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Abstract

We study lower bounds for the number of output and equivalence queries required for
active learning of finite state machines, with a focus on L#, a new learning algorithm
that requires fewer queries for learning than other state-of-the-art algorithms on a large
collection of benchmarks. We improve the lower bound of Balcázar et al. (1997) on the
combined number of output and equivalence queries required by any learning algorithm,
and give a simpler proof. We prove that in the worst case L# needs n − 1 equivalence
queries to learn an FSM with n states, and establish lower bounds on the number of
output queries needed by L# in the worst case. In practical applications, the maximum
length of the shortest separating sequence for all pairs of inequivalent states (MS3) is often

just 1 or 2. We present L#
h , a version of L# with bounded lookahead h, which learns FSMs

with an MS3 of at most h without requiring any equivalence queries, and give lower and
upper bounds on its complexity.

Keywords: query learning; active automata learning; finite state machines; complexity;
lower bounds; L#.

1. Introduction

Query learning was introduced by Angluin (1987a) and is currently one of the most im-
portant frameworks for learning finite state machines. In query learning, a learner obtains
information about the concept to learn by making queries to some teacher, instead of pas-
sively receiving examples. In the setting considered by Angluin (1987a), the teacher knows
a fixed regular language T over a given alphabet. The goal of the learner is to come up
with a deterministic finite automaton (DFA) accepting T by asking two types of queries. In
a membership query, the learner presents a word x and asks whether x is in T ; the teacher
answers YES or NO. In an equivalence query, the learner produces a DFA H, and asks
whether L(H) = T ; the teacher either answers YES if this is the case, or else returns a
counterexample, i.e., any string witnessing L(H) ̸= T . Angluin (1987a) presented the L∗

algorithm, which efficiently learns a DFA using a polynomial number of membership and
equivalence queries. Angluin (1987b, 1990) also showed that neither membership queries
alone nor equivalence queries alone are good enough to learn DFAs with a polynomial num-
ber of queries. Thus the L∗ algorithm lives in a Goldilocks zone where efficient learning
is possible. Balcázar et al. (1994, 1997) present lower bounds on the combined number
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of membership and equivalence queries needed for learning, but also leave several open
problems.

Since 1987, many other learning algorithms have been discovered in the Goldilocks zone
that improve upon L∗. The most efficient of these algorithms all have an asymptotic query
complexity of O(kn2 + n logm) and pose at most n− 1 equivalence queries, where k is the
number of input symbols, n is the number of states of the minimal DFA, and m is the
length of the longest counterexample provided in response to an equivalence query; see e.g.,
Rivest and Schapire (1989, 1993); Howar (2012); Isberner et al. (2014); Isberner (2015);
Frohme (2019); Vaandrager et al. (2022). Query learning has found numerous applications
in the area of software and hardware analysis. We refer to Vaandrager (2017); Howar and
Steffen (2018) for surveys and further references. Many of the recent learning algorithms
and applications are presented in a setting of finite state machines (FSMs, a.k.a. Mealy
machines), a variation of DFAs where instead of marking states as accepting we associate
output symbols to transitions. In this setting, membership queries are replaced by output
queries where the learner asks for the outputs in response to a sequence of inputs. However,
algorithms and complexity results can be easily translated from one setting to the other.

There have been discussions about whether the number of queries is the right way to
measure the complexity of learning algorithms. Some authors suggest to also measure the
symbol complexity, which is the total number of input symbols and resets required to learn
an automaton, see e.g. Isberner (2015). This is a relevant measure for practical learning
scenarios, as the time required for realizing an output query asymptotically grows at least
linearly in its length. Groz et al. (2020) recently proposed the hW-inference algorithm
that is able to learn strongly connected FSMs with just a single long output query, in
combination with a few equivalence queries en route. Clearly, the number of queries is not
a meaningful measure of the complexity of hW-inference. Groz et al. (2020) use adaptive
output queries in which the choice of an input symbol may depend on the outputs received
in response to previous inputs. Whereas L∗ and many older learning algorithms only use
preset membership/output queries in which all the inputs are fixed in advance, adaptive
output queries are effectively used in the fastest learning algorithms of today (Frohme,
2019; Vaandrager et al., 2022). However, we do not know if and how lower bounds on
complexity are affected by the use of adaptive queries. In applications, equivalence queries
are often approximated by using conformance testing algorithms, which generate a large
number of tests (output queries) in order to find a counterexample for a hypothesis model.
Typically, for larger benchmarks the number of output queries and symbols required for
testing dominates those required for learning, and so the combined number of output queries
needed for both learning and testing appears to be a sensible measure of complexity in these
cases, see e.g. (Aslam et al., 2020; Vaandrager et al., 2022).

