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Abstract

This paper studies a cooperative multi-agent ban-
dit scenario in which the rewards observed by
agents are heterogeneous—one agent’s meat can
be another agent’s poison. Specifically, the total
reward observed by each agent is the sum of two
values: an arm-specific reward, capturing the in-
trinsic value of the arm, and a privately-known
agent-specific reward, which captures the personal
preference/limitations of the agent. This hetero-
geneity in total reward leads to different local op-
timal arms for agents but creates an opportunity
for free exploration in a cooperative setting—an
agent can freely explore its local optimal arm with
no regret and share this free observation with some
other agents who would suffer regrets if they pull
this arm since the arm is not optimal for them. We
first characterize a regret lower bound that cap-
tures free exploration, i.e., arms that can be freely
explored have no contribution to the regret lower
bound. Then, we present a cooperative bandit algo-
rithm that takes advantage of free exploration and
achieves a near-optimal regret upper bound which
tightly matches the regret lower bound up to a con-
stant factor. Lastly, we run numerical simulations
to compare our algorithm with various baselines
without free exploration.

1 INTRODUCTION

Multi-armed bandit (MAB) [Lai et al., 1985, Bubeck et al.,
2012] is a classic sequential decision making problem. In the
stochastic MAB, an agent faces a set K := {1, 2, . . . ,K}
(K∈N+) of arms, where each arm k is associated with a
reward random variable with unknown mean µ(k). The
agent sequentially pulls arms from K in T ∈ N+ decision
rounds and observes the pulled arm rewards. The goal of

the agent is to maximize its total reward over all decision
rounds, which is equivalent to minimizing the total regret,
i.e., the cumulative reward difference between the aggregate
reward of the optimal arm k∗ with the highest mean and the
agent’s sequential choices. To achieve this goal, the agent
needs to balance between exploration and exploitation, i.e.,
either optimistically choose the arm with high uncertainty in
reward (exploration), or myopically pull the one with high
empirical mean reward (exploitation).

Multi-agent MAB (MA2B) is an extension of the basic
MAB, where a group of M ∈ N+ agents (denoted as
M := {1, 2, . . . ,M}) pulls arms from the same arm set
K. This model has been studied in various settings, e.g.,
federated bandits [Shi and Shen, 2021, Shi et al., 2021a,
Zhu et al., 2021, Huang et al., 2021], cooperative pure
exploration [Hillel et al., 2013, Tao et al., 2019, Karpov
et al., 2020], multi-agent MAB with collision [Boursier and
Perchet, 2019, Mehrabian et al., 2020, Shi et al., 2021b],
and cooperative multi-agent MAB [Landgren et al., 2016,
Martínez-Rubio et al., 2019, Wang et al., 2020a,b].

The majority of prior works on MA2B, with a few excep-
tions (see Appendix A), study a homogeneous reward set-
ting, where the reward distribution of an arm is the same for
all agents. The homogeneous reward setting, however, fails
to capture agent-specific preferences/limitations. In many
real-world applications, the agents represent different clus-
ters of users with specific preferences, or users in different
geographical locations with different costs/limits to access
the arm set. In such settings, the reward of each arm might
be different for different agents. We refer to Section 2.3 for
a detailed explanation of various application scenarios.

This paper introduces a multi-agent multi-armed ban-
dits problem with heterogeneous reward (MA2B-HR). In
MA2B-HR, the reward observed by an agent consists of
two components representing arm- and agent-specific terms.
Specifically, when agent i ∈ M pulls arm k ∈ K, the ob-
served reward is X(i)

t (k) = Xt,arm(k) +X
(i)
t,agent(k), where

Xt,arm(k) is the arm-specific reward with bounded mean
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µ(k) ∈ (0, b) (where b is a positive constant) andX(i)
t,agent(k)

is the agent-specific reward with mean ν(i)(k). We denote
ω(i)(k) := µ(k) + ν(i)(k) as the reward mean of this pull.
In MA2B-HR, we assume bothXt,arm(k) andX(i)

t,agent(k) are
stochastic and independent. The arm-specific reward mean
µ(k) is not known to agents, and each agent i only privately
knows its own agent-specific mean values ν(i)(k),∀k ∈ K.
Further, in the MA2B-HR setting, the agents can broadcast
the observed values of the arm-specific term in the total
reward (by subtracting the agent-specific reward mean from
the observed reward, i.e., X(i)

t (k)− ν(i)(k)) at no cost. We
note that one may consider other settings for MA2B-HR,
e.g., known vs. unknown and homogeneous vs. heteroge-
neous assumptions for the agent-specific reward. We refer to
Appendix B.1 for a detailed discussion and the connection
of each setting to the prior literature.

In MA2B-HR, the reward heterogeneity of agents creates a
counterintuitive opportunity for free exploration of a subset
of arms. With heterogeneous rewards among agents, there
might be no global optimal arm(s). In other words, agents
may have different local optimal arms, i.e., the arms with
the largest reward mean are different among agents, so the
characterization of the regret of agents becomes more com-
plicated. However, the existence of multiple local optimal
arms poses a surprising opportunity to develop a cooperative
learning algorithm to explore local optimal arms for free
(without cost), share the free observations with others, and
significantly improve the total regret among all agents.

While the idea of free exploration is intuitive, designing a
cooperative bandit algorithm that effectively implements
this idea is nontrivial. The main challenge is that the local
optimal arms are unknown in advance to the bandit agents.
Hence, an algorithm should be designed to economically
identify the local optimal arms and assign them to agents
that can freely explore them and prevent other agents from
pulling these arms (with cost).

