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Abstract

Deep Reinforcement Learning (DRL) has demon-
strated great potentials in solving sequential deci-
sion making problems in many applications. De-
spite its promising performance, practical gaps ex-
ist when deploying DRL in real-world scenarios.
One main barrier is the over-fitting issue that leads
to poor generalizability of the policy learned by
DRL. In particular, for offline DRL with observa-
tional data, model selection is a challenging task as
there is no ground truth available for performance
validation, in contrast with the online setting with
simulated environments. In this work, we propose
a pessimistic model selection (PMS) approach for
offline DRL with a theoretical guarantee, which
features a provably effective framework for finding
the best policy among a set of candidate models.
Two refined approaches are also proposed to ad-
dress the potential bias of DRL model in identify-
ing the optimal policy. Numerical studies demon-
strated the superior performance of our approach
over existing methods.

1 INTRODUCTION

The success of deep reinforcement learning [Mnih et al.,
2013, Henderson et al., 2018] (DRL) often leverages upon
executive training data with considerable efforts to select
effective neural architectures. Deploying online simulation
to learn useful representations for DRL is not always re-
alistic and feasible, especially in some high-stake environ-
ments, such as automatic navigation [Kahn et al., 2018, Hase
et al., 2020], dialogue learning [Jaques et al., 2020], and
clinical applications [Tang et al., 2020a]. Offline reinforce-
ment learning (OffRL) [Singh and Sutton, 1996, Levine
et al., 2020, Agarwal et al., 2020] has prompted strong
interests [Paine et al., 2020, Kidambi et al., 2020] to em-

power DRL toward problem-solving involving notable costs
and risks. The idea of OffRL is to train DRL models with
only logged data and recorded trajectories. However, with
given observational data, designing a successful neural ar-
chitecture in OffRL is often expensive [Levine et al., 2020],
requiring intensive experiments, time, and computing re-
sources.

Unlike most aforementioned applications with online inter-
action, offline tasks for reinforcement learning often face the
challenges of insufficient observational data from offline col-
lection to construct a universal approximated model for fully
capturing the temporal dynamics. Therefore, relatively few
attempts in the literature have been presented for providing
a provably effective pipeline to automate the development
process for model selection and neural architecture search
in OffRL settings. Here, model selection refers to selecting
the best model (e.g., the policy learned by a trained neural
network) among a set of candidate models (e.g., different
neural network hyperparameters).

In this work, we propose a novel model selection approach
to automate OffRL development process, which provides an
evaluation mechanism to identify the best DRL model given
offline data. Our method utilizes statistical inference to pro-
vide uncertainty quantification on the “optimal" value func-
tions trained by different DRL models, based on which a pes-
simistic rule is incorporated to select the best model/policy.
In addition, two refined approaches are further proposed to
address the possible biases of DRL models in identifying
the optimal policy. In this work, we mainly focus on deep
Q-network (DQN) [Mnih et al., 2013, 2015] based archi-
tectures, while our proposed methods can be flexibly ex-
tended to other settings. Figure 1 demonstrates the superior
performance of the proposed pessimistic model selection
(PMS) method in identifying the best model among 70 DRL
models of different algorithms on one navigation task (See
Appendix for details), compared with the model selection
method by [Tang and Wiens, 2021] which uses three offline
policy evaluation (OPE) estimates for validation. Specifi-
cally, based on the derived confidence interval of the OPE
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Figure 1: Comparisons of model selection algorithms for offline
deep Q-network (DQN) learning: (a) proposed pessimistic model
selection (PMS); (b) weighted importance sampling (WIS) [Gottes-
man et al., 2018]; (c) approximate model (AM) [Voloshin et al.,
2019]; (d) fitted Q evaluation (FQE) [Le et al., 2019]. In this figure,
the algorithms are trained and evaluated in a navigation task (E2)
discussed in Section 7 and Appendix. Vertical axis shows the of-
fline policy evaluation (OPE) value. Higher Pearson’s correlation
coefficient ρ means better performance.

value for each candidate model, the final selected model
by our PMS method is the one that has the largest lower
confidence limit, which exactly has the largest true OPE
value among all candidate models. In contrast, none of three
OPE estimates used for model selection by Tang and Wiens
[2021] can identify the best model due to the inevitable
overfitting issue during the validation procedure.

To close this section, we summarize the contributions of this
work as follows:

• We propose a novel PMS framework, which targets find-
ing the best policy from given candidate models (e.g., neu-
ral architecture, hyperparameters, etc) with offline data
for DQN learning. Unlike many existing methods, our
approach essentially does not involve additional hyperpa-
rameter tuning except for two interpretable parameters.

• Leveraging asymptotic analysis in statistical inference,
we provide uncertainty quantification on each candidate
model, based on which our method can guarantee that the
worst performance of finally selected model is the best
among all candidate models. See Corollary 2 for our key
insight.