Given the significant advances in the theory of active automata learning during the last
25 years, the numerous applications of this theory, and discussions about how complexity
should be measured, we believe it is important to revisit the open problems concerning
lower bounds on query complexity of Balcázar et al. (1997), to also establish lower bounds
for learning algorithms w.r.t. other complexity measures and types of queries, and to try to
close the gap between these lower bounds and the asymptotic complexity of state-of-the-art
algorithms. In this article, we report on some progress on these challenging problems. We
describe our results in a setting of FSMs and the L# algorithm of Vaandrager et al. (2022),
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but believe they can be transferred to the setting of DFAs and to other learning algorithms.
More specifically, we present the following results:

1. We improve the lower bound of Balcázar et al. (1997) on the combined number of
output and equivalence queries required for learning, and give a simpler proof.

2. We prove that in the worst case L# needs n− 1 equivalence queries to learn an FSM.

3. We establish lower bounds on the number of output queries needed by L# in the worst
case. Our bounds take the maximal length of counterexamples into account.

4. We present L#
h , a version of L# that learns FSMs, with a bounded lookahead of at

most h, without any equivalence queries, and analyze its complexity.

The rest of this article is organized as follows. We start with a preliminary Section 2
that introduces some basic concepts and the L# algorithm. Section 3 presents our new lower
bound results. Section 4 motivates and explains the new L#

h algorithm, and presents some
experimental results. Finally, Section 5 concludes the paper and outlines some directions
for future work. Due to space limitations, all proofs have been deferred to Appendix A.
The complete benchmark results can be found in Appendix B.

2. A Brief Introduction to L#

In this section, we briefly recall the L# algorithm for learning (deterministic, input com-
plete) FSMs, and illustrate it on a toy example of a coffee machine. For a detailed and
formal description we refer to Vaandrager et al. (2022).

Figure 1 (right) shows a simple FSM M with three states q0, q1 and q2, with q0 des-
ignated as the initial state, two inputs 1 and coffee, and three outputs

√
, 1 and coffee.

For each state and each input, the FSM generates an output and transitions to a target
state. Intuitively, this FSM models a strange coffee machine that works as follows. If the
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Figure 1: An observation tree (left) for an FSM model of a coffee machine (right)

user provides two coins and presses the coffee button, the machine produces coffee. If the
user immediately provides another coin and presses the coffee button, the machine produces
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another coffee. If the user provides more coins than needed, the machine returns all extra
coins. The machine produces no visible output, or

√
, when the user presses the coffee

button without providing enough coins or when the maximum number of coins for coffee
has not been reached yet.

We consider a setting where a teacher knows an FSM, which a learner has to learn by
posing two types of queries. Initially, the learner only knows the set of inputs. With an
output query, the learner asks what the output is in response to an input sequence. In our
example, if the learner poses output query “1 coffee” then the teacher will respond with
“
√ √

”. With an equivalence query, the learner may ask whether a hypothesized FSM H is
correct. The teacher will respond with YES if the hypothesis is equivalent to the target FSM
(generates the same outputs for any sequence of inputs). Otherwise, the teacher will answer
NO and supply a counterexample, an input sequence that shows the difference between H
and the target FSM. For instance, if the learner proposes a hypothesis with a single state
and output

√
in response to any input then the teacher will answer NO and may provide

counterexample “1 1 1”.

The L# algorithm can be used by a learner to accomplish its task. L# organizes the re-
sponses to output and equivalence queries in an observation tree, which is just a tree-shaped,
partial FSM. Figure 1 (left) shows an observation tree for the example FSM, which stores
the results of output queries coffee, 1 coffee, and 1 1 coffee. Each state of an observation
tree corresponds to a unique state of the FSM (indicated by the state coloring) but initially,
the learner does not know which one. The L# algorithm deems two states r and r′ in the
observation tree apart, notation r # r′, if there exists a sequence σ of inputs for which the
known responses in both states are different. We write σ ⊢ r # r′ to indicate that σ wit-
nesses the apartness of r and r′. In our example observation tree, we have coffee ⊢ t0 # t3,
coffee ⊢ t2 # t3 and 1 coffee ⊢ t0 # t2. Thus states t0, t2 and t3 are pairwise apart. Since
state t1 has no outgoing transitions it is not apart from any other state in the tree. The
L# algorithm partitions the states of observation tree T into three sets:

1. The set of basis states S. We require that
S contains the initial state of T , and that
states from S form a subtree of T . Moreover,
states in S are required to be pairwise apart:
∀p, q ∈ S, p ̸= q: p # q.