We note that MA2B-HR could be considered as an ex-
tended version of two recent models in the bandits’ liter-
ature: action-constrained multi-agent multi-armed bandits
(AC-MA2B) Yang et al. [2022] and grouped K-armed ban-
dits Baek and Farias [2021]. The idea of free exploration
is applicable to both Yang et al. [2022], Baek and Farias
[2021], however, they did not explicitly utilize free explo-
ration in algorithm design, so they fail to achieve optimal
performance that takes into account the free exploration. A
detailed discussion on both models and their connection to
MA2B-HR, and the significance of our results with respect
to both models are given in Section 1.2.

It is worth noting that the high-level idea of free exploration
has been leveraged in some other bandit settings in the liter-
ature [Chen et al., 2018, Shi et al., 2021c]. However, these
works considered the problem of incentivizing exploration;
specifically, they considered a principal, aiming to learn the

global bandit model, offering bonuses to agents to do ex-
plorations on the principal’s behalf. In these settings, Chen
et al. [2018], Shi et al. [2021c] studied free exploration in the
sense that the principal pays no cost rather than free explo-
ration in cooperation among agents. Hence, these works are
in clear contrast to the idea of free exploration in MA2B-HR
introduced in this paper. A comprehensive comparison to
related works are presented in Appendix A.

1.1 CONTRIBUTIONS

In this paper, we first present the MA2B-HR model and
highlight its real-world applications. Then, we propose
FreeExp, a cooperative algorithm designed to enable free
exploration in the learning process. Finally, we characterize
a regret lower bound that explicitly captures the impact of
free exploration on MA2B-HR, and show that the regret of
FreeExp matches the regret lower bound up to a constant
factor. The contributions of this work are:

Modeling and practical relevance of MA2B-HR: We
present the MA2B-HRmodel in Section 2 and justify its prac-
tical relevance by highlighting several application scenarios
in online advertising, wireless networks, and cloud and edge
resource allocation. We also introduce a new definition for
the suboptimality gap in MA2B-HR as a key parameter to
explicitly characterize the impact of free exploration in the
regret analysis.

Algorithm design: In Section 3, we present FreeExp, a
cooperative learning algorithm that tackles MA2B-HR and
implements the idea of free exploration. The high level idea
of FreeExp is that agents judiciously reduce the selection
of arms that are likely to be local optimal for other agents.
Instead, by cooperation, those agents can still get the obser-
vations on those arms from others without regret cost. In
doing so, free exploration of some arms becomes possible
and the cooperative bandit algorithm achieves significant
improvement in regret. A key technique in FreeExp is to
perform periodic pulls of the empirical local optimal arms
(i.e., the arm with the highest empirical mean) while balanc-
ing between exploration and exploitation, which guarantees
that the empirical optimal arm is indeed the ground truth
local optimal arm in most time slots.

Regret analysis: In contrast to the common regret analysis
in multi-agent bandits where only the pulled arm matters
regardless of the agent who pull the arm, in MA2B-HR, we
have to address a unique technical challenge since the regret
cost of pulling an arm depends not only on which arm is
pulled, but also on which agent pulls it. In Section 4, we
tackle this challenge and derive a regret lower bound for
MA2B-HR that echos the importance of recognizing free
explorations: arms that can be freely explored only cause
constant regret, instead of the usual logarithmic regret in
MA2B. We derive the regret upper bound of the FreeExp
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Table 1: A simple example with three agents and three arms (b > µ(1) > µ(2) > µ(3) > 0). The entries of the table show
the total reward of each arm for each agent, e.g., ω(1)(1) = µ(1) or ω(3)(2) = µ(2)− b < 0. Arms 1, 2, and 3 are the local
optimal arms of agents 1, 2, and 3, respectively. On the right-hand side, denoting ∆(i, j) = µ(i)− µ(j), the regret of our
work is compared with a classic non-cooperative algorithm [Auer, 2002] and the works of Yang et al. [2022] and Baek and
Farias [2021] as two special cases of MA2B-HR.

Arm 1 Arm 2 Arm 3

Agent 1 µ(1) µ(2) µ(3)
Agent 2 < 0 µ(2) µ(3)
Agent 3 < 0 < 0 µ(3)

UCB [Auer, 2002] O
((

1
∆(1,2) + 1

∆(1,3) + 1
∆(2,3)

)
log T

)
CO-UCB [Yang et al., 2022] O

((
1

∆(1,2) + 1
∆(2,3)

)
log T

)
KL-UCB [Baek and Farias, 2021] O (log log T )
FreeExp (our work) O(1)

algorithm which matches the regret lower bound up to a
constant factor. Deriving this result requires new analysis
techniques (see Theorem 4.3’s proof sketch in Section 4
for detail). The tightness of both regret upper and lower
bounds reflects the intrinsic property of MA2B-HR where
free exploration plays a key role, and that FreeExp is
near-optimal. A surprising observation is that in the special
cases where every arm is local optimal for at least one agent
(reasonable when M > K), FreeExp achieves an O(1)
regret.

Numerical results: In Section 5, we report numerical ex-
periments of comparing our algorithm to several baselines.

1.2 TECHNICAL COMPARISON TO THE PRIOR
WORK

In this section, we highlight our contribution in leveraging
free exploration by applying our algorithm to the action-
constrained MA2B problem (AC-MA2B) which was recently
studied by Yang et al. [2022]. In AC-MA2B, each agent
i ∈ M only pulls from a subset of arms K(i) ⊂ K and its
goal is to find the local optimal arm in K(i). AC-MA2B can
be regarded as a special case of MA2B-HR when agent i’s
specific reward ν(i)(k) for arm k is 0 if k ∈ K(i), and −b
if k 6∈ K(i), where b > 0 and µ(k) ∈ (0, b) for all arm
k (see Remark 2.1 for a formal definition). Since agent i
knows its agent-specific reward means, she would never
pull arms with ν(i)(k) = −b and thus is equivalent to only
having access to arms in the constrained arm set K(i). We
provide a simple example in Table 1 to illustrate the benefit
of free exploration which substantially improves regret as
compared to the classic non-cooperative algorithms and the
cooperative approach in Yang et al. [2022] as a special case.

