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A COMMENTS ON ASYMPTOTIC RESULTS

We remark here that all theoretical justification in this paper is based on asymptotics. It might be possible to investigate
finite sample regimes when one has an exact confidence interval or a non-asymptotic bound. However, having an exact
confidence interval might require some model specification of the value function, and using non-asymptotic bounds might
require additional tuning steps (e.g., constants in many concentration inequalities), which is beyond the scope of this paper.
In addition, as seen from our empirical evaluations below, with a relatively large sample size, the proposed model selection
approach performs well.

B TECHNICAL PROOFS

Notations: The notation ξ(N) ≲ θ(N) (resp. ξ(N) ≳ θ(N)) means that there exists a sufficiently large (resp. small) constant
c1 > 0 (resp. c2 > 0) such that ξ(N) ≤ c1θ(N) (resp. ξ(N) ≥ c2θ(N)) for some sequences θ(N) and ξ(N) related to N .
In the following proofs, N often refers to some quantity related to n and T .

Lemma 1 and its proof : Let J denotes some index of our batch data Dn. Define

ϕ(J,Qπ, ωπ,ν , π) =
1

|J |
∑

(i,t)∈J

ωπ,ν(Si,t, At)

(
Ri,t + γ

∑
a′∈A

π(a′|Si,t+1)Q
π(Si,t+1, a

′)−Qπ(Si,t, Ai,t)

)
,

where |J | is the cardinality of the index set J , e.g., |Jo| = nT
O for every 1 ≤ o ≤ O. Then we have the following Lemma 1

as an intermediate result to Theorem .

Lemma 1 Under Assumptions , for every 1 ≤ l ≤ L and 1 ≤ o ≤ O − 1, the following asymptotic equivalence holds.√
nT

O

{
V̂Do+1

(π̂
(o)
l )− V(π̂(o)

l )
}
=

√
nT

O
ϕ(J,Qπ̂∗(o)

, ωπ̂
(o)
l ,ν , π̂

(o)
l ) + op(1), (1)

where op(1) refers to a quantity that converges to 0 as n or T goes to infinity.

The proof is similar to that of Theorem 7 in Kallus and Uehara [2019]. First, notice that√
nT

O

{
V̂Do+1

(π̂
(o)
l )− V(π̂(o)

l )
}

=

√
nT

O

{
ϕ(J, Q̂π̂∗(o)

, ω̂π̂
(o)
l ,ν , π̂

(o)
l )− ϕ(J,Qπ̂∗(o)

, ωπ̂
(o)
l ,ν , π̂

(o)
l )

+ (1− γ)ES0∼ν [
∑
a∈A

π̂
(o)
l (a|S0)Q

π̂
(o)
l (S0, a)]− (1− γ)ES0∼ν [

∑
a∈A

π̂
(o)
l (a|S0)Q

π̂
(o)
l (S0, a)]

}

+

√
nT

O
ϕ(J,Qπ̂∗(o)

, ωπ̂
(o)
l ,ν , π̂

(o)
l ).

Then it suffices to show the term in the first bracket converges to 0 faster than
√
nT . Notice that{

ϕ(J, Q̂π̂∗(o)
, ω̂π̂

(o)
l ,ν , π̂

(o)
l )− ϕ(J,Qπ̂∗(o)

, ωπ̂
(o)
l ,ν , π̂

(o)
l )

+ (1− γ)ES0∼ν [
∑
a∈A

π̂
(o)
l (a|S0)Q

π̂
(o)
l (S0, a)]− (1− γ)ES0∼ν [

∑
a∈A

π̂
(o)
l (a|S0)Q

π̂
(o)
l (S0, a)]

}
=E1 + E2 + E3,

where

E1 =
O

nT

∑
(i,t)∈Jo+1

(ω̂π̂
(o)
l ,ν(Si,t, Ai,t)− ωπ̂

(o)
l ,ν(Si,t, Ai,t))(Ri,t −Qπ̂

(o)
l (Si,t, Ai,t)

+γ
∑
a∈A

π̂
(o)
l (a|Si,t+1)Q

π̂
(o)
l (Si,t+1, a)),
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E2 =
O

nT

∑
(i,t)∈Jo+1

ωπ̂
(o)
l ,ν(Si,t, Ai,t)(Q̂

π̂
(o)
l (Si,t, Ai,t)−Qπ̂

(o)
l (Si,t, Ai,t)