2. The set of frontier states F , consisting of the
immediate successors of basis states that are
not contained in S.

3. The remaining states Q \ (S ∪ F ).

In our example, a possible basis is S = {t0, t2, t3},
leading to a frontier F = {t1, t5, t4}, and an empty
set of remaining states.
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Figure 2: T , S, and F

For each state r in the frontier, the candidate set C(r) is the set of basis states that
are not apart from r, that is, C(r) = {q ∈ S | ¬(r # q)}. In our example, we have no
information about the behavior of the frontier states, and thus for all frontier states the
candidate set is equal to the basis. The L# algorithm starts from a trivial observation

160



Lower Bounds for Active Automata Learning

tree with just a single root node t0, which constitutes the basis, and repeatedly applies the
following rules (slightly simplified for explanatory purposes), in arbitrary order:

(R1) Promotion: If frontier F contains a state r with C(r) = ∅, then r is apart from all
states in basis S, and therefore we may move it from F to S. If multiple states may
be moved from the frontier to the basis then we may nondeterministically choose any
of these states.

(R2) Extension: If some state q ∈ S does not have an outgoing i-transition, for some
input i, then the frontier is extended by adding a new state and an i-transition from
q to this new state. The output of the new transition is determined via an output
query access(q) i, where access(q) is the unique sequence of inputs leading to state q.

(R3) Identification: If frontier F contains a state r with a candidate set C(r) that contains
at least two elements, say q and q′, then we pick a witness σ with σ ⊢ q # q′ and pose
output query access(r) σ. In the resulting observation tree q ̸∈ C(r) or q′ ̸∈ C(r).

(R4) Equivalence: If rules (R1), (R2) and (R3) cannot be applied, we construct a hy-
pothesis from T and pose an equivalence query to the teacher. If the answer is YES
then we are done, otherwise we process the received counterexample.

We now show how L# learns the FSM of Figure 1 and explain rule (R4) in more detail:

1. Initially, the observation tree has a single node t0 and basis {t0}. The only rule that
can be applied is the extension rule (R2). This rule is applied twice (for both inputs)
giving us new frontier states t1 and t2 (see Figure 3 (left)).
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t0t0

coff
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√

1/ √

1/
√

coffee/
√

Figure 3: An observation tree (left) and initial hypothesis H1 (right)

2. At this point we cannot apply rules (R1), (R2) and (R3), so we apply rule (R4) and
construct a hypothesis H. This is done as follows: the set of states of H is equal
to the basis S, with the root as the initial state; transitions between basis states in
T are included in H; and transitions from a basis state q to a frontier state r are
redirected to the unique state in C(r). Phrased differently: each frontier state r is
merged with the unique basis state contained in C(r). In the case of Figure 3 (left),
C(t1) = C(t2) = {t0} and so we obtain the hypothesis H1 shown in Figure 3 (right).
Assume the teacher returns counterexample 1 1 coffee. We add this sequence to
the observation tree. Since this does not create any new apartness pair between the
frontier and the basis, counterexample processing (which we explain in more detail
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below) performs an output query for suffix 1 coffee of the counterexample. This leads
to the observation tree of Figure 1 (left). Now there is a new apartness pair t0 # t2.

3. We promote state t2 and add it to the basis with rule (R1). Next, since state t3 is
apart from both t0 and t2, we apply rule (R1) again and add t3 to the basis.

4. We complete the frontier and add a 1-transition to a new state t6- with rule (R2).

5. We repeatedly apply rule (R3) and explore input sequence 1 coffee (that witnesses
the apartness of all pairs of basis states) in each of the frontier states. We obtain the
extended observation tree of Figure 4 (left), where C(t1) = C(t5) = {t0}, C(t4) = {t2},
and C(t6) = {t3}.
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Figure 4: Final observation tree (left) and hypothesis H2 (right)

6. We apply rule (R4) and construct hypothesis H2 of Figure 4 (right). This hypothesis
is clearly equivalent to M and so learning terminates.