Next, we present the theoretical improvement. Recall that
the non-cooperative optimal total regret of classic MAB [Lai
et al., 1985] for all agents inM is

O

∑
i∈M

∑
k∈K(i)\{k(i)∗ }

∆(i)(k) log T

kl(µ(k), µ(k) + ∆(i)(k))

 ,

where the suboptimality gap ∆(i)(k) := µ(k
(i)
∗ ) − µ(k)

is the difference of reward means between agent i’s opti-
mal arm k

(i)
∗ and arm k, and kl(a, b) is the KL-divergence

between two Gaussian distributions with means a and b
and the same variance (defined later). To improve total
regret through cooperation, Yang et al. [2022] proposed
cooperative extensions to classic learning algorithms, e.g.,
UCB [Auer, 2002], which improved the total regret to

O

 ∑
k∈∪i(K(i)\{k(i)∗ })

∆̄(k) log T

kl(µ(k), µ(k) + ∆̄(k))

 , (1)

where ∆̄(k) denotes the smallest reward mean gap of arm
k compared to the local optimal arms (excluding arm k)
among agents having access to arm k.

The regret of applying FreeExp to AC-MA2B is

O

 ∑
k∈∪iK(i)\∪i{k(i)∗ }

∆̄(k) log T

kl(µ(k), µ(k) + ∆̄(k))

 . (2)

The improvement of our result lies in the summation range.
Specifically, the summation range ∪iK(i)\∪i{k(i)

∗ } in (2) is
a subset of (1)’s ∪i(K(i) \ {k(i)

∗ }). The summation range in
(2) excludes the regret impact of arms in ∪i{k(i)

∗ }, i.e., arms
that are optimal to at least one agent; these arms are freely
explored. In contrast, the regret of Yang et al. [2022] in (1)
is over ∪i(K(i) \ {k(i)

∗ }), which counts some arms that are
optimal for some agents (and can be freely explored). We
note that this improvement can be substantial. Especially,
when all arms in K are locally optimal for some agents,
the regret upper in (2) is O(1), e.g., the simple example
in Table 1. This implies that capturing the benefit of free
exploration requires the development of a completely new
cooperative algorithm as explained in Section 3.

The grouped K-armed bandits model proposed by Baek and
Farias [2021] is almost equivalent to AC-MA2B Yang et al.
[2022] except for minor differences in how their actions are
constrained—the grouped bandits’ action constraint depends
on the arrived group while AC-MA2B’s is associates to the
agents. Therefore, the grouped bandits model can also be
regarded as a special case of our MA2B-HR model. Baek
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and Farias [2021] proved that the KL-UCB algorithm Cappé
et al. [2013] can address their grouped bandits model with
the regret performance as follows,

lim sup
T→∞

E[RT(A)]

log T
6

∑
k∈∪iK(i)\∪i{k(i)∗ }

∆̄(k)

kl(µ(k), µ(k) + ∆̄(k))
.

We emphasize that the above bound of Baek and Farias
[2021] was in an asymptotic form (i.e., for T →∞), while
FreeExp’s regret bound is in a non-asymptotic form (i.e.,
for any time T , see Eq.(10) of Theorem 4.3), which differs
a lot in handling the regret of free arms (see Remark 4.7 for
detail). Here, we pick the toy example in Table 1 to illus-
trate the difference; this can be generalized to any case that
all arms are free arms. In this example, FreeExp attains
the O(1) regret, while KL-UCB’s regret was o(log T ) (or,
O(log log T ) specifically) [Baek and Farias, 2021]. In Sec-
tion 5, we conduct numerical comparisons to corroborate
the advantage of FreeExp over KL-UCB. Also, we empha-
size that our regret upper bound is proved for the MA2B-HR
model which is more general than Baek and Farias [2021]’s
grouped bandits model.

2 MODEL AND NOTATIONS

We first present the multi-agent multi-armed bandits with
heterogeneous rewards problem (MA2B-HR) in Section 2.1
and its performance metric in Section 2.2. In Section 2.4, we
introduce notations related to free exploration to facilitate
our algorithm design and analysis.

2.1 MA2B-HR: THE MULTI-AGENT
MULTI-ARMED BANDITS WITH
HETEROGENEOUS REWARDS

In MA2B-HR, there are K ∈ N+ arms and M ∈ N+ agents.
Each arm k ∈ K (:= {1, 2, . . . ,K}) is associated with
a Gaussian reward random variable with unknown mean
µ(k) ∈ (0, b) and variance σ2

1 , where b is positive and
known.1 This is the arm-specific reward representing the
intrinsic value of the arm and it is independent of the pref-
erence of the agents. In addition, each agent has its own
private agent-specific reward for each arm to capture its
private preference for different arms. The agent-specific re-
ward of agent i for arm k is modelled by a Gaussian random
variable with mean ν(i)(k) and variance σ2

2 . The variances
σ2

1 and σ2
2 are common for all arms and agents. The agent-

and arm-specific rewards are independent, and both are also
independent across arms K and time t = 1, 2, . . ..