• To address potential biases of candidate models in identi-
fying the optimal policy, two refined approaches are pro-
posed, one of which can be shown to have regret bounded
by the smallest error bound among all candidate models

under some technical conditions (See Corollary 4). To the
best of our knowledge, this is the first model-selection
method in offline DRL with such a guarantee.

• The numerical results demonstrate that the proposed PMS
shows superior performance in six different DQN bench-
mark environments.

2 RELATED WORK

Model Selection for Reinforcement Learning: Model se-
lection has been studied in online decision-making envi-
ronments [Fard and Pineau, 2010, Lee and Taylor, 2014].
Searching nearly optimal online model is a critical topic
for online bandits problems with limited information feed-
backs. For linear contextual bandits, Abbasi-Yadkori et al.
[2011], Chu et al. [2011] aim to find the best worst-case
bound when the optimal model class is given. For model-
based reinforcement learning, Pacchiano et al. [2020] intro-
duces advantages of using noise augmented Markov Deci-
sion Processes (MDP) to archive a competitive regret bound
to select an individual model with constraints for ensem-
ble training. Recently, Lee et al. [2021] utilizes an online
algorithm to select a low-complexity model based on a sta-
tistical test. However, most of the previous model selection
approaches are focused on the online RL setting. Only few
works including Farahmand and Szepesvári [2011], Paine
et al. [2020], Su et al. [2020], Yang et al. [2020], Kuzborskij
et al. [2021], Tang and Wiens [2021], Xie and Jiang [2021]
study the offline setting. In particular, [Su et al., 2020, Yang
et al., 2020, Kuzborskij et al., 2021] focus on model selec-
tion for OPE problem. [Farahmand and Szepesvári, 2011,
Xie and Jiang, 2021] propose to select the best model/policy
based on minimizing the Bellman error, while the first ap-
proach requires an additional tuning and latter does not.
[Paine et al., 2020, Tang and Wiens, 2021] propose several
criteria to perform model selection in OffRL and mainly fo-
cused on empirical studies. In this work, we provide one of
the firstline model selection approaches based on statistical
inference for RL tasks with offline data collection.

Offline-Policy Learning: Training a DRL agent with of-
fline data collection often relies on batch-wise optimization.
Batch-Constrained deep Q-learning [Fujimoto et al., 2019]
(BCQ) is considered one OffRL benchmark that uses a gen-
erative model to minimize the distance of selected actions to
the batch-wise data with a perturbation model to maximize
its value function. Other popular OffRL approaches, such as
behavior regularized actor-critic (BRAC) [Wu et al., 2019],
and random ensemble mixture [Agarwal et al., 2020] (REM)
(as an optimistic perspective on large datasets), have also
been studied in RL Unplugged (RLU) [Gulcehre et al., 2020]
benchmark together with behavior cloning (BC) [Bain and
Sammut, 1995, Ross and Bagnell, 2010], DQN, and DQN
with quantile regression (QR-DQN) [Dabney et al., 2018].
RLU suggests a naive approach based on human experi-
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ence for offline policy selection, which requires indepen-
dent modification with shared domain expertise (e.g., Atari
environments) for tuning each baseline. Meanwhile, how to
design a model selection algorithm for OffRL remains an
open question. Motivated by the benefits and the challenges
as mentioned earlier of the model selection for offline DRL,
we aim to develop a unified approach for model selection
in offline DRL with theoretical guarantee and interpretable
tuning parameters.

3 BACKGROUND AND NOTATIONS

Consider a time-homogeneous Markov decision process
(MDP) characterized by a tupleM = (S,A, p, r, γ), where
S is the state space,A is the finite action space, p is the tran-
sition kernel, i.e., p(s′|s, a) is the probability mass (density)
of transiting to s′ given current state-action (s, a), r is the
reward function, i.e., E(Rt|St = s,At = a) = r(s, a) for
t ≥ 0, and 0 ≤ γ < 1 is a discount factor. For ease of presen-
tation, we assume A and S are both finite. But our method
can also be applied in continuous cases. Under this MDP
setting, it is sufficient to consider stationary Markovian poli-
cies for optimizing discounted sum of rewards [Puterman,
1994]. Denote π as a stationary Markovian policy mapping
from the state space S into a probability distribution over the
action space. For example, π(a|s) denotes the probability of
choosing action a given the state value s. One essential goal
of RL is to learn an optimal policy that maximizes the value
function. Define V π(s) =

∑+∞
t=0 γ

tEπ[Rt|S0 = s] and
then the optimal policy is defined as π∗ ∈ argmaxπ{V(π) ,
(1 − γ)

∑
s∈S V

π(s)ν(s)}, where ν denotes some refer-
ence distribution function over S . In addition, we denote Q-
function as Qπ(s, a) =

∑+∞
t=0 γ

tEπ(Rt|A0 = a, S0 = s)
for s ∈ S and a ∈ A. In this work, we consider the Of-
fRL setting. The observed data consist of N trajectories,
corresponding to N independent and identically distributed
copies of {(St, At, Rt)}t≥0. For any i ∈ {1, · · · , n}, data
collected from the ith trajectory can be summarized by
{(Si,t, Ai,t, Ri,t, Si,t+1)}0≤t<T , where T denotes the ter-
mination time. We assume that the data are generated by
some fixed stationary policy denoted by b.

