈ N , once invited to the auction, is
asked to report her profile θ′i = (v′i, r

′
i), which might not

be the true one. This forms the tuple θ′ := (θ′1, . . . , θ
′
n)

called a global profile of all buyers. By Θ we denote the
set of all such profiles. Given a profile θ′, we set θ′−i :=
(θ′1, . . . θ

′
i−1, θ

′
i+1, . . . θ

′
n) to denote the profile of all buyers

except i. Given θ′ ∈ Θ, we construct Gθ′ = (Vθ′ , Eθ′) the
directed graph: add a directed edge (i, j) if j is reported by
i as a neighbour. We call such graph profile digraph.

Diffusion auctions have two forms of information asym-
metry: (1) Valuation asymmetry. The buyers’ true valu-
ations are private and hidden from the seller. Thus buyers
have an advantage over the seller as they can misreport their
valuations. The auction should prevent misreporting of valu-
ation through appropriate strategies. (2) Neighbourhood
asymmetry. By Bulow-Klemperer theorem, the revenue of
an auction increases as the number of buyers grows [Bu-
low and Klemperer, 1996]. However, as buyers’ neighbours
are hidden, the seller would hope the buyers to diffuse the
auction information to their neighbours to allow more parti-
cipants to join. Being rational, the buyers are not necessarily
willing to disseminate the auction information as this may
hinder their own chance of winning. Hence buyer i can
misreport the neighbour set r′i ⊆ ri.

Definition 3.1. A mechanism M consists of two functions
(π(·), p(·)), where π : Θ → {0, 1}n is an allocation func-
tion and p : Θ→ Rn is a payment function.

Thus, a mechanism M takes the reported profile θ′ ∈ Θ as
input, and outputs (π(·), p(·)). The function π(·) determines
which buyer gets the item, and the function p(·) determines
the amount that each buyers pays. We write the allocation
result π(θ′) as (π1(θ′), . . . , πn(θ′)) and the payment res-
ult p(θ′) as (p1(θ′), . . . , pn(θ′)). The utility of buyer i is
ui(θ

′) = viπi(θ
′)− pi(θ′) when reported global profile is

θ′. The social welfare of M on θ′, written swM (θ′), is the
sum of all utilities, i.e., swM (θ′) =

∑
i∈V ui(θ

′). We aim
to maximise the social welfare.

3.2 PRIVACY-AWARE DIFFUSION AUCTION

On top of the two challenges (1) and (2) provided by in-
formation asymmetry, another important challenge is (3)
Valuation privacy. Once the auction result is announced, an
attacker may infer the bid information from the published
auction result. This is known as the inference attack [Li
et al., 2017]. This disadvantages the buyer(s) whose private
valuation is disclosed. Therefore, the buyers require the
guarantees that their private valuations are protected. So, for
privacy preservation, we use randomisation.

Definition 3.2. A randomised mechanism M is one that,
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given θ′ ∈ Θ, outputs (π, p) such that π and p are random-
ised allocation and payment functions, respectively.

Given θ′ ∈ Θ, π(θ′) is a random variable with values
{0, 1}n, and p(θ′) is a random variable with values in
(R+)n. We use the concept of differential privacy to define
the privacy protection of M . Differential privacy requires
that the distributions over the outcomes are nearly identical
when global profiles are nearly identical. The privacy pro-
tection level is measured by a privacy parameter ε ∈ R+.

Definition 3.3. Let M be a randomised mechanism. Call
the mechanism M ε-differentially private (ε-DP) if for any
two global profiles θ′, θ′′ ∈ Θ that differ on a single buyer’s
valuation, and for any possible outcome o ∈ O,

Pr[M(θ′) = o] ≤ exp(ε)Pr[M(θ′′) = o] (1)

Eqn. (1) shows if any buyer i changes her reported profile
from θ′i = (v′i, r

′
i) to θ′′i = (v′′i , r

′
i), the auction outcome

does not change much. Therefore, no one could infer the
valuation of any buyer from the randomised outcome.

Exponential mechanism [McSherry and Talwar, 2007] en-
sures ε-DP for valuation privacy. Given a global profile, an
exponential mechanism creates a distribution over all pos-
sible auction outcomes, and outputs an outcome according
to the distribution. Intuitively, the higher a reported valu-
ation is, the more likely the corresponding buyer gets the
item. Specially, given a global profile θ′, define a score func-
tion σ : Θ×O → R that assigns a real valued score to each
pair (θ′, o) from Θ×O. The more preferable an outcome o
is, the higher the score of o is. An exponential mechanism
M(θ′) outputs a result o∗ ∈ O with probability

exp(εσ(θ′, o∗))∑
o∈O exp(εσ(θ′, o))

In our problem, we use oi to denote the outcome where
buyer i ∈ N gets the item.