By pulling an arm k at time t, agent i observes a Gaussian
reward X(i)

t (k) with mean ω(i)(k) := µ(k) + ν(i)(k) and
variance σ2

1 + σ2
2 . In this paper, we assume that the value

1If b is unknown, we can set it as an arbitrarily large constant.

of ν(i)(k) is only known to agent i, but unknown to other
agents, for all agent i ∈M. Similar to the basic setting of
stochastic bandits, the arm-specific reward means µ(k) are
unknown to all agents. We also assume, for each agent i,
that all mean rewards ω(i)(k) (∀k ∈ K) are different; hence
each agent has a unique optimal arm.

Remark 2.1 (Agent’s local arm set). Observe that µ(k) ∈
(0, b). Consequently, if there exist two arms k1, k2 such that
ν(i)(k1) > ν(i)(k2) + b for agent i ∈M, then

ω(i)(k1)− ω(i)(k2)

= (µ(k1) + ν(i)(k1))− (µ(k2) + ν(i)(k2))

> µ(k1)− µ(k2) + b > 0,

that is, for agent i, the reward mean of arm k1 is higher than
that of arm k2. Therefore, there is no need for agent i to pull
arm k2. More generally, we define agent i’s local arm set as
follows, Therefore, agent i’s local arm set is

K(i) :=
{
k ∈ K : ν(i)(k) + b > max`∈K ν

(i)(`)
}
,

and agent i only needs to explore arms in its local arm set.

Another relevant model for reward heterogeneity is contex-
tual bandits [Li et al., 2010]. We discuss it in Appendix B.2.
The MA2B-HR model finds applications in diverse domains,
e.g., online advertising, online shortest path routing, online
cloud and edge resources allocation, and personalized clini-
cal trial, cf., the detail application scenarios in Appendix 2.3.

2.2 PERFORMANCE METRICS

Since rewards are heterogeneous across agents, agents may
have different optimal arms. The goal of each agent is to
find its local optimal arm, the one with the largest total
reward, which is the sum of arm- and agent-specific rewards.
Let k(i)

∗ be the local optimal arm of agent i, i.e., k(i)
∗ :=

arg maxk∈K(i) ω(i)(k). For an algorithm A, let J (i)
t (A) be

the arm pulled by agent i at time t. The expected regret
of agent i under algorithm A is the difference between
the aggregate reward of pulling its local optimal arm and
the aggregate reward of pulling arms in an online manner
according to a bandit algorithm, i.e.,

E[R(i)
T (A)] := Tω(i)(k

(i)
∗ )− E

[∑T

t=1
ω(i)(J

(i)
t (A))

]
,

where the expectation is taken over the randomness of action
sequence {J (i)

1 (A), J
(i)
2 (A), . . . }.

In the MA2B-HR model, agents can cooperate and share in-
formation to accelerate bandit learning. In particular, we as-
sume that each agent can broadcast the arm-specific reward
term (the observed rewards minus the agent-specific reward
mean, X(i)

t (k)− ν(i)(k)) at no cost to all other agents, and
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other agents immediately receives the broadcast observa-
tions. Note that this basic system model can be extended to
include the communication costs, or an underlying topology
to govern communication between agents, or agent privacy,
etc. We leave these extensions to future works and focus
on presenting the key idea of free exploration in this paper.
The learning environment is a cooperative one, hence, we
consider aggregate regret as the performance metric, which
is simply the aggregate regret over M agents, i.e.,

E[RT(A)] :=

M∑
i=1

(
Tω(i)(k

(i)
∗ )−E

[
T∑
t=1

ω(i)(k
(i)
t )

])
. (3)

2.3 APPLICATION SCENARIOS

The heterogeneous and known agent-specific reward means
for MA2B-HR is a practically relevant setting and can find
applications in diverse domains. The applications mentioned
in Yang et al. [2022] and Baek and Farias [2021] can also be
handled by MA2B-HR since their models are special cases
of MA2B-HR. In the following, we present four motivating
application scenarios that MA2B-HR could model. We note
that we focus on motivating the arm- and agent-specific
rewards. Detailed modeling of each application may require
additional effort, which is beyond the scope of this paper.

Online Advertising in Social Networks: Online adver-
tising is a classic example of the MAB problem [Tang et al.,
2014, Mahadik et al., 2020]. Consider a scenario where there
are multiple bandit agents that select ads to be placed on a
social platform. Each agent is responsible for a cluster of
users with similar interests. The cluster may be constructed
based on different criteria, e.g., location, age, etc. Indeed,
the popularity of products can differ across different loca-
tions or age groups. But the ads (arms) could be selected
from a shared pool of available ads. In this scenario, the
agent is aware of the personal preferences of users in its
cluster, i.e., the agent-specific reward is known. However,
the agents need to learn the potential value of ads as well;
hence, arm-specific rewards are unknown. Since the learning
agents all belong to the same social platform advertising en-
gine, they can cooperate to share arm-specific observations
and improve learning performance.

Online Shortest Path Routing in Wireless Networks:
Another example is the problem of finding shortest paths in
a multi-hop wireless network. Consider a scenario in which
multiple learning agents try to learn the shortest paths for
different communication sessions. In this scenario, bandit
algorithms can be implemented to learn the shortest routing
paths [He et al., 2013, Zou et al., 2014, Talebi et al., 2017].
The cost (or latency) of a certain path (arm) depends on
the physical condition of the path itself, representing an
arm-specific cost unknown to the learning agents. Further,
the session of each agent might have its local physical con-
ditions, e.g., distance and the hardware spec of the mobile

device, which is known only to the agent and impacts the
overall cost of each path. In this scenario, the former is
an arm-specific cost, which is homogeneous and unknown
among all agents, while the latter varies across agents and
whose mean is privately known to each agent only.