+γ
∑
a∈A

π̂
(o)
l (a|Si,t+1)(Q̂

π̂
(o)
l (Si,t+1, a)−Qπ̂

(o)
l (Si,t+1, a))),

and

E3 =
O

nT

∑
(i,t)∈Jo+1

(ω̂π̂
(o)
l ,ν(Si,t, Ai,t)− ωπ̂

(o)
l ,ν(Si,t, Ai,t))(Q̂

π̂
(o)
l (Si,t, Ai,t)−Qπ̂

(o)
l (Si,t, Ai,t)

+γ
∑
a∈A

π̂
(o)
l (a|Si,t+1)(Q̂

π̂
(o)
l (Si,t+1, a)−Qπ̂

(o)
l (Si,t+1, a))).

Next, we bound each of the above three terms. For term E1, it can be seen that

E[E1|J̄o] = 0.

In addition, by the previous Assumptions, we can show

Var[E1] = E[Var(E1|J̄o)] ≲
O

nT
(nT/O)−2κ2 ,

where the inequality is based on that each item in E3 is uncorrelated with others. Then by Markov’s inequality, we can show

|E1| = Op((
O

nT
)−1/2−κ2).

Similarly, we can show

|E2| = Op((
O

nT
)−1/2−κ1).

For term (E3), by Cauchy Schwarz inequality and similar arguments as before, we can show

|E3| = Op((
O

nT
)−(κ2+κ1)).

Therefore, as long as (κ2 + κ1) > 1/2, we have E1 + E2 + E3 = o(
√
O/nT ), which concludes our proof.

Proof of Theorem We aim to show that√
nT (O − 1)/O

(
V̂(π̂l)− V(π̂l)

)
σ̂(l)

=⇒ N (0, 1).

It can be seen that√
nT (O − 1)/O

(
V̂(π̂l)− V(π̂l)

)
σ̂(l)

=

√
nT

O(O − 1)

(
O−1∑
o=1

V̂Do+1(π̂
(o)
l )− V(π̂l)

σ̂o+1(π̂
(o)
l )

)

=

√
nT

O(O − 1)

(
O−1∑
o=1

V̂Do+1
(π̂

(o)
l )− V(π̂(o)

l )

σ̂o+1(π̂
(o)
l )

)

+

√
nT

O(O − 1)

(
O−1∑
o=1

V(π̂(o)
l )− V(π̂l)

σ̂o+1(π̂
(o)
l )

)
.

Define

ϕ(J,Qπ, wπ, π) =
1

|J |
∑

(i,t)∈J

wπ,ν(Si,t, At)

(
Ri,t + γ

∑
a′∈A

π(a′|Si,t+1)Q
π(S9,t+1, a

′)−Qπ(Si,t, Ai,t)

)
,
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where |J | is the cardinality of the index set J , i.e., |J | = nT
O . Then by Lemma 1, we show that

√
nT

O

V̂Do+1(π̂
(o)
l )− V(π̂(o)

l )

σ̂o+1(π̂
(o)
l )

=

√
nT

O

ϕ(Jo+1, Q
π̂
(o)
l , wπ̂

(o)
l , π̂

(o)
l )

σ̂o+1(π̂
(o)
l )

+ op(1). (2)

If we can show that

max
1≤o≤(O−1)

∣∣∣∣∣ σ̂o+1(π̂
(o)
l )

σo+1(π̂
(o)
l )

− 1

∣∣∣∣∣ = op(1),

which will be shown later, then by Slutsky theorem, we can show that√
nT

O(O − 1)

(
O−1∑
o=1

V̂Do+1
(π̂

(o)
l )− V(π̂(o)

l )

σ̂o+1(π̂
(o)
l )

)

=

√
nT

O(O − 1)

(
O−1∑
o=1

ϕ(Jo+1, Q
π̂
(o)
l , wπ̂

(o)
l , π̂

(o)
l )

σo+1(π̂
(o)
l )

)
︸ ︷︷ ︸

(I)

+op(1).