In randomised mechanisms, we assume that the buyers are
risk-neutral and care about their utilities in expectation. We
use EM [ui(·)] to denote i’s expected utility in M and re-
define the IC and IR properties by expected utility.

Definition 3.4. Let M be a randomised mechanism,

• The mechanism M is IC if for all i ∈ N , all θi, θ′i ∈
Θ and for all θ′−i, θ

′′
−i ∈ Θn−1, we have the following,

EM [ui((θi, θ
′
−i))] ≥ EM [ui((θ

′
i, θ
′′
−i))].

• The mechanism M is IR if for all i ∈ N and all θ′−i ∈
Θn−1, we have EM [ui((θi, θ

′
−i))] ≥ 0.

The IR and IC properties ensure that buyers participate in
the auction and reveal their true profiles as they are rational
and doing so leads to the best expected utilities. Hence,
information asymmetry issues can be addressed.

The social welfare of M is also in expectation, i.e.,

EM [swM (θ)] =
∑
i∈V

EM [ui(θ)].

We aim to design a randomised mechanism that is IC, IR,
ε-DP (for reasonable ε) while maximising social welfare.

4 RECURSIVE DPDM

Preserving valuation privacy in diffusion auctions is not a
trivial task. On one hand, existing diffusion auctions, includ-
ing IDM [Li et al., 2017], CMD [Li et al., 2019], and FDM
[Zhang et al., 2020c], are deterministic, and thus fail to pre-
serve privacy. On the other hand, existing DP mechanisms,
including exponential mechanism, fail to incentivise truthful
report of neighbours, as illustrated in Example 4.1.

Example 4.1. We apply the exponential mechanism
paired with score function σ(θ′, oi) = v′i to the
scenario in Fig. 1. Assume that the buyers truth-
fully report their valuations. Then buyer i wins
with probability exp(εvi)/

∑
κ∈N exp(εvκ). If buyer

b reports her neighbour f , b wins with probability
exp(8ε)/

∑
κ∈N exp(εvκ), whereas she wins with probab-

ility exp(8ε)/
∑
κ∈N\{f,j} exp(εvκ) had she chose not to

report f . In the latter case, the winning probability is even
higher, and thus b has incentive to hide her neighbours.

To incentivise buyers to diffuse auction information, we
need to ensure each buyer’s utility of reporting her neigh-
bours should be no less than that of non-reporting. We pro-
pose recursive DPDM REC to achieve this. The basic idea
is “market division”, i.e., treat the social network as a market,
partition the market into multiple sub-markets and assign
each sub-market a probability with which buyers in this sub-
market win, as shown in Eqn. (2). Then each buyer would
report as many neighbours as possible in order to maximise
the probability of the sub-market she belongs to. The buyers
in a sub-market share the probability of the sub-market in
such a way that the winning probability of any buyer is inde-
pendent from her children, as shown in Eqn. (3). Therefore,
the buyers have no competition with their children and have
no incentive to hide them.

We now describe REC in detail: Fix a score function σ(·)
non-decreasing in v′i. Given θ′ ∈ Θ, a privacy parameter ε
and the function σ(·) as input, REC works as follows:

(1) Construction of diffusion critical tree. From the profile
digraph Gθ′ , REC constructs a diffusion critical tree Tθ′ .
When the context is clear, we write the tree as T . The diffu-
sion critical trees are introduced in [Zhao et al., 2018]. For
buyers i, j, we say that i is θ′-critical to j, written i �θ′ j,
if all paths from s to j in Gθ′ go through i. The root of
the tree Tθ′ is s, the nodes Vθ′ are the buyers, and for each
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j ∈ Vθ′ , her parent is the node i �θ′ j who has the closest
distance to j. When there are more than one parents, only
one node is randomly selected as the parent. The depth of
buyer i, denoted by di, is the distance from s to i.

(2) Assignment of winning probabilities. The process is
recursive and starts with Tθ′ . Given a (sub-)tree rooted by
i ∈ V , REC assigns a probability to each sub-tree rooted
by j ∈ ri, and a winning probability to each j ∈ ri. This
operation is repeated for j’s children, children of j’s children
and so on until there is no more children.