Online Cloud and Edge Resource Allocation: In prior
literature, the MAB framework has been used for work-
load allocation into a pool of cloud/edge servers [Talebi and
Proutiere, 2018, Johari et al., 2017, Lattimore et al., 2014,
Dagan and Koby, 2018]. In this scenario, the cloud provider
may categorize the compute jobs into multiple types, e.g.,
ML training workload, video processing, financial analytics,
etc., and create a learning agent for finding the best server
type for them. In this scenario, the arm-specific reward cap-
tures the hardware spec of the servers, and the agent-specific
reward captures the job-specific hardware requirement of the
workload, e.g., video processing is memory-intensive, while
finance workload is compute-intensive. In edge scenarios
where the workload could be run in multiple locations, the
agent-specific reward could be represented as the cost of
moving the workload to different locations as well, which is
known and heterogeneous for different agents.

Personalized Medicine and Clinical Trial: A classic
MAB application is clinical trial Lai [1987], Villar et al.
[2015], Aziz et al. [2021]. Consider a scenario where pa-
tients have different covariates, e.g., age, gender, genomic
features, and medical history, and, therefore, should be cat-
egorized to several heterogeneous groups, and the doctor
should create personalized agents (drug application policies)
for every group. In this scenario, the effectiveness of a treat-
ment for a certain patient group depends not only on the
treatment itself but also on the patient group’s covariates.
For example, the effectiveness of a treatment that disturbs
patients’ blood glucose concentrations may be discounted
on diabetics. In this scenario, the arm-specific reward cap-
tures treatments’ or medicines’ basic effectiveness on a
diseases, and the agent-specific reward (or cost) captures
the discounted or additional effectiveness due to the pa-
tient group features. The latter is known to (or can be well
evaluated by) an expert.

2.4 NOTATIONS RELATED TO FREE
EXPLORATION

To ease the presentation of FreeExp and its analysis, we
introduce some key notations relevant to free exploration. In
MA2B-HR, arms that are local optimal for at least one agent
can be freely explored. Then, in a cooperative environment,
other agents who take these arms as their suboptimal choices
can enjoy the freely explored observations of these arms.

Definition 2.2 (Set of free arms). We define the set of free
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arms Kfr as

Kfr := {k ∈ K :M∗(k) 6= ∅}, (4)

whereM∗(k) := {i ∈M : k ∈ K(i), k = k
(i)
∗ } is a subset

of agents with arm k as their local optimal arm. Any arm
k ∈ Kfr can be freely explored without incurring regret by
any agent inM∗(k). In the rest of this paper, we refer to
the arms in Kfr as free arms.

Recall that in the classic MAB, the difficulty of distinguish-
ing a suboptimal arm k from the optimal arm depends on
∆(k)—the reward mean gap between arm k and the optimal
arm k∗. In MA2B-HR, the notion of optimality gap needs to
be redefined since agents may have different local optimal
arms. In the following, we formally define the suboptimality
gap of each arm k as the smallest gap between arm k and
any local optimal arms. A formal definition is given below.

Definition 2.3 (Suboptimality gap). The suboptimality gap
of arm k is defined as

∆̄(k) := min
i∈M

∆(i)(k), (5)

where ∆(i)(k) := ω(i)(k
(i)
∗ ) − ω(i)(k) is the gap between

the mean rewards of arm k and k(i)
∗ —the local optimal arm

of agent i.

All free arms have zero suboptimality gaps, i.e., ∆̄(k) =
0, ∀k ∈ Kfr. Denote ī(k) ∈ arg mini∈M(k) ∆(i)(k) to
be an agent with the smallest reward gap of arm k (one
can break ties arbitrarily). Then, ∆̄(k) can be rewritten as
∆̄(k) = ω(̄i(k))(k

(̄i(k))
∗ )− ω(̄i(k))(k), where for simplicity,

we denote ω(̄i(k))(k) as ω̄(k), i.e.,

ω̄(k) := ω(̄i(k))(k) = µ(k) + ν (̄i(k))(k). (6)

3 THE FREEEXP ALGORITHM

In this section, we present the FreeExp algorithm, which
solves a multi-agent bandit problem in the MA2B-HR model.
Each agent runs its own FreeExp algorithm and cooper-
ates with each other. In Section 4, we demonstrate that with
FreeExp, the reward heterogeneity not only does no harm,
but in fact benefits the cooperative learning by the unique
opportunity of free exploration.

High-level idea of FreeExp: We now explain how
FreeExp implements the idea of free exploration to re-
duce regret. The pivot of FreeExp is the local optimal
(free) arm of each agent, which is unknown in advance. To
address that for an agent i, FreeExp maintains an local
optimal arm estimate I(i)

t of the agent i and an exploration
arm set D(i)

t containing arms that might be the ground truth

Algorithm 1 The FreeExp Algorithm (for Agent i)

1: Initialize: dt(k) = 0, µ̂t(k) = 0, ω̂
(i)
t (k) := µ̂t(k) +

ν(i)(k).
2: for each time slot t do
3: I

(i)
t ← arg maxk∈K(i) ω̂

(i)
t (k) {identify the

empirical optimal arm}
4: Send I(i)

t to other agents and collect their I(j)
t

5: D(i)
t ← {k ∈ K(i) \ {I(i)

t } : d
(i)
t (k) > ω̂

(i)
t (I

(i)
t )}

{choose arms with high KL-UCB}
6: D(i)

t ← D(i)
t \ {I(j)

t : ∀j ∈ M} {take
advantage of free exploration}

7: if D(i)
t = ∅ then

8: J
(i)
t ← I

(i)
t

9: else
10: w.p., 1

2 , J (i)
t ← I

(i)
t

11: w.p., 1
2 , J (i)

t ← uniformly pick an arm from D(i)
t

12: end if
13: Pull arm J

(i)
t and receive observations X(i)

t (J
(i)
t )

14: Send observations X(i)
t (J

(i)
t ) − ν(i)(J

(i)
t ) to other

agents and also collect theirs
15: Update ω̂(i)

t (k) and d(i)
t (k) for arm k and agent i

16: end for

local optimal arm and thus need further explorations. To
utilize free exploration, agent i periodically announces her
estimated optimal arm I

(i)
t to others to discourage other

agents exploring this arm.