For (I), we can see that

(I) =

√
O

nT (O − 1)
(

O−1∑
o=1

∑
(i,t)∈Jo+1

wπ̂
(o)
l ,ν(Si,t, Ai,t)(Ri,t (3)

+ γ
∑
a′∈A

π̂
(o)
l (a′|Si,t+1)Q

π̂
(o)
l (Si,t+1, a

′)−Qπ̂
(o)
l (Si,t, Ai,t))/σo+1(π̂

(o)
l )). (4)

By the sequential structure of our proposed algorithm, (I) forms a mean zero martingale. Then we use Corollary 2.8 of
[McLeish, 1974] to show its asymptotic distribution. First of all, by the uniformly bounded assumption on Q-function, ratio
function and the variance, we can show that√

O

nT (O − 1)
max

1≤o≤(O−1)
max

(i,t)∈J0

∣∣∣∣∣wπ̂
(o)
l ,ν(Si,t, Ai,t)(Ri,t + γ

∑
a′∈A

π̂
(o)
l (a′|Si,t+1)Q

π̂
(o)
l (Si,t+1, a

′)−

Qπ̂
(o)
l (Si,t, Ai,t))/σo+1(π̂

(o)
l )
∣∣∣ = op(1).

Next, we aim to show that

O

nT (O − 1)

∣∣∣∣∣∣(
O−1∑
o=1

∑
(i,t)∈Jo+1

{wπ̂
(o)
l ,ν(Si,t, Ai,t)(Ri,t (5)

+γ
∑
a′∈A

π̂
(o)
l (a′|Si,t+1)Q

π̂
(o)
l (Si,t+1, a

′)−Qπ̂
(o)
l (Si,t, Ai,t))}2/σ2

o+1(π̂
(o)
l ))− 1

∣∣∣∣∣ = op(1).

Notice that the left hand side of the above is bounded above by

O

nT
max

1≤o≤(O−1)

∣∣∣∣∣∣(
∑

(i,t)∈Jo+1

{wπ̂
(o)
l ,ν(Si,t, Ai,t)(Ri,t (6)

+γ
∑
a′∈A

π̂
(o)
l (a′|Si,t+1)Q

π̂
(o)
l (Si,t+1, a

′)−Qπ̂
(o)
l (Si,t, Ai,t))}2/σ2

o+1(π̂
(o)
l ))− 1

∣∣∣∣∣ . (7)
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Because, for each 1 ≤ o ≤ (O − 1),

O

nT

(
∑

(i,t)∈Jo+1

{wπ̂
(o)
l ,ν(Si,t, Ai,t)(Ri,t (8)

+γ
∑
a′∈A

π̂
(o)
l (a′|Si,t+1)Q

π̂
(o)
l (Si,t+1, a

′)−Qπ̂
(o)
l (Si,t, Ai,t))}2 − E[{wπ̂

(o)
l ,ν(S,A)(R (9)

+γ
∑
a′∈A

π̂
(o)
l (a′|S′)Qπ̂

(o)
l (S′, a′)−Qπ̂

(o)
l (S,A))}]/σ2

o+1(π̂
(o)
l ))

}
, (10)

forms a mean zero martingale, we apply Freedman’s inequality in [Freedman, 1975] with Assumptions to show it is bounded

by Op(
√

O
nT ). Applying union bound shows (5) is op(1) and furthermore consistency of σ̂(π̂l) in (2) holds. Then we apply

the martingale central limit theorem to show√
nT

O(O − 1)

(
O−1∑
o=1

ϕ(Jo+1, Q
π̂
(o)
l , wπ̂

(o)
l , π̂

(o)
l )

σo+1(π̂
(o)
l )

)
=⇒ N (0, 1).

The remaining is to show √
nT

O(O − 1)

(
O−1∑
o=1

V(π̂(o)
l )− V(π̂l)

σ̂o+1(π̂
(o)
l )

)
is asymptotically negligible. Consider

E
∣∣∣V(π̂(o)

l )− V(π̂l)
∣∣∣ (11)

≤E
∣∣∣V(π̂(o)

l )− V(π∗
l )
∣∣∣+ E |V(π̂l)− V(π∗

l )| (12)

≤E
∣∣∣V(π̂(o)

l )− V(π∗
l )
∣∣∣+ E |V(π̂l)− V(π∗

l )| (13)

≤(nTo)−κOκ + (nT )−κ, (14)

where we use Assumption for the last inequality. Summarizing together, we can show that√
nT

O(O − 1)
E

∣∣∣∣∣
O−1∑
o=1

V(π̂(o)
l )− V(π̂l)

∣∣∣∣∣
≤

√
nT

O(O − 1)

O−1∑
o=1

(nTo)−κOκ +

√
nT (O − 1)

O
(nT )−κ

≤

√
nTO2

O(O − 1)

O−1∑
o=1

(nT )−κ +

√
nT (O − 1)

O
(nT )−κ

=o(1),

where we obtain the second inequality by that
∑O−1

o=1 o−κ ≤ 1+
∫ O

1
o−κdo ≲ O1−κ. In the last inequality, we use κ > 1 in

Assumption. Then Markov inequality gives that√
nT

O(O − 1)

(
O−1∑
o=1

V(π̂(o)
l )− V(π̂l)

)
= op(1).