Among many RL algorithms, we focus on Q-learning type
of methods. The foundation is the optimal Bellman equation
given below,

Q∗(s, a) = E[Rt + γmax
a′∈A

Q∗(St+1, a
′) |St = s,At = a] (1)

where Q∗ is called optimal Q-function, i.e., Q-function un-
der π∗. Among others, fitted q-iteration (FQI) is one of
the most popular RL algorithms [Ernst et al., 2005]. FQI
leverages supervised learning techniques to iteratively solve
the optimal Bellman equation (1) and shows competitive
performance in OffRL.

To facilitate our model-selection algorithm, we introduce the
discounted visitation probability, motivated by the marginal

importance sampling estimator in [Liu et al., 2018]. For any
t ≥ 0, let pπt (s, a) denote the t-step visitation probability
Prπ(St = s,At = a) assuming the actions are selected
according to π at time 0, · · · , t. In particular, pπ0 (s, a) =
ν(s)π(a|s). We define the discounted visitation probability
function as dπ(s, a) = (1− γ)

∑
t≥0 γ

tpπt (s, a). To adjust
the distribution from behavior policy to any target policy π,
we use the discounted probability ratio function defined as

ωπ,ν(s, a) =
dπ(s, a)

1
T

∑T−1
t=0 pbt(s, a)

, (2)

where pbt(s, a) is the t-step visitation probability under the
behavior policy b, i.e., Prb(St = s,At = a). The ratio
function ωπ,ν(s, a) is always assumed well defined, where
ν is the distribution of the initial state in dπ . The estimation
of ratio function is motivated by the observation that for
every measurable function f defined over S ×A,

E[ 1
T

T−1∑
t=0

ωπ,ν(St, At)(f(St, At) (3)

− γ
∑
a′∈A

π(a′ | St+1)f(St+1, a
′))]

= (1− γ)ES0∼ν [
∑
a∈A

π(a | S0)f(a, S0)],

based on which several min-max estimation methods has
been proposed such as [Liu et al., 2018, Nachum et al., 2019,
Uehara and Jiang, 2019]. We refer to Lemma 1 of [Uehara
and Jiang, 2019] for a formal proof of equation (3).

Finally, because our proposed model selection algorithm
relies on an efficient evaluation of any target policy us-
ing batch data, we introduce three types of model-free of-
fline policy evaluation estimators in the existing RL liter-
ature. The first type is called direct method via estimat-
ing Q-function, based on the relationship that V(π) =
(1 − γ)

∑
s∈S,a∈A π(a|s)Q(s, a)ν(s). The second type is

motivated by the importance sampling [Precup, 2000].
Based on the definition of ratio function, we can see
V(π) = E[ 1T

∑T−1
t=0 ωπ,ν(St, At)Rt], from which a plugin

estimator can be constructed. The last type of OPE methods
combines the first two types of methods and construct a
so-called doubly robust estimator [Kallus and Uehara, 2019,
Tang et al., 2020b]. This estimator is motivated by the effi-
cient influence function of V(π) under a transition-sampling
setting and the model that consists of the set of all observed
data distributions given by arbitrarily varying the initial,
transition, reward, and behavior policy distributions, subject
to certain minimal regularity and identifiability conditions
[Kallus and Uehara, 2019], i.e.,

1

T

T−1∑
t=0

ωπ,ν(St, At)(Rt + γ
∑
a∈A

π(a|St+1)Q
π(St+1, a)−

Qπ(St, At)) + (1− γ)ES0∼ν [
∑
a∈A

π(a|S0)Q
π(S0, a)]− V(π).

(4)

A nice property of doubly robust estimators is that as long
as either the Q-function Qπ or the ratio function ωπ,ν can
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be consistently estimated, the final estimator of V(π) is con-
sistent [Robins et al., 1994, Jiang and Li, 2015, Kallus and
Uehara, 2019, Tang et al., 2020b]. Furthermore, a doubly
robust estimator based on (4) can achieve semi-parametric
efficiency under the conditions proposed by [Kallus and
Uehara, 2019], even if nuisance parameters are estimated
via black box models such as deep neural networks. There-
fore, such an estimator is particularly suitable under the
framework of DRL. Our proposed algorithm will rely on
this doubly robust type of OPE estimator.

4 PESSIMISTIC MODEL SELECTION
(PMS) FOR BEST POLICY

In this section, we discuss our pessimistic model selection
approach. For the ease of presentation, we focus on the
framework of (deep) Q-learning, where policy optimization
is performed via estimating the optimal Q-function. While
this has already covered a wide range of state-of-the-art RL
algorithms such as FQI [Ernst et al., 2005], DQN [Mnih
et al., 2013] and QR-DQN [Dabney et al., 2018], we remark
that our method is not restricted to this class of algorithms.