The general procedure for counterexample analysis of L#, illustrated in Figure 5, works
as follows: For a hypothesis H and observation tree T , an input sequence σ ∈ I∗ leads to
conflict if the state r reached by σ in T is apart from the state q reached by σ in H (note
that by construction any state of H is also a state of T ). A conflict indicates that one
of the frontier states was merged with a basis state in H while they are distinct states in
the target automaton, causing a wrong transition in H. Any counterexample decomposes
into a concatenation of two words σ and η, where σ leads to a conflict and η witnesses
it. Our goal is to pull the conflict back to the frontier, as this will allow us to apply the
promotion rule and extend the basis. We define a recursive procedure to analyze σ. Since
σ can be very long, we reduce the length of σ using binary search (a trick due to Rivest and
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Figure 5: Counterexample analysis

Schapire (1993)). If r is in the basis or frontier, then r must be apart from all other states
in the basis. This means that H is not a hypothesis anymore and counterexample analysis
is finished. Otherwise, let σ1 σ2 := σ such that running σ1 in T ends halfway between the
frontier and r. Let q′ be the state reached by σ1 in H, and r′ the state reached by σ1 in T .
We pose an extra output query access(q′) σ2 η and add the result to T . Here access(q′) is
the unique access sequence of state q′ in T . Now there are two cases. Either q′ # r′, which
means that σ1 already leads to conflict. In this case we have reduced the distance from the
frontier to a conflict by half, and we recurse. Otherwise, access(q′) σ2 leads to a conflict,
we have again reduced the distance from the frontier to a conflict by half, and we recurse.

1

coffee

∅

{t0}
{t2}

{t3}

∅

√ coffee

1

√
1

coffee

Figure 6: An adaptive output query

The implementation of L# uses adaptive output queries, in which the choice of an input
symbol may depend on the outputs received in response to previous inputs. The main
reason why L# outperforms other learning algorithms is that it uses dynamic programming
to compute an adaptive output query that maximizes the expected number of new apartness
pairs. Figure 6 shows the adaptive query that L# would use to identify a frontier state fs in
our coffee machine example. Essentially, an adaptive output query is a decision tree where
the internal nodes are labeled with an input and have outgoing transitions for each possible
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output. If the first input 1 triggers output 1 we stop the experiment (the candidate set C(fs)
of fs will be {t3}), if it triggers output cofffee we also stop the experiment (the candidate
set will be ∅), if it triggers output

√
we continue the experiment with an input coffee, etc.

Adaptivity only helps a bit in the case of our coffee machine example (the transition from
t13 to t14 is no longer needed), but for larger FSMs the savings can be significant.

3. Lower Bound Results

Balcázar et al. (1997) present a lower bound of 1
16 · (k − 1) · n2 for a weighted sum of the

numbers of membership and equivalence queries required for learning a DFA. Below we
present a strengthening of this bound, phrased in terms of FSMs; it is straightforward to
adapt this result to DFAs. For learning algorithm L, ♯outp(L, n, k,m) denotes the number
of output queries made by L in the worst case over any teacher and any FSM with n states,
k inputs and length of the longest counterexample m. The definition of ♯equiv(L, n, k,m)
is analogous; we only count the nonfinal equivalence queries for which the reply is NO.
For clarity, we sometimes omit parameters in ♯outp(L, n, k,m) or ♯equiv(L, n, k,m) that are
irrelevant for the discussion or obvious from the context.

In order to prove the inequality of Theorem 1, we define a collection of acyclic FSMs with
n states and k inputs. Assume the teacher chooses one specific FSM from this collection. In
order to identify the FSM selected by the teacher, the learner has to determine the target
state of (k − 1)⌊n2 ⌋ transitions. Each of these transition has ⌈n2 ⌉ potential target states. In
the worst case, for any given transition, the learner either needs ⌈n2 ⌉ − 1 output queries to
determine the target state, or a single equivalence query. For the details of the proofs in
this section we refer to Appendix A.

Theorem 1 For every learning algorithm L, every n ≥ 3, and every k ≥ 2,

♯outp(L, n, k) + (⌈n
2
⌉ − 1) · ♯equiv(L, n, k) ≥ (k − 1) · ⌊n

2
⌋ · (⌈n

2
⌉ − 1)).

In Theorem 1, we assume that n ≥ 3 and k ≥ 2. The next theorem presents lower and
upper bounds for the basis cases where n ≤ 2 or k = 1.1

Theorem 2

1. For every learning algorithm L, every n ≥ 1 and every k ≥ 1, ♯outp(L, n, k) +
♯equiv(L, n, k) > 0.

2. There exists an algorithm L0 with ♯outp(L0, 1, k) = 1 and ♯equiv(L0, 1, k) = 0.

3. Assume k = 1 and assume the learner knows an upper bound on n. Then there exists
an algorithm L1 that can learn an FSM with a single output query.