Moreover, by Assumption that inf1≤o≤O−1 σ̂o+1(π̂
(o)
l ) ≥ c for some constant c > 0, we can further show that√

nT

O(O − 1)

(
O−1∑
o=1

V(π̂(o)
l )− V(π̂l)

σ̂o+1(π̂
(o)
l )

)
= op(1),

which completes our proof.
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Proof of Corollary Denote the sets El = {|V(π̂l)−V̂(π̂l)| ≤ û(l)}, l = 1, . . . , L, where û(l) = zα/2
√
nT (O − 1)/Oσ̂(l).

Note that lim infnT→∞ Pr(∩L
j=1Ej) ≥ 1− Lα and

Pr(V(π̂l̂) ≥ max
1≤l≤L

V(π̂l)− 2û(l))

=Pr(V(π̂l̂)− V̂(π̂l̂) + V̂(π̂l̂) ≥ max
1≤l≤L

V(π̂l)− V̂(π̂l)− 2û(l) + V̂(π̂l))

≥Pr(V(π̂l̂)− V̂(π̂l̂) + V̂(π̂l̂) ≥ max
1≤l≤L

V(π̂l)− V̂(π̂l)− 2û(l) + V̂(π̂l)| ∩L
j=1 Ej) Pr(∩L

j=1Ej)

≥Pr(V̂(π̂l̂)− û(l̂) ≥ max
1≤l≤L

V̂(π̂l)− û(l)| ∩L
j=1 Ej) Pr(∩L

j=1Ej)

=Pr(∩L
j=1Ej),

where the last inequality holds because given the event ∩L
j=1Ej , one has −û(l̂) ≤ V(π̂l̂)− V̂(π̂l̂) and V(π̂l)− V̂(π̂l) ≤ û(l)

for any l. This completes the proof by taking lim inf on both sides.

Proof of Theorem on Bias To show the results in Theorem, it can be seen that∣∣∣∣∣∣
√
nT (O − 1)/O

(
V̂(π̂l)− V(π∗)

)
σ̂(l)

∣∣∣∣∣∣ ≤
∣∣∣∣∣
√

nT

O(O − 1)

(
O−1∑
o=1

V̂Do+1(π̂
(o)
l )− V(π̂(o)

l )

σ̂o+1(π̂
(o)
l )

)∣∣∣∣∣
+

√
nT

O(O − 1)

(
O−1∑
o=1

V(π̂(o)
l )− V(π∗)

σ̂o+1(π̂
(o)
l )

)

≤

∣∣∣∣∣
√

nT

O(O − 1)

(
O−1∑
o=1

V̂Do+1
(π̂

(o)
l )− V(π̂(o)

l )

σ̂o+1(π̂
(o)
l )

)∣∣∣∣∣︸ ︷︷ ︸
(I)

+B(l)

√
nT

O(O − 1)

(
O−1∑
o=1

1

σ̂o+1(π̂
(o)
l )

)
.

Then by results in the proof of Theorem, we can show that

lim
nT→∞

Pr((I) > zα/2) = α. (15)

This implies that

lim inf
nT→∞

Pr
(
|V(π∗)− V̂(π̂l)| ≤ zα/2

√
O/nT (O − 1)σ̂(l) +B(l)

)
(16)

≥ lim
nT→∞

Pr((I) ≤ zα/2) = 1− α, (17)

which concludes our proof.

Proof of Corollary: We mainly show the proof of the second claim in the corollary, based on which the first claim
can be readily seen. Define an event E such that 1 ≤ l ≤ L, |V(π̂l) − V̂(π̂l)| ≤ c(δ) log(L)σ̂(i)/

√
NT and |V(π∗) −

V̂(π̂l)| ≤ zα/(2L)

√
O/nT (O − 1)σ̂(l) + B(l). Based on the assumption given in Corollary and Theorem , we have

lim inf
nT→∞

P (E) ≥ 1− δ − α. In the following, we suppose event E holds.