Remark 3.1. We note that some prior works [Combes and
Proutiere, 2014, Combes et al., 2015, Wang et al., 2020a],
such as the DPE2 algorithm in cooperative MA2B [Wang
et al., 2020a], also involved a pivot arm and an exploration
arm set in the algorithm design. However, the technical
usage of both components in those works is very different
from ours. For example, DPE2 estimates the pivot arm to
gather all exploration responsibility to a single leader agent,
while our usage is relegating/dispersing the free arms to the
agents for which they are locally optimal.

Local optimal arm estimate and construction of explo-
ration arm set: Let nt(k) and µ̂t(k) denote the total num-
ber of times arm k is pulled up to time t and the empirical
mean of these nt(k) reward observations of arm k among
all M agents. Denote ω̂(i)

t (k) := µ̂t(k) + ν(i)(k) as the
empirical reward mean of agent i pulling arm k and it is
based on all agents’ observations of arm k. FreeExp uses
agent i’s empirical local optimal arm I

(i)
t (the arm with the

largest empirical reward mean ω̂(i)
t (k) of agent i at time t)

as an estimate of the pivot. Given this empirical optimal
arm as the pivot, the agent either pulls its own empirical
optimal arm I

(i)
t for free exploration, or explores other arms

in D(i)
t to guarantee the correctness of this estimated pivot.

To improve the efficiency of exploring other arms, we con-
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struct the exploration arm set D(i)
t for each agent i using

the KL-UCB index [Cappé et al., 2013]. The index of arm
k at time slot t is

d
(i)
t (k) := sup{q > 0 :

nt(k) kl(ω̂
(i)
t (k), q) 6 log t+ 4 log(log t)},

(7)

where kl(a, b) is the KL-divergence between two Gaussian
distributions with means a and b and same variance σ2

1 +

σ2
2 . The exploration arm set D(i)

t includes arms whose KL-
UCB indexes d(i)

t (k) are greater than the agent’s highest
empirical mean ω̂(i)

t (I
(i)
t ) (Line 5) and excludes arms that

are empirically optimal for at least one agent (Line 6)—
discourage agent i exploring others’ local optimal arms.
Note that the agents only share the arm-specific reward to
other, i.e., the agent subtracts the agent-specific reward from
the observed compound reward before sharing (Line 14).

Arm pulling policy: To guarantee the accuracy of the pivot
estimation (i.e., the empirical optimal arm is correct with
high probability), each agent needs to have enough observa-
tions for her empirically optimal arm. To accomplish this,
FreeExp implements an arm pulling policy (Lines 7-11)
as follows: if exploration arm set D(i)

t is empty, the agent i
pulls the empirical optimal arm I

(i)
t ; if exploration arm set

D(i)
t is not empty, with probability 1/2, the agent, uniformly

at random picks an arm fromD(i)
t to explore; and with prob-

ability 1/2, pulls her empirical optimal arm—encourage
free explorations of the agent’s empirical optimal arm. This
policy produces sufficient observations of this arm to guaran-
tee fast correction if the current empirical optimal arm is not
the correct one. Let J (i)

t denote the arm selected by agent i
in time slot t under FreeExp. We present pseudocode for
FreeExp in Algorithm 1.

Remark 3.2 (NoFreeExp Algorithm). There is a coun-
terpart algorithm of FreeExp, which does not utilize free
exploration, i.e., Algorithm 1 without Line 6. We name it as
NoFreeExp. Even without making use of free exploration,
NoFreeExp should have a better regret performance than
known baselines, e.g., CO-UCB, because NoFreeExp is
based on the KL-UCB algorithm, which is theoretically
better than UCB-like algorithms [Cappé et al., 2013].

4 THEORETICAL RESULTS

We present our theoretical results and their significance
discussions in this section. The rigorous proofs of these
results are deferred to Appendix C. We first derive a regret
lower bound in Theorem 4.1 which reflects the impact of
free exploration.

Theorem 4.1 (Regret lower bound). For any consistent
policy π (i.e., for any bandit instance ν and any α > 0, the
policy π always guarantees Eν,π[RT ] = O(Tα)), the regret

cost of addressing the MA2B-HR model in T time slots is
lower bounded by

lim inf
T→∞

E[RT(A)]

log T
>
∑

k:∆̄(k)>0

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))
, (8)

where ∆̄(k) defined in (5) is the smallest reward gap of
pulling arm k and ω̄(k) defined in (6) is the reward mean of
pulling arm k by the agent who enjoys the smallest gap.

Theorem 4.1’s proof leverages similar techniques of the
classic stochastic bandits [Lai et al., 1985]. Since ∆̄(k) = 0
for all free arms k ∈ Kfr and vice versa, the regret lower
bound can be rewritten as

lim inf
T→∞

E[RT(A)]

log T
>
∑

k∈K\Kfr

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))
. (9)

Remark 4.2 (Free arms have no contribution to the asymp-
totic regret lower bound). Free arms in Kfr contribute at
most sub-logarithmic costs to the regret lower bound. In
fact, given our finite regret upper bound of FreeExp next,
free arms only contribute finite regret.