Suppose we have total number of L candidate models for
policy optimization, where each candidate model will out-
put an estimated policy, say π̂l for 1 ≤ l ≤ L. Our goal is
to select the best policy among L policies during our train-
ing procedure. Note that these L models can be different
deep neural network architectures, hyper-parameters, and
various classes of functions for approximating the optimal
Q-function or policy, etc.

4.1 DIFFICULTIES AND CHALLENGES

Given a candidate l among L models, we can apply for
example FQI using the whole batch data Dn to learn
an estimate of Q∗ as Q̂l and an estimated optimal pol-
icy π̂l defined as π̂l(a|s) ∈ argmaxa∈AQ̂l(s, a), for ev-
ery s ∈ S. In order to select the final policy, one may
use a naive greedy approach to choose some l̃ such that
l̃ ∈ argmaxlES0∼ν [

∑
a∈A π̂l(a|s)Q̂l(S0, a)], as our goal is

to maximize V(π). However, using this criterion will lead to
over-fitting. Specifically, due to the distributional mismatch
between the behavior policy and target policies, which is
regarded as a fundamental challenge in OffRL [Levine et al.,
2020], we may easily overestimate Q-function, especially
when some state-action pairs are not sufficiently visited in
the batch data. This issue becomes more serious when we
apply max-operator during our policy optimization proce-
dure. Such observations have already been noticed in recent
works, such as [Kumar et al., 2019, 2020, Paine et al., 2020,
Yu et al., 2020, Tang and Wiens, 2021, Jin et al., 2021].
Therefore, it may be inappropriate to use this criterion for
selecting the best policy among L models.

One may also use cross-validation procedure to address
the issue of over-fitting or overestimating Q-function for
model selection. For example, one can use OPE approaches
on the validate dataset to evaluate the performance of es-
timated policies from the training data set (see Tang and
Wiens [2021] for more details). However, since there is no
ground truth for the value function of any policies, the OPE
procedure on the validation dataset cannot avoid involving
additional tuning on hyperparameters. Therefore, such a
procedure may still incur a large variability due to the over-
fitting issue. In addition, arbitrarily splitting the dataset for
cross-validation and ignoring the Markov dependent struc-
ture will cause additional errors, which should be seriously
taken care of.

4.2 SEQUENTIAL MODEL SELECTION

In the following, we propose a pessimistic model selection
algorithm for finding an optimal policy among L candidate
models. Our goal is to develop an approach to estimate the
value function under each candidate model during our pol-
icy optimization procedure with theoretical guarantee. The
proposed algorithm is motivated by recent development in
statistical inference of sequential decision making [Luedtke
and Van Der Laan, 2016, Shi et al., 2020]. The idea is to
first estimate optimal Q-function Q∗, optimal policy π∗ and
the resulting ratio function based on a chunk of data, and
evaluate the performance of the estimated policy on the next
chunk of data using previously estimated nuisance functions.
Then, we combine the first two chunks of data, perform the
same estimation procedure and evaluation on the next chunk
of data. The framework of MDP provides a nature way of
splitting the data.

Specifically, denote the index of our batch dataset Dn
as J0 = {(i, t) : 1 ≤ i ≤ n, 0 ≤ t < T}. We divide J0
into O number of non-overlapping subsets, denoted by
J1, · · · , JO and the corresponding data subsets are de-
noted by D1, · · · ,DO. Without loss of generality, we as-
sume these data subsets have equal size. We require that
for any 1 ≤ o1 < o2 ≤ O, any (i1, t1) ∈ Jo1 and
(i2, t2) ∈ Jo2 , either i2 6= i1 or t1 < t2. For 1 ≤
o ≤ O, denote the aggregate chunks of data as D̄o ={

(Si,t, Ai,t, Ri,t, Si,t+1), (i, t) ∈ J̄o = J1 ∪ · · · ∪ Jo
}
.

We focus on FQI algorithm for illustrative purpose and it
should be noticed that our algorithm can be applied to other
RL algorithms. Starting from the first chunk of our batch
data, at the o-th step (o = 1, · · · , O−1), for each candidate
model l = 1, · · · , L, we apply FQI on D̄o to compute Q̂(o)

l

as an estimate of optimal Q-function and obtain π̂(o)
l corre-

spondingly such that π̂(o)
l (a|s) ∈ argmaxa∈AQ̂

(o)
l (s, a) for

every s ∈ S . Additionally, we compute an estimate of ratio
function ωπ̂

(o)
l ,ν using D̄o by many existing algorithms such

as Nachum et al. [2019]. Denote the resulting estimator as
ω̂π̂

(o)
l ,ν . The purpose of estimating this ratio function is to
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improve the efficiency and robustness of our value function
estimation for each candidate model. Then, we compute the
estimated value function of π̂(o)

l on Do+1 as

V̂Do+1(π̂
(o)
l )

=(1− γ)ES0∼ν [
∑
a0∈A

π̂
(o)
l (a0|S0)Q̂

(o)
l (S0, a0)]