(a) Assignment of probabilities to sub-trees. Let T [i] denote
the sub-tree rooted by i. T [i] consists of node i and all of
i’s descendants. Let T (i) denote T [i] with i removed, i.e.,
T (i) := T [i] \ {i}. Given a sub-tree T [i], REC divides the
market in T [i] to |ri| + 1 sub-markets, one for i and each
of the other for a sub-tree T [j], where j ∈ ri. Then REC

assigns a probability Prθ
′

i (θ′i) to i with θ′i and Prθ
′

T [j] to each
T [j], where j ∈ ri. When the context is clear, we write Pri
and PrT [j] for Prθ

′

i (θ′i) and Prθ
′

T [j], respectively. We define
Pri later in Step (2).b. For notational convenience, given a
set of nodes S ⊆ T , we let Exp(S) be the sum

Exp(S) =
∑
κ∈S

exp(εσ(θ′, oκ)).

Now we define PrT [j] for each j ∈ ri as

PrT [j] =
(
PrT [i] − Pri

)
× Exp(T [j])

Exp(T (i))
(2)

(b) Assignment of winning probabilities to buyers within a
sub-market. In a sub-tree T [i], REC assigns the winning
probability Prj to each j ∈ ri as

Prj =
(
PrT [i] − Pri

)
× Exp(j)

Exp(T (i) \ T (j))
(3)

At the very beginning, REC starts with the tree T rooted
by s. We label s as node 0 and set PrT [0] = 1 and Pr0 = 0.
REC ends with the leaves. For a sub-tree T [i] where each
j ∈ ri are leaves, REC assigns the winning probability to
each j as Prj =

(
PrT [i] − Pri

)
× Exp(j)

Exp(T (i)) .

(3) Allocation and payment. Randomly select a buyer w
as a winner according to the constructed distribution in Step
(2). Set w’s allocation πw = 1, and payment as

pw = v′w −
∫ v′w

0

Prw((x, r′w))dx/Prw(θ′w) (4)

We present the details of REC in Algorithm 1 and give a
running example of Step (2) in Example 4.2.

Algorithm 1 Recursive DPDM REC

Input: Reported global profile θ′, privacy parameter ε and
score function σ

Output: Allocation result π(θ′) and payment result p(θ′)
1: Initialise π(θ′) = 0, p(θ′) = 0
2: Construct a profile digraph Gθ′ = (Vθ′ , Eθ′)
3: Construct a critical diffusion tree Tθ′
4: Run GetPro(Tθ′ [0], 1, 0)
5: Randomly select a buyer w with the distribution
6: Set πw = 1 and pw by Equation (4)

Algorithm 2 GetPro

Input: (Sub-)Tree T [i], probabilities PrT [i] and Pri
Output: Probabilities PrT [j] and Prj , j ∈ ri

1: for j ∈ ri do
2: Calculate PrT [j] of sub-tree T [j] by Equation (2)
3: Calculate Prj of buyer j by Equation (3)
4: Run GetPro(T [j],PrT [j],Prj)
5: end for

Example 4.2. Apply REC to scenario in Fig. 1, with
σ(θ, oi) = v′i. So, PrT = 1 and Prs = 0. Calculate the
probabilities of s’s children. The probability for T [a] is
PrT [a] = (exp(10ε)+exp(9ε)+exp(12ε))/Exp(T ). Buyer
a wins with probability Pra(10) = exp(10ε)/(Exp(T ) −
(exp(9ε) + exp(12ε))). Similarly, we get the probabilit-
ies for T [b], T [c] and b, c. Buyer d wins with probabil-
ity Prd(9) = (Pr(T [a]) − Pra) × exp(9ε)/(exp(9ε) +
exp(12ε)). We can also get the probabilities for e, f, g.

Lemma 4.3. Recursive DPDM REC is individually ra-
tional in terms of both valuations and neighbours.

Proof. Given a global profile θ, for each buyer i
with (vi, ri), EREC[ui(θ)] = (vi − pi(θ))Pri(θi) =∫ vi
0

Pri((x, ri))dx ≥ 0. Therefore, the lemma holds.