Theorem 4.3 (Regret upper bound for FreeExp (Al-
gorithm 1)). The FreeExp algorithm’s regret is upper
bounded as follows,

E[RT(A)] 6 7bM2K2(4K + δ−2)

+
∑

k:∆̄(k)>0

4(∆̄(k)− 2δ)(log T + 4 log(log T ))

kl(ω̄(k) + δ, ω̄(k) + ∆̄(k)− δ)
(10)

where 0 < δ < 1
4mini∈M,k1 6=k2∈K|ω(i)(k1)− ω(i)(k2)|,

and that σ2
1 and σ2

2 are the variance of arm- and agent-
specific Gaussian rewards respectively, and b is an upper
bound of arm-specific reward mean µ(k) for all k ∈ K.2

If we let T → ∞ and δ → 0 (e.g., δ = (log(log T ))−1),
the above finite-time regret upper bound has the following
asymptotical form,

lim sup
T→∞

E[RT(A)]

log T
6 O

 ∑
k:∆̄(k)>0

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))

 .

(11)

Proof sketch and technical challenges. The proof of the
regret upper bound in Theorem 4.3 consists of two steps:
(i) bound the regret cost of pulling free arms in Kfr, and
(ii) other arms outside Kfr. To bound (i), notice that for
any free arm k in Kfr, there exists “corresponding” agent(s)
that takes arm k as its local optimal and can explore it
with no cost. Hence, we only need to count the number of

2One can also obtain a near-optimal regret upper bound if the
arm- and agent-specific rewards follow Bernoulli distributions.
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times that arm k is pulled by agents other than “correspond-
ing” one(s), which only happens when the “corresponding”
agent’s empirical optimal arm I

(i)
t is not its true local op-

timal arm k
(i)
t . Such events only occur with finite number

of times even with a very large value of T . The proof of (i)
shares the similar logical flow to that of [Wang et al., 2020b,
Theorem 1]. To proof (ii), however, we need to develop
new techniques for addressing the heterogeneous rewards
in MA2B-HR. Note that in MA2B-HR the suboptimality re-
ward gaps of pulling the same arm depend on the agents
and thus are different. Hence, one cannot bound the cost of
pulling a suboptimal arm k via multiplying the number of
times of pulling the suboptimal arm k by one suboptimality
reward gap as the usual bandits literature did. To address
the challenge, we introduce two new techniques. First, we
respectively count the number of times of the suboptimal
arm pulls by agents (see Lemma C.7 and its proof), and
secondly, we apply an Abel transformation to summing up
the regret costs of all agents on pulling the arm k according
to the order of magnitude of the arm’s reward gaps ∆(i)(k)
for these agents (see Lemma C.8 and its proof).

Similar to the regret lower bound’s another expression in (9),
this regret upper bound’s summation range can also be ex-
pressed according to the free arms,

lim sup
T→∞

E[RT(A)]

log T

6 O

 ∑
k∈K\Kfr

∆̄(k)/kl(ω̄(k), ω̄(k) + ∆̄(k))

 .

(12)

Remark 4.4 (Regret optimality of the FreeExp algorithm).
This regret upper bound in (11) matches the regret lower
bound in (8) up to a constant factor, which implies that
both bounds are near-optimal, and therefore the FreeExp
algorithm is near-optimal as well.

Remark 4.5 (Comparison to Yang et al. [2022]’s regret
bounds). Yang et al. [2022] proposed algorithms achieving
regret upper bounds [Yang et al., 2022, Theorems 2 and 4]
for AC-MA2B as follows (adapted to our notations),3

lim sup
T→∞

E[RT(A)]

log T

6 O

 ∑
k∈∪i∈M(K(i)\{k(i)∗ })

∆̄(k)

kl(ω̄(k), ω̄(k) + ∆̄(k))

 .

Note that K = ∪i∈MK(i) and Kfr = ∪i∈M{k(i)
∗ }. So, we

have K \ Kfr ⊂ ∪i∈M(K(i) \ {k(i)
∗ }). For example, if an

3To express Yang et al. [2022]’s result, we abuse ∆̄(k) nota-
tion once, where ∆̄(k) := mini∈M\M∗(k) ∆(i)(k)—the smallest
reward mean gap of arm k compared to the local optimal arms
(excluding arm k) among agents having access to k. The difference
between this definition and the original one in (5) is that for arm k
in Kfr this ∆̄(k) is positive while the original one is zero.

arm k ∈ Kfr is also a suboptimal arm for another agent,
then k ∈ ∪i∈M(K(i) \ {k(i)

∗ }) but k 6∈ K \ Kfr. In other
words, the arm k contributes logarithmic regret costs to
their upper bound but only contributes finite costs in ours.
Therefore, their regret upper bound failed to capture the
advantage of free exploration and their algorithms did not
utilize this appealing mechanism.

Remark 4.6 (Special cases with O(1) finite regret in
MA2B-HR). The regret upper bound in (12) echos the re-
gret lower bound’s Remark 4.2 that arms in Kfr only cause
finite O(1) costs in regret. Therefore, if all arms are local
optimal for some agents, K \ Kfr = ∅ (e.g., the example in
Table 1), then the regret upper bound in (11) becomes O(1),
i.e., a time horizon independent finite regret.

Remark 4.7 (Comparsion to Baek and Farias [2021]). Re-
call that the set of free arms Kfr defined in our Eq.(4) con-
tains arms that can be freely explored. In our regret upper
bound, we show that FreeExp’s regret cost due to pulling
arms in Kfr is O(1), while Baek and Farias [2021]’s regret
bound was asymptotic with respect to log T , implying that
KL-UCB’s regret due to pulling arms in Kfr was o(log T )
(the analysis in Baek and Farias [2021] upper bounds the
cost for arm set Kfr by O(log log T )).