+EDo+1 [ω̂
π̂
(o)
l
,ν(S,A)(R+ γ

∑
a′∈A

π̂
(o)
l (a′|S′)Q̂(o)

l (S′, a′))]

−EDo+1 [ω̂
π̂
(o)
l
,ν(S,A)Q̂

(o)
l (S,A)], (5)

where EDo+1
denotes the empirical average over the (o+ 1)

chunk of dataset and (S,A,R, S′) is one transition tu-
ple in Do+1. While one can aggregate V̂Do+1

(π̂
(o)
l ) for

1 ≤ o ≤ (O − 1) to evaluate the performance of L models,
the uncertainty of these estimates due to the finite sample
estimation should not be ignored. Therefore, in the follow-
ing, we derive an uncertainty quantification of our estimated
value function for each candidate model, for performing
model selection. Based on equation (4), (conditioning on
D̄o), the variance of V̂Do+1

(π̂
(o)
l ) is

σ2(π̂
(o)
l )

=E

[
{ω̂π̂

(o)
l
,ν(S,A)(R+ γ

∑
a′∈A

π̂
(o)
l (a′|S′)Q̂(o)

l (S′, a′)

−Q̂(o)
l (S,A))}2

]
, (6)

where (S,A, S′) is a transition tuple with (S,A) follows
some stationary distribution. See Assumption 1. Correspond-
ingly we have an estimator defined as

σ̂2
o+1(π̂

(o)
l )

=EDo+1 [{ω̂
π̂
(o)
l
,ν(S,A)(R+ γ

∑
a′∈A

π̂
(o)
l (a′|S′)Q̂∗(o)l (S′, a′)

−Q̂∗(o)l (S,A))}2]. (7)

The estimation procedure stops once we have used all our
offline data and denote the final estimated policy as π̂l for
each l = 1, · · · , L. Notice that π̂l = π̂

(O)
l . Finally, we

compute the weighted average of all the intermediate value
functions as our final evaluation of the estimated policy π̂l,
i.e.,

V̂(π̂l) =

(
O−1∑
o=1

1

σ̂o+1(π̂
(o)
l )

)−1(O−1∑
o=1

V̂Do+1(π̂
(o)
l )

σ̂o+1(π̂
(o)
l )

)
. (8)

In Section 5, we show that under some technical conditions,
the following asymptotic result holds:√

nT (O − 1)/O
(
V̂(π̂l)− V(π̂l)

)
σ̂(l)

=⇒ N (0, 1), (9)

where σ̂(l) = (O − 1)(
∑O−1
o=1 {σo+1(π̂

(o)
l )}−1)−1, =⇒

refers to weak convergence when either n or T goes to
infinity, and N (0, 1) refers to the standard normal distribu-
tion. Based on the asymptotic result in (9), we can construct

a confidence interval for the value function of each policy
π̂l. Given a confidence level α, for each l, we can compute
U(l) = V̂(π̂l) − zα/2

√
O/nT (O − 1)σ̂(l), where zα/2 is

(1 − α
2 )-quantile of the standard normal distribution. Our

final selected one is l̂ ∈ argmax1≤l≤L U(l).

The use of U(l) is motivated by the recent proposed pes-
simistic idea to address the overestimation issue of value (or
Q) function in the OffRL setting. See Kumar et al. [2019,
2020], Jin et al. [2021], Xie et al. [2021], Uehara and Sun
[2021], Zanette et al. [2021] for details. The final output of
our algorithm is π̂l̂ and an outline of the proposed algorithm
can be found in Algorithm 1. As we can see, our algorithm
is nearly tuning-free, which provides great flexibility in real-
world applications. The only two adjustable parameters are
O and α and they are directly interpretable. The size of O
balances the computational cost and the finite-sample accu-
racy of evaluating each candidate model. Specifically, we
can indeed show that the variance of the estimated value
function by our algorithm can achieve the semi-parametric
efficiency bound, which is best one can hope for. So in the
asymptotic sense, the effect of O is negligible. In the finite-
sample setting, it is rational to assume the performance will
be discounted by a factor

√
O − 1/O. Therefore, if O is

large enough,
√
O − 1/O will have a mere effect on the

performance. See Theorem 1 for more details. However,
using large O will result in a large computational cost. As
a sacrifice for the nearly tuning-free algorithm, we need to
apply OffRL algorithms O times for each candidate model.
The parameter α determines how worst the performance
of each policy we should use to evaluate each policy. See
Corollary 2 for more insights.

5 THEORETICAL RESULTS

In this section, we justify our asymptotic result given in (9).
We use Op to denote the stochastic boundedness. Before
that, we make several technical assumptions:

Assumption 1 The stochastic process {At, St}t≥0 is sta-
tionary with stationary distribution p∞.

Assumption 2 For every 1 ≤ l ≤ L and 1 ≤ o ≤ O,
we have E|V(π̂

(o)
l ) − V(π∗)| ≤ C0(nT/O)−κ, for some

constant C0 and κ > 1/2.