To show that REC satisfies IC we need the following:

Theorem 4.4 ([Archer and Tardos, 2001]). Let Pri(v
′
i) be

the winning probability assigned by mechanism M when
buyer i reports v′i. Then M is IC in terms of valuations iff
for all i ∈ N : (1) Pri(v

′
i) is monotonically non-decreasing

in v′i, and (2) E[pi] = viPri(v
′
i)−

∫ v′i
0

Pri(x)dx.

Lemma 4.5. Recursive DPDM REC is incentive compat-
ible in terms of both valuations and neighbours.

Proof. We first show REC is IC in terms of valuations. By
Equation (2), the probability for any sub-tree T [i] is propor-
tional to the score, which is non-decreasing in v′i. Hence,
PrT [i] in non-decreasing in v′i. Similarly, by Equation (3),
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given a sub-tree T [i], the winning probability Pri is non-
decreasing in v′i, which meets the condition (1) in Thm. 4.4.
Also, by Equation (4), the expected payment

E[pi] = pi × Pri = v′iPri(θ
′
i)−

∫ v′i

0

Pri((x, r
′
i))dx,

which meets the condition (2) in Theorem 4.4 when r′i is
fixed. Therefore, REC is IC in terms of valuations.

Next we show REC is IC in terms of neighbours. By the
definitions of expected utility and payment function (4), we
know that i’s expected utility is only determined by the
winning probability Pri. Let a` be an ancestor of i with
distance `. When i reports truthfully as θi and the reported
global profile is θ′−i, then i’s winning probability is

Pri =
Exp(i)

Exp(T (a1) \ T (i))
× (PrT [a1] − Pra1)

=
Exp(i)

Exp(T (a1) \ T (i))
×
(
PrT [a2] − Pra2

)
×
(

Exp(T [a1])

Exp(T (a2))
− Exp(a1)

Exp(T (a2) \ T (a1))

)
=

Exp(i)

Exp(T (a1) \ T (i))
× (PrT − Prs)

×
di−1∏
`=1

(
Exp(T [a`])

Exp(T (a`+1))
− Exp(a`)

Exp(T (a`+1) \ T (a`))

)
(5)

If i hides some of her neighbours and reports any θ′i
where r′i ⊆ ri, instead, and the others report θ′−i.
Then in Eqn. (5), PrT , Prs and Exp(i)

Exp(T (a1)\T (i)) does

not change. Also, for each `, Exp(a`)
Exp(T (a`)\T (a`+1))

remains

intact, but Exp(T [a`])
Exp(T (a`+1))

decreases. So we can know
that Pri decreases when i misreports her neighbour-
hood. Therefore, we have EREC[ui(((vi, ri), θ

′
−i))] ≥

EREC[ui(((vi, r
′
i), θ

′′
−i))].

Lemmas 4.3 and 4.5 show the recursive mechanism REC
incentivises buyers to reveal their true profiles and thus
addresses valuation asymmetry and neighbourhood asym-
metry. Next we show that REC also addresses the valuation
privacy issue. In following lemma, we use the following
notations.

• dmax: the maximum depth of the diffusion critical tree,

• ∆σ: the largest possible difference in score function σ
when applied to two global profiles that differ only on a
single valuation, for all possible outcome oi ∈ O.

Lemma 4.6. Given a reported global profile θ′, recursive
DPDM REC is εdmax∆σ-differentially private, where ε is
the DP parameter of REC.

Proof. Let θ and θ′ be two profiles where a buyer i’s reports
i reports vi in θ and v′i in θ′ such that vi 6= v′i. Consider
the probabilities that REC(θ) and REC(θ′) return a winner
w. In a critical diffusion tree Tθ, let dw denote the depth
of w, a`w be an ancestor of w with distance `. Also, let
Expθ(T (a1w)− T (w)) and Expθ

′
(T (a1w)− T (w)) denote

the value derived from θ and θ′, respectively. Then by Equa-
tion (3), we have

Pr[REC(θ) = ow]

Pr[REC(θ′) = ow]
=

Exp(w)
Expθ(T (a1w)−T (w))

Expθ
′
(w)

Expθ
′
(T (a1w)−T (w))

×
PrθT [a1w] − Prθa1w
Prθ

′

T [a1w] − Prθ
′

a1w

We repeatedly replace PrθT [a`w], Prθa`w , Prθ
′

T [a`w], Prθ
′

a`w
by

expressions of a`+1
w until we get an expression of s. For

each distance 0 ≤ ` < dw, we denote Exp(T [a`w])

Exp(T (a`+1
w ))

as Aθ` ,
Exp(a`w)