Inspired by the proofs of Corollary 1 in [Mathé, 2006] and Theorem 3 of [Su et al., 2020], we define l̃ = max{l : B(l) ≤
u1(l) + u2(l)}, where u1(l) = zα/(2L)

√
O/nT (O − 1)σ̂(l). Let u2(l) = c(δ) log(L)σ̂(i)/

√
NT . By Assumption , for

l ≤ l̃,
B(l) ≤ B(l̃) ≤ u1(l̃) ≤ u1(l),

which further implies that for any l ≤ l̃,

|V̂(π̂l)− V(π∗)| ≤ B(l) + u1(l) ≤ 2u1(l).

Then V(π∗) ∈ I(l) based on the construction of I(l) for all l ≤ l̃. In addition, we have for l ≤ l̃

|V(π̂l)− V(π∗)| ≤ 2u1(l) + u2(l), (18)
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by triangle inequality and event E. Since I(l) share at least one common element for 1 ≤ l ≤ l̃, we have î ≥ l̃. Moreover,
there must exist an element x such that x ∈ I(l̃)∩ I (̂i), where |V̂(π̂l̃)− x| ≤ u1(l̃) and |V̂(π̂î)− x| ≤ u1(̂i). This indicates
that

|V̂(π̂î − V(π∗)| ≤ |V̂(π̂î)− x|+ |V̂(π̂l̃)− x|+ |V̂(π̂l̃)− V(π∗)| (19)

≤ u1(̂i) + 2u1(l̃) ≤ 3u1(l̃), (20)

by again triangle inequality and Assumption , and

|V(π̂î)− V(π∗)| ≤ u2(̂i) + 3u1(l̃) ≤ u2(l̃) + 3u1(l̃), (21)

by event E and Assumption . Define l∗ = min{l : B(l) + u1(l) + u2(l)}. Then following the similar proof of [Su et al.,
2020], we consider two cases:

Case 1: If l∗ ≤ l̃, then we have

u2(l̃) +B(l̃) + u1(l̃) ≤ 2u1(l
∗) + u2(l

∗) ≤ 2u1(l
∗) + 2B(l∗) + u2(l

∗),

where we use Assumption .

Case 2: If l∗ > l̃, then we have

ζ(u2(l̃) + u1(l̃)) ≤ (u2(l̃ + 1) + u1(l̃ + 1)) ≤ B(l̃ + 1) ≤ B(l∗),

where we use Assumption . This implies that

u2(l̃) + u1(l̃) +B(l̃) ≤ (1 + 1/ζ)B(l∗).

Combining two cases, we can show that

u2(l̃) + u1(l̃) +B(l̃) ≤ (1 + 1/ζ)(B(l∗) + u1(l
∗) + u2(l

∗)),

as ζ < 1. Together with (19), we have

|V(π̂î)− V(π∗)| ≤ u2(̂i) + 3u1(l̃) ≤ 3(1 + 1/ζ)(B(l∗) + u1(l
∗) + u2(l

∗)), (22)

which concludes our proof.

C MORE DETAILS ON DQN ENVIRONMENTS

We introduce our deployed DQN environments in this section, which included four environments with discrete action (E1

to E4) and two environments (E5 to E6) with continuous action. These environments cover wide applications, including
tabular learning (E1), navigation to a target object in a geometrical space (E2), digital gaming (E3 to E4), and continuous
control (E5 to E6).

Figure 1: Policy selection using top-k ranking regret score in E1

(Frozen Lake).
Figure 2: Policy selection using top-k ranking precision in E1

(Frozen Lake).
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E1: Frozen Lake: The Frozen Lake is a maze environment that manipulates an agent to walk from a starting point (S) to a
goal point without failing into the hole (H). We use FrozenLake-v0 from OpenAI Gym [Brockman et al., 2016]. We provide
top-5 regret and precision results shown in Figure and 2.

E2: Banana Collector: The Banana collector is one popular 3D-graphical navigation environment that compresses discrete
actions and states as an open source DQN benchmark from Unity 1 ML-Agents v0.3.[Juliani et al., 2018]. The DRL agent
controls an automatic vehicle with 37 dimensions of state observations including velocity and a ray-based perceptional
information from objects around the agent. The targeted reward is 12.0 points by accessing correct yellow bananas (+1)
and avoiding purple bananas (−1) in first-person point of view as shown in Fig(b). We provide the related top-5 regret and
precision results shown in Figure 3 and 4.