Assumption 1 is standard in the existing literature such
as [Kallus and Uehara, 2019]. Assumption 2 is key to our
developed asymptotic results developed. This assumption es-
sentially states that all candidate models are good enough so
that eventually their value functions will converge to that of
the optimal one. This implies that there is no asymptotic bias
in estimating the optimal policy. While this is reasonable
thanks to the capability of deep neutral networks, which has
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Algorithm 1 Pessimistic Model Selection (PMS) for OffRL
Input: Dataset Dn and L candidate models for estimating

optimal Q-function and policy; We divide Dn into
non-overlapping subsets denoted by D1, · · · ,DO.
We require that for any 1 ≤ o1 < o2 ≤ O, any
(i1, t1) ∈ Jo1 and (i2, t2) ∈ Jo2 , either i2 6= i1 or
t1 ≤ t2.

for l ∈ L do
for o = 1 to O − 1 do

0 For l ∈ L models, construct the optimal Q̂(o)
l and

π̂
(o)
l using D̄o data subset.

0 Compute ω̂π̂
(o)
l ,ν using D̄o by Nachum et al.

[2019] and min-max solver for (3).
0 Compute V̂Do+1(π̂

(o)
l ) and σ̂2

o+1(l) using Do+1

given in (5) and (7) respectively.

end
0 For l-th model, we compute U(l) = V̂(π̂l) −

zα/2
√
nT (O − 1)/Oσ̂(l), where V̂(π̂l) and σ̂(l) are

given in (8) and (9) respectively.
end

0 Pick l̂ = arg maxl U(l) as the selected model and run the
algorithm on full dataset to obtain π̂l̂.

Return π̂l̂.

demonstrated their empirical success in many RL applica-
tions, such an assumption could still be strong. In Section 6,
we aim to relax this assumption and provide two remedies
for addressing possibly biased estimated policies. In addi-
tion, Assumption 1 also requires that the convergence rates
of value functions under estimated policies are fast enough.
This has been shown to hold under the margin condition on
π∗, see e.g., [Hu et al., 2021] for more details.

Assumption 3 For every 1 ≤ l ≤ L and 1 ≤ o ≤
O − 1, suppose E(S,A)∼p∞ |Q̂

(o)
l (S,A)−Qπ̂

(o)
l (S,A)|2 =

Op{(nT/O)−2κ1} for some constant κ1 ≥ 0. In addition,
Q̂

(o)
l is uniformly bounded almost surely.

Assumption 4 For every 1 ≤ l ≤ L and 1 ≤ o ≤ O −
1, suppose E(S,A)∼p∞ |ω̂π̂

(o)
l ,ν(S,A) − ωπ̂

(o)
l ,ν(S,A)|2 =

Op{(nT/O)−2κ2} for some constant κ2 ≥ 0. In addition,
both ωπ̂

(o)
l ,ν and ω̂π̂

(o)
l ,ν are uniformly bounded above and

below away from 0 almost surely.

Assumption 5 For every 1 ≤ l ≤ L and 1 ≤ o ≤ O − 1,
σ2(π̂

(o)
l ) and σ̂2

o+1(π̂
(o)
l ) are bounded above and below

from 0 almost surely.

Assumptions 3 and 4 impose high-level conditions on two
nuisance functions. Our theoretical results only require

κ1 + κ2 > 1/2, which is a mild assumption. For exam-
ple, if considered parametric models for both Q-function
and ratio function, then κ1 = κ2 = 1/2. If considered non-
parametric models for these two nuisance functions such
as deep neural networks, then 1/4 < κ1, κ2 < 1/2 can be
obtained under some regularity conditions. See Fan et al.
[2020] and Liao et al. [2020], Uehara et al. [2021] for the
convergence rates of Q-function and ratio function by non-
parametric models respectively. In addition, Assumption 5
is a mild assumption, mainly for theoretical justification.
Then, we have the following main theorem as a foundation
of our proposed algorithm.

Theorem 1 Under Assumptions 1-5, we have

(
√
nT (O − 1)/O(V̂(π̂l)− V(π̂l)))/σ̂(l) =⇒ N (0, 1). (10)

Theorem 1 provides an uncertainty quantification of each
candidate model used in policy optimization. Such uncer-
tainty quantification is essential in OffRL as data are often
limited. We highlight the importance of such results in Ap-
pendix. A consequent result following Theorem 1 validates
the proposed Algorithm 1:

Corollary 2 lim inf
nT→∞

Pr(V(π̂l̂) ≥ max1≤l≤L V(π̂l) −

2zα/2
√
nT (O − 1)/Oσ̂(l)) ≥ 1− Lα under Assumptions

1-5.

As can be seen clearly from Corollary 2 and the proposed
PMS method, with a high probability (by letting α small),
we consider the worst performance of each candidate model
π̂l in the sense of the lower confidence limit of the value
function, and then select the best one among all models.