Exp(T (a`+1
w )\T (a`w))

as Bθ` . For θ′, we have similar notations

as Aθ
′

` and Bθ
′

` . Then the above ratio can be written as

Pr[REC(θ) = ow]

Pr[REC(θ′) = ow]
=

Bθ0
Bθ

′
0

×
dw−1∏
`=1

Aθ` −Bθ`
Aθ

′
` −Bθ

′
`

Next we prove the lemma through that for each 0 ≤ ` < dw,
Aθ`−B

θ
`

Aθ
′
` −B

θ′
`

is bounded by exp(ε∆σ). Here we skip this due to

space limit. See details in App. B. Then we have

Pr[REC(θ) = ow]

Pr[REC(θ′) = ow]
≤ exp(ε∆σ)×

dw−1∏
`=1

exp(ε∆σ)

≤ exp(εdw∆σ) ≤ exp(εdmax∆σ)

Next theorem easily follows from Lemmas 4.5, 4.3 & 4.6.

Theorem 4.7. Recursive DPDM REC is IC, IR and
εdmax∆σ-DP.

5 LAYERED DPDM

Following the idea of market division, we propose layered
DPDM LAY in this section. Different from REC, LAY di-
vides the market by buyers’ distances to seller. Specifically,
given a critical diffusion tree, LAY allocates a probability
to each layer of the tree, which is shared by the buyers on
this layer. For any buyer, once she is invited, her layer is
fixed. Also, the buyer(s) whom she invites is on the next
layer, and thus has no competition with her.

LAY executes the same operations as in REC, where the
only difference is in Step (2) “Assignment of winning prob-
abilities”. Below we describe Step (2) of LAY in detail.
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(2) Assignment of winning probabilities. In this step, given
a critical diffusion tree Tθ′ , LAY assigns a probability to
each layer of the tree and then assigns a winning probability
to buyers on each layer.

(a) Assignment of probability to layers. Now we give
the definition of layer. Given a tree, the buyers with the
same distance di form a layer of a tree. The distance
di ∈ {1, . . . , dmax}. We use L` to denote the set of buyers
with distance `, i.e., L` := {i | di = `}. For each layer
L`, 1 ≤ ` ≤ dmax, LAY assigns a probability, denoted
by Prθ

′

L`
. We write it as PrL` when there is no ambiguity.

Given an infinite decreasing sequence γ = (γ1, γ2, . . .),
where

∑
γi = 1, we define the probability for layer L` as

PrL` = γ` (6)

Intuitively, as the layer becomes deeper, the assigned prob-
ability for the layer decreases.

(b) Assignment of winning probability to the buyers on a
layer. On the `th layer, LAY assigns buyer i with θ′i on layer
di = ` with probability

Pri(θ
′
i) = PrL` ×

Exp(i)

Exp(L`)
(7)

Once the probability distribution over all possible outcomes
is determined, LAY computes the payment and randomly
selects a winner w, following Step (3) of REC.

The complete process of layered DPDM is shown in Alg. 3.
Example 5.1 provides a running example of Step (2).

Algorithm 3 Layered DPDM LAY

Input: Reported global profile θ′, privacy parameter ε and
score function σ

Output: Allocation result π(θ′) and payment result p(θ′)
1: Initialise π(θ′) = 0, p(θ′) = 0
2: Construct a profile digraph Gθ′ = (Vθ′ , Eθ′)
3: Construct a critical diffusion tree Tθ′
4: for 1 ≤ ` ≤ dmax do
5: Calculate the probability of layer ` by Equation (6)
6: for i ∈ L` do
7: Calculate winning probability Pri by Eqn. (7)
8: end for
9: end for

10: Randomly select a buyer w with the distribution
11: Set πw = 1 and pw by Equation (4)

Example 5.1. Apply LAY paired with σ(θ, oi) = v′i and
sequence γ =

{
1

2κ+1

}
κ∈N to the scenario in Figure 1. Then

in this graph, three layers, L1 = {a, b, c}, L2 = {d, e, f},
L3 = {g} correspond to probabilities 1

2 ,
1
4 ,

1
8 , resp. In

L1, buyer a wins with probability exp(10ε)/(2(exp(10ε) +
exp(8ε) + exp(14ε))). Similarly, we get the probabilit-
ies for b and c. Then in L2, d wins with probability

exp(9ε)/(4(exp(9ε) + exp(12ε) + exp(15ε))). The prob-
abilities for e, f can be obtained in a similar way. Lastly, in
L3, buyer g wins with probability 1

8 .