Figure 3: Policy selection using top-k ranking regret score in E2

(Banana Collector).
Figure 4: Policy selection using top-k ranking precision in E2

(Banana Collector).

Figure 5: Policy selection using top-k ranking regret score in E3

(Pong).
Figure 6: Policy selection using top-k ranking precision in E3

(Pong).

E3: Pong: Pong is one Atari game environment from OpenAI Gym [Brockman et al., 2016] as shown in (c). We provide its
top-5 regret and precision results shown in Figure 5 and 6.

Figure 7: Policy selection using top-k ranking regret score in E4

(Breakout).
Figure 8: Policy selection using top-k ranking precision in E4

(HalfCheetah-v1).

1https://www.youtube.com/watch?v=heVMs3t9qSk
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Figure 9: Policy selection using top-k ranking regret score in E5

(HalfCheetah-v1).
Figure 10: Policy selection using top-k ranking precision in E5

(HalfCheetah-v1).

Figure 11: Policy selection using top-k ranking regret score in
E6 (Walker2d-v1).

Figure 12: Policy selection using top-k ranking precision in E6

(Walker2d-v1).

E4: Breakout: Breakout is one Atari game environment from OpenAI Gym [Brockman et al., 2016] as shown in Fig 7(d).
We provide the related top-5 regret and precision results shown in Figure 7 and 8.

E5: HalfCheetah-v1: Halfcheetah is a continuous action and state environment to control agent with monuments made by
MuJoCo simulators as shown in (e). We provide the related top-5 regret and precision results shown in Figure 9 and 10.

E6: Walker2d-v1: Walker2d-v1 is a continuous action and state environment to control agent with monuments made by
MuJoCo simulators as shown in (f). We provide the related top-5 regret and precision results shown in Figure 11 and 12.

D HYPER-PARAMETERS INFORMATION

We select a total of 70 DQN based models for each environment. We will open source the model and implementation
for future studies. Table 1, Table 2, and Table 3 summarize their hyper-parameter and setups. In addition, Figure 13 and
Figure 14 provide ablation studies on different scales of α and O selection in PMS experiments for the deployed DRL
navigation task (E2). From the experimental results, a more pessimistic α (e.g., 0.001) is associated with a slightly better
attained top-5 regret. Meanwhile, the selection of O does not produce much different performance on selected policies but
slightly affects the range of the selected policies.

Table 1: Hyper-parameters information for for DQN models used in E1 to E2

Hyper-parameters Values
Hidden layers {1, 2}
Hidden units {16, 32, 64, 128}
Learning rate {1× e−3, 5× e−4}
DQN training iterations {100, 500, 1k, 2k}
Batch size {64}
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Table 2: Hyper-parameters information for for DQN models used in E3 to E4

Hyper-parameters Values
Convolutional layers { 2, 3}
Convolutional units {16, 32}
Hidden layers { 2, 3}
Hidden units {64, 256, 512}
Learning rate {1× e−3, 5× e−4}
DQN training iterations {4M, 4.5M, 5M}
Batch size {64}

Table 3: Hyper-parameters information for double DQN (DDQN) models [Van Hasselt et al., 2016] with a prioritized replay [Schaul
et al., 2015] used in E5 to E6.

Hyper-parameters Values
Hidden layers {4, 5, 6}
Hidden units {64, 128, 256, 512}
Learning rate {1× e−3, 5× e−4}
DDQN training frames {40M, 45M, 50M}
Batch size {256}
Buffer size {106}
Updated target {1000}

Figure 13: Different α for PMS selection. Figure 14: Different O for PMS selection.

E BROADER IMPACT

There are also some limitations of the proposed PMS as one of the preliminary attempts on model selection for offline
reinforcement learning. When the benchmarks environments (excluded Atari games) are based on simulated environments
to collect the true policy [Barth-Maron et al., 2018, Siegel et al., 2019], more real-world-based environments could be
customized and studied in future works. For example, one experimental setup needs to be carefully controlled in clinical
settings [Tang and Wiens, 2021] or resilience-oriented [Yang et al., 2021] reinforcement learning.
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