6 TWO REFINED APPROACHES

In this section, we relax Assumption 2 by allowing possibly
non-negligible bias in estimating the optimal policy and
introduce two refined approaches for addressing this issue.
Instead of imposing Assumption 2, we make an alternative
assumption below.

Assumption 6 For 1 ≤ l ≤ L, there exists B(l) such that
max1≤o≤(O−1) |V(π̂

(o)
l )− V(π∗)| ≤ B(l) almost surely.

Assumption 6 is a very mild assumption. It essentially states
that the biases for all our intermediate value function esti-
mates are bounded by some constant, which is much weaker
than Assumption 2. In this case, the asymptotic results in
(10) may not hold in general. Correspondingly, we have the
following result.
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Theorem 3 Under Assumptions 1, 3-6, for every 1 ≤ l ≤
L, the following inequality holds:

lim inf
nT→∞

Pr
(
|V(π∗)− V̂(π̂l)|

≤ zα/2
√
O/nT (O − 1)σ̂(l) +B(l)

)
≥ 1− α. (11)

Motivated by Lepski’s principle [Lepski and Spokoiny,
1997] from nonparametric statistics and [Su et al., 2020]
studying the model selection of OPE, we consider the follow-
ing refined model-selection procedure to find the best policy.
We first rank L candidate models in an non-increasing
order based on the value of σ̂(l), i.e., for 1 ≤ i < j ≤ L,
σ̂(i) ≥ σ̂(j). Then for i-th model, we construct an interval
as I(l) = [V̂(π̂l)− 2zα/(2L)

√
O/nT (O − 1)σ̂(l), V̂(π̂l) +

2zα/(2L)
√
O/nT (O − 1)σ̂(l)]. Finally the op-

timal model/policy we choose is π̂î such that
î = max{i : 1 ≤ i ≤ L,∩1≤j≤iI(j) 6= ∅}. To
show this procedure is valid, we need to make one
additional assumption.

Assumption 7 There exists a ζ < 1 such that for 1 ≤ i ≤
L, B(i) ≤ B(i + 1) and ζσ̂(i) ≤ σ̂(i + 1) ≤ σ̂(i) almost
surely.

While this assumption is borrowed from Su et al. [2020], we
consider model selection for policy learning instead of OPE
in Su et al. [2020], which is substantially more challenging.
This assumption typically assumes that after model sorting
based on σ̂(l), the bias of estimated policy is monotonically
increasing and the standard deviation is monotonically de-
ceasing but not too quickly. This is commonly seen when
all candidate estimators exhibit some bias-variance trade-off
phenomena. Define the following event

E =
{
|V̂(π̂î)− V(π∗)| ≤ 6(1 + ζ−1)

× min
1≤i≤L

{B(i) + zα/(2L)
√
O/nT (O − 1)σ̂(i)}

}
.

Then we have the following theoretical guarantee for our
refined procedure.

Corollary 4 Under Assumptions 1, 3-5, and 7, we have
lim inf
nT→∞

Pr(E) ≥ 1 − α. If we further assume that for any

δ > 0, with probability at least 1− δ, for every 1 ≤ i ≤ L,
|V(π̂i) − V̂(π̂i)| ≤ c(δ) log(L)σ̂(i)/

√
NT for some con-

stant c(δ), then lim inf
nT→∞

Pr(E) ≥ 1− α− δ, where

E = {|V(π̂î)− V(π
∗)| ≤ 3(1 + ζ−1)×

min
1≤i≤L

{B(i) + (c(δ) log(L) + zα/(2L))
√
O/nT (O − 1)σ̂(i)}}.

The additional assumption (i.e., the high probability bound)
in Corollary 4 can be shown to hold by the empirical process
theory under some technical conditions [Van de Geer, 2000].
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Figure 2: DQN environments in our studies: (a) E1: FrozenLake-
v0; (b) E2: Banana Collectors (3D geometrical navigation task);
(c) E3: Pong-v0; (d) E4: Breakout-v0; (e) E5: Halfcheetah-v1; (f)
E6: Walker2d-v1.

best selected policy π*

Figure 3: Box plots of model selection performance from offline
learning in each DRL algorithm for E2.

Hence Corollary 4 provides a strong guarantee that the regret
of the final selected policy is bounded by the smallest error
bound among allL candidate policies. Note that Assumption
3 imposed here could be strong.

Another refined approach: Notice that the above refined
approach indeed focuses on OPE estimates to select the
best policy with regret warranty. The motivation behind
it is to find a policy that has the smallest estimation error
to the optimal one. However, such procedure may not di-
rectly match the goal of maximizing the value function in
OffRL. To relieve this issue, we can alternatively choose
the final policy as π̂ˆ̂i such that ˆ̂i = argmax1≤i≤îV̂(π̂i) −
2zα/2

√
nT (O − 1)/Oσ̂(i),where the argmax is taken over

1 to îmodels. This approach can be viewed as a combination
of PMS and the above refined approach. By adopting this
approach, candidate models with large biases are firtly re-
moved by the truncation on î. Then, we use the idea of PMS
to select the best model having the best worst performance
among the remaining candidates. Unfortunately, we do not
have theoretical guarantee for this combined approach.