Next we show that layered DPDM LAY is IC, IR and DP.
Lemmas 5.2 and 5.3 show LAY incentivises buyers to reveal
their true profiles and thus addresses valuation asymmetry
and neighbourhood asymmetry, while Lemma 5.4 shows
that LAY addresses the valuation privacy issue.

Lemma 5.2. Layered DPDM LAY is individually rational
in terms of both valuations and neighbours.

The proof of Lemma 5.2 follows the same reasoning as
Lemma 4.3. See details in Appendix C.

Lemma 5.3. Layered DPDM LAY is incentive compatible
in terms of both valuations and neighbours.

Proof. The IC property in terms of valuations is proved as
in Lemma 4.5. We need to show is Pri is non-decreasing in
valuations v′i. By Eqn. (7), Pri((v

′
i, r
′
i)) is proportional to

σ(θ, oi), which is non-decreasing in v′i.

To show the IC for reporting neighbours, note that i’s
expected utility is ELAY[ui(θ

′)] = (vi − pi(θ
′))Pri for

θ′ ∈ Θ. We plug in Eqn. (4) (7) into ui(θ
′). Then we

can see Pri is determined by di and di is determined by
her ancestors. Therefore, misreporting neighbours does
not affect her utility, i.e., ELAY[ui(((vi, r

′
i), θ−i))] =

ELAY[ui(((vi, ri), θ
′
−i))].

Lemma 5.4. Given a reported global profile θ′, layered
DPDM LAY is ε∆σ-differential private, where ε is the pri-
vacy parameter of LAY.

Lem. 5.4 is proved by showing in Eqn. (7), the change on a
single buyer’s valuation is bounded by ε∆σ. Due to space
limit, the proof of Lem. 5.4 is deferred to App. D. The next
thm. then easily follows from Lem. 5.2, 5.3 and 5.4.

Theorem 5.5. Layered DPDM LAY is IC, IR and ε∆σ-DP.

Next we analyse the expected social welfare of LAY. We
consider a hypothetical scenario where the exponential
mechanism is applied to the whole social network where the
seller knows all buyers. In this scenario, the auction inform-
ation is diffused to all buyers without any incentive. We call
such a mechanism as exponential mechanism with diffusion
(EMD). EMD has the optimal expected social welfare than
all DPDMs and thus is used as the benchmark.

Theorem 5.6. Given a global profile θ, layered DPDM
LAY has ELAY[swLAY(θ)] ≥ γdmax

EEMD[swEMD(θ)].

See the proof in App. E. Following is an easy corollary.

Corollary 5.7. For γ = (a−1a , a−1a2 , . . . ), where a > 1,
ELAY[swLAY(θ)] ≥ a−1

admax
EEMD[swEMD(θ)]
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6 EXPERIMENT

We evaluate the performances of REC and LAY, in terms
of social welfare under different privacy levels and valu-
ations on three real world social network datasets. We also
analyse the effect of sequence γ = (a−1a , a−1a2 , . . .) on the
performance of LAY. For each setup, we run 5000 times
and get average social welfare.

Dataset. We use three real world network datasets, including
Hamsterster friendships with 1, 858 nodes and 12, 534 edges
[Kunegis, 2013], Facebook with 4, 039 nodes and 88, 234
edges [Leskovec and Mcauley, 2012] and Email-Eu-core
network 1, 005 nodes and 25, 571 edges [Yin et al., 2017].
For each dataset, the seller s is randomly selected.

Valuation. The network datasets contain no information
about buyers’ valuations. We generate random numbers as
the valuations. We consider two commonly used distribu-
tions, normal distribution vi ∼ µ(50, 100) and uniform
distribution vi ∼ U [0, 100]. We set the parameters such
that the average value are same. Nevertheless, our aim is to
reveal the general pattern under different distributions and
these patterns are independent from these parameters.

We also consider the correlated valuations. That is, the valu-
ation of each buyer is influenced by her neighbours. We
generate such correlated valuations using DeGroot model
[DeGroot, 1974], a mathematical model of social learning.
The model first assigns each individual an initial valuation,
which are drawn from the uniform distribution as above.
Then each individual’s valuation is updated by taking a
weighted average of her own valuation and the valuations
of her neighbours. This process of valuation updating is
iterated five times, resulting in a set of correlated valuations.