4. For every learning algorithm L and every k ≥ 2, ♯outp(L, 2, k) + ♯equiv(L, 2, k) ≥ k.

5. Assume k ≥ 2. There exists an algorithm L2 with ♯outp(L2, 2, k) = k + 1 and
♯equiv(L2, 2, k) = 1.

1. Balcázar et al. (1997) present no constraints on n in their lower bound result. Since a 1-state DFA can
be learned with a single query (e.g. the membership query ϵ), their lower bound is incorrect for n = 1.
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For completeness, Theorem 2 covers trivial values of n and k as well. For the case n = 1,
the proofs that the upper and lower bound on the number of queries coincide are trivial.
In the case of k = 1 lower bound and upper bound also coincide if we assume the learner
knows a bound on n. Because a separating sequence has a length of at most n − 1, we
can perform one long output query of length 2N , with N the given upper bound, to prove
the case of k = 1. In case the learner does not know such a bound it needs to perform an
equivalence query to check whether its current estimate of the bound on n is correct, and
e.g. repeatedly double the estimate in case the case of a NO answer. If n = 2 we leave a
gap of 2 between the upper and lower bound. For the lower bound, we assume that the
initial state has no self-loops and the second state is a sink state, this forces the learner to
ask one output query for every input symbol to learn the transition from the initial state to
the second state. For the upper bound, we find a separating sequence with the equivalence
query and use this separating sequence in an adaptive output query. If the second state is
a sink state we need at most k − 1 additional preset output queries to learn the FSM. We
do not know if the same bounds can be shown with preset output queries only.

It is well-known that for learning algorithms such as L∗ and L# the maximal number
of equivalence queries is at most n− 1. Below we show that in the worst case L# requires
exactly n − 1 equivalence queries. In order to prove this result, we define a collection of
FSMs with n states and k inputs with k ≥ n. Assume the teacher chooses one specific
FSM from this collection and always returns the minimal counterexample. L# identifies
frontier states with inputs that are able to separate the previously found states. We exploit
this characteristic of L# by giving each state a unique input symbol to identify the state.
Therefore, each state except the initial state requires an equivalence query because the
unique input symbol to identify the state has not been used to separate previously found
states.

Theorem 3 For every n ≥ 1 and every k ≥ n, ♯equiv(L#, n, k) ≥ n− 1.

The construction in the proof of Theorem 1 involves FSMs that are acyclic except for
the sink state. In these FSMs, an adversarial teacher can only return counterexamples of
which the length of the relevant part is bounded by the number of states in the FSM. In
practice, FSMs often contain loops that allow for counterexamples of unbounded length
m. As a result, state-of-the-art active learning algorithms have an asymptotic complexity
O(kn2 + n logm), where subterm n log m corresponds to the output queries needed to
process counterexamples. The problem whether or not this subterm is necessary has been
open for a long time (it was already mentioned by Balcázar et al. (1997)). As a first step
towards solving this open problem, we present a lower bound proof that shows that at least
in the asymptotic query complexity of L# the subterm n log m is required. In order to
prove the inequality of Theorem 4, we define a collection of acyclic FSMs with n states and
k inputs with k ≥ n+1. Assume the teacher chooses one specific FSM from this collection.
Similar to Theorem 3, each state except the initial state has a uniquely identifying input
symbol. Contrary to Theorem 3, the teacher does not return the minimal counterexample
but a counterexample with many redundant input symbols. The redundant input symbols
leads to at least log(mn − 1) output queries during counterexample processing. Moreover,
we ensure that at least k − 3 transitions per state lead to the initial state which can only
be identified by ruling out all other states, leading to (k − 3) · n · (n− 1) output queries.
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Theorem 4 For every n ≥ 2 and every k ≥ n+ 1,

♯outp(L#, n, k,m) ≥ (k − 3) · n · (n− 1) + log
(m
n

− 1
)
· (n− 1)

4. Adding Lookahead

The asymptotic symbol complexity of the fastest active learning algorithms is O(kmn2 +
mn logm), see Isberner (2015); Frohme (2019); Vaandrager et al. (2022). During our efforts
to come up with lower bounds for the symbol complexity of these algorithms, we exper-
imented with the benchmarks from https://automata.cs.ru.nl (see also Neider et al.
(2018)) that have been used for evaluation of the L# algorithm Vaandrager et al. (2022).
This collection of 46 models has been obtained through case studies involving real imple-
mentations of the SSH, TCP, and TLS protocols, alongside bank card applications. The
largest model in the collection has 66 states and 13 input symbols. We observed that, for
23 