7 EXPERIMENTAL RESULTS

We select six DQN environments (E1 to E6) from open-
source benchmarks [Brockman et al., 2016, Juliani et al.,
2018] to conduct numerical experiments, as shown in Fig. 2.
These tasks of deployed environments cover different do-
mains that include tabular learning (Fig 2(a)); automatic
navigation in a geometry environment with a physical ray-
tracker (Fig 2(b)); Atari digital gaming (Fig 2(c) and (d)),
and continuous control (Fig 2(e) and (f)). We provide de-
tailed task description and targeted reward for each environ-
ment in Appendix . We will also provide our reproducible

2385



500 1k 2k 4k
Num episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
gr

et

PMS WIS AM FQE

Figure 4: Sensitivity analysis for different training data size. PMS attains the best performance and has the least sensitivity.

Figure 5: PMS and its refinements (R1/R2).

code and implementations.

Experiment setups. To evaluate the performance of PMS
with DQN models in offRL, we choose different neural net-
work architectures under five competitive DRL algorithms
including DQN by [Mnih et al., 2013, 2015], BCQ by [Fuji-
moto et al., 2019], BC by [Bain and Sammut, 1995, Ross
and Bagnell, 2010], BRAC by [Wu et al., 2019] from RLU
benchmarks, and REM by [Agarwal et al., 2020]. Within
each architecture, 70 candidate models are created by as-
signing different hyperparameters and training setups. See
Appendix for details. We then conduct performance evalua-
tion of different OffRL model selection methods on these
generated candidate models.

Evaluation procedure. We utilize validation scores from
OPE for each model selection algorithm, which picks the
best (or a good) policy from the candidate set of sizeL based
on its own criterion. Regret is used as the evaluation met-
ric for each candidate. The regret for model l is defined as
V (πl∗)−V (π̂l), where l∗ = arg maxl′=1...L V (πl′) corre-
sponds to the candidate policy with the best OPE validation
performance. In our implementation, we treat πl∗ as π∗, the
oracle but unknown best possible policy. A small regret is
desirable after model selection. Note the optimal regret is
not zero since we can only use data to obtain π̂l instead of
πl for each model. We provide additional top-k regret and
precision results in Appendix .

Performance comparison. As highlighted in Fig. 1 in the

introduction, we report estimated OPE values by different
model selection approaches, i.e., PMS and three methods
by [Tang and Wiens, 2021], versus the true OPE values. In
this experiment, we consider 70 DQN models under the
above mentioned five DRL algorithms, i.e., 14 models are
considered for each architecture. We use fewer models for
each DRL algorithm mainly for clear presentation. By using
the confidence interval constructed by our PMS procedure,
our method is able to correctly select the top models, while
the other three methods fail. To further investigate the per-
formance of PMS, we implement model selection among 70
models within each DRL algorithm separately. Fig. 3 shows
the box plots of averaged regret over six environments af-
ter OPE per neural network architecture. Each subfigure
contains results from one particular DRL algorithm with
different hyperparameters or training setups. The left box
plot refers to the regrets of all 70 models and the right one
represents the regrets of top 10% models selected by the
proposed PMS method. Note that the right box plot is a sub-
set of the left one. The results show that our proposed PMS
successfully helps to select models with the best policies
and improve the average regret by a significant margin. In
particular, PMS-REM-based models attain the lowest re-
grets, due to the benefit from its ensemble process. Detailed
results for each environment is given in Appendix , where
α = 0.01 and O = 20 are used in all experiments.

Sensitivity analysis. Fig. 4 compares different selection
algorithms with varying training data size. PMS outperforms
others across all scales, and larger number of episodes gives
smaller variation and lower sensitivity.

PMS algorithm with refinements. We replicate our exper-
iments in the offline navigation task in E2 (Banana Col-
lector) for 30 times and report regrets of top 10% models
selected by PMS and two refinements in Fig. 5. As we can
see, while the overall performances of the proposed three
model selection methods are similar, two refined approaches
have better regrets than PMS in terms of median, demon-
strating their potentials in identifying the best model. OPE
results have been also evaluated also in DRL tasks with
E1 and E3 to E6, where the refinement algorithms (PMS
R1/R2) have only a small relative ± 0.423 % performance
difference compared to its original PMS setups.
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8 CONCLUSION

We propose a new theory-driven model selection frame-
work (PMS) for offline deep reinforcement learning based
on statistical inference. The proposed pessimistic mecha-
nism warrants that the worst performance of the selected
model is the best among all candidate models. Two refined
approaches are further proposed to address the biases of
DRL models. Extensive experimental results on six DQN
environments with varying network architectures and train-
ing hyperparameters demonstrate that our proposed PMS
method consistently yields improved model selection per-
formance over existing baselines. The results suggest the
effectiveness of PMS as a powerful and provably effective
tool toward automating model selection in offline DRL.
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