Privacy parameter. To verify the performance of our
mechanisms, we also vary privacy parameter ε ∈
{0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Lem. 5.4 and 4.6
show that, under the same input ε, LAY and REC en-
sure different privacy levels. To see the performance
under the same guaranteed privacy, we set the input
ε as {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} for REC and
{0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}dmax for the others.

Score function. We use linear function, σ(θ, oi) = vi, as
the score function. The linear score function is widely used
in previous DP auctions, e.g., [McSherry and Talwar, 2007,
Xu et al., 2017].

Decreasing sequence. For LAY, we consider different
value of a ∈ {1.25, 1.5, 2, 3} in γ = (a−1a , a−1a2 , . . . ), and
evaluate the impact of a on expected social welfare.

Benchmark. Since there is no existing DPDM that can
be applied in our problem, we design two hypothetical
benchmarks. Exponential mechanism without diffusion
(EMWD): We apply the exponential mechanism only to the
seller’s neighbours. The expected social welfare of EMWD

can be seen as the lower bound among all DPDMs. Expo-
nential mechanism diffusion (EMD): See the description
of EMD in Section 5. We also compare with IDM [Li et al.,
2017] (See App. A), which is not DP, to see how much
social welfare is sacrificed to achieve DP.

Figure 2: Average social welfare of LAY, REC, EMD,
EMWD and IDM with different distributions under linear
function and fixed sequence with a = 2. Normal distribu-
tion is shown in the first row and uniform distribution is
shown in the second row.

Figure 3: Average social welfare of LAY, REC, EMD,
EMWD and IDM under correlated valuations, linear func-
tion and fixed sequence with a = 2.

Results. Overall, when comparing to IDM, the difference
in social welfare of the DPDMs decreases with ε increases.
Then, among DPDMs, EMD performs best in most cases,
followed by REC and LAY. Particularly, REC performs
very well. The lines of REC even coincide with those of
EMD in some cases, e.g., on Facebook & Email-Eu-core in
Fig. 2. The deviation of REC from EMD is at most 2.62%.
REC performs better than the layered counterpart. EMWD
returns the worst expected social welfare. The reason why
REC has better expected social welfare than LAY is that
in LAY, a probability of 1−

∑dmax

`=1 γ` is not distributed to
any buyer, which means that the seller does not sell the item
and the social welfare is 0 with this probability.

Next we show the effect of different parameters. (1) Dataset.
As shown in each column of Fig. 2, the same pattern can be
found for different datasets. (2) Privacy parameter. The
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Figure 4: Average social welfare of LAY with different
values of a, under normally distributed valuations and linear
function.

Figure 5: Average social welfare of LAY, REC, EMD,
EMWD and IDM under normal distribution, linear func-
tion and sequence with a = 2. Horizontal axis represents
the value of ε for EMD, EMWD & LAY, and dmaxε for
REC.

expected sw increases with ε. The less privacy is required,
the less noise is added, and thus the higher probability of
returning a result with good social welfare. (3) Valuation.
The 1st and the 2nd row of Fig. 2 show the results with
normal and uniform distributions, resp. Under both distri-
butions, REC performs better than LAY. Under correlated
valuations, as shown in Fig. 3, REC also performs better
than LAY. (4) Sequence. Fig. 4 shows the average social
welfare is best when a = 1.5, 2 for Hamsterster and when
a = 2, 3 for Facebook and Email-Eu-core. When a buyer i
with the highest valuation is on a deeper layer, a smaller a
leads to a larger probability for the layer where i is and also
a larger probability for i. The results verify this argument. In
Hamsterster (Facebook, Email-Eu-core), the buyers with the
highest valuation are on the 4th (3rd, 2nd) layer. (5) same
DP. Fig. 5 shows when the realised privacy is large, the avg.
social welfare of REC is greater than that of LAY, while
when the realised privacy is small, LAY is better.

7 CONCLUSION AND FUTURE WORK

We consider designing diffusion auction mechanisms that
sells a single item on social networks while preserving valu-
ation privacy. We propose two DPDMs, recursive DPDM
and layered DPDM. Also, we theoretically show their in-
centive and privacy properties and empirically show their
good performances in social welfare. We could extend this
study by considering: (1) How to design a DPDM for multi-

item auctions? (2) How to design a DPDM that preserves
both valuation and neighbourhood privacy? and (3) How to
design a DPDM that is group IC where no group of buyers
can benefit from joint misreporting?
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