Remark 4.8 (Generalization to the homogeneous reward
setting). If all agents’ local arm sets are the same, then only
one unique optimal arm can be freely explored (i.e., |Kfr| =
1) and all other arms would appear in the summation range in
regret bounds (8) and (11). Then, both the regret upper and
lower bounds reduce to the ones in classic MABs in Lai et al.
[1985] (also the same as the optimal bounds of cooperative
MA2B). This observation highlights the “generality” of our
regret bounds and shows that FreeExp also works for the
homogeneous reward setting.

5 NUMERICAL SIMULATIONS

Baselines: We report results of numerical experiments that
compare FreeExp to three known cooperative algorithms
that do not leverage free exploration: (1) CO-UCB and (2)
CO-KLUCB, extensions of UCB and KLUCB algorithms to
cooperative multi-agent scenarios proposed by Yang et al.
[2022] and Baek and Farias [2021] respectively; and (3)
NoFreeExp, a variant of FreeExp that does not make
use of free exploration (see Remark 3.2).

Experimental setup: Unless otherwise specified, we con-
sider a MA2B-HR model with M = 25 agents and K = 50
arms. Each arm is associated with a Gaussian distribu-
tion whose arm-specific mean µ(k) ∈ (0, 1) is chosen
uniformly at random from the click-through-rates of Kag-
gle’s Ad-Click dataset [Avito, 2015] and with variance 1/2.
We consider two special cases of agent-specific reward
means: Case (1) ν(i)(k) is either 0 or −1 ∀k ∈ K, i ∈ M
(i.e., AC-MA2B [Yang et al., 2022, Baek and Farias, 2021]
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(a) Case (1) (b) Case (2)

Figure 1: FreeExp vs. baselines

(a) Vary # local arms (b) Vary # agents (c) Vary % of free arms

Figure 2: Vary parameters of MA2B-HR

where agents have different local arm sets) and Case (2)
ν(i)(k) ∈ (−1/2, 1/2) ∀k ∈ K, i ∈ M (i.e., all agents
have the same local arm sets) as the more general heteroge-
neous reward scenario. The variances of all agent-specific
rewards are set to 1/2. In the AC-MA2B setting (Case (1)),
for each agent, we randomly select 20 of these 50 arms and
set their agent-specific rewards ν(i)(k) = 0, i.e., as local
arms. The remaining arms’ agent-specific rewards is set to
ν(i)(k) = −1. In the heterogeneous reward setting (Case
(2)), all agents have the same 50 arms but different agent-
specific rewards whose means are uniformly and randomly
generated between (−1/2, 1/2) for each arm and agent. All
simulations are averaged over 50 runs and their standard
deviations are plotted as shadow regions.

Experimental results: In Figures 1a and 1b, we compare
the cumulative regret of all algorithms in Cases (1) and (2).
The notable observations are: (1) Comparison of FreeExp
to NoFreeExp shows that utilizing the free exploration
mechanism can further improve an algorithm’s performance.
(2) The KLUCB algorithm outperform our FreeExp algo-
rithm. This is because FreeExp needs to explicitly exclude
arms likely to be local optimal (Line 6) and thus suffers a
high time-independent cost at the beginning, while KLUCB
does not; and the additional cost of FreeExp cannot be
compensated by the advantage of FreeExp in saving cost
on free arms in these two scenarios. Especially, we note that
when the number of free arms are large (e.g., see Figure 2c’s
100% free arm case below), the advantage of FreeExp in
saving cost on free arms becomes significant and, therefore,
FreeExp has similar performance to KLUCB.

We report the results of varying the number of parameters of
MA2B-HR (Case (1)) in Figure 2. In Figure 2a, we vary the
number of local arms between 10 and 45 and report their cu-
mulative regret at round 30K. All algorithm regrets increase
linearly with respect to the number of local arms. Figure 2b
shows the impact of the number of agents M (from 10
agents to 50) on the regrets. Their regrets also have linear
increasing rate in M , which is due to the fixed per-agent
costs (independent of T ). Lastly, we consider an MA2B-HR
consisting of M = 20 agents and K = 20 arms, and devise
fours cases containing {5, 10, 15, 20} free arms respectively
(i.e., 25%, 50%, 75%, 100% of all arms are free arms). We
report their regret performance in Figure 2c. The notable

observations are: (1) The regret of FreeExp decreases as
the percentage of free arms increases which corroborates
that FreeExp saves the costs due to pulling free arms. (2)
when all (100%) arms are free, FreeExp has similar per-
formance to KLUCB and outperforms other algorithms.

6 CONCLUSION

This paper introduced a multi-agent multi-armed bandit
problem with heterogeneous rewards among agents. The
heterogeneous scenario creates a unique opportunity to ex-
plore a subset of arms for free and share the observation
by cooperation, and hence, improve the aggregate regret
significantly. We proposed a cooperative learning algorithm
which would benefit from the free exploration and its regret
is tight up to a constant factor. As a notable special case,
when each arm is a local optimal arm in at least one agent,
the proposed algorithm achieves an O(1) regret.

This problem of multi-agent bandits with heterogeneous
reward calls for several interesting follow-up questions, i.e.,
an interesting question is to extend the FreeExp algorithm
with an effective communication protocol. In a distributed
multi-agent setting, cooperation may come with a cost of
communication, and hence the goal is to enhance the coop-
erative algorithms with a communication policies that only
needs sublinear communication times w.r.t. decision rounds
T , while directly extend current algorithm requires O(T )
communication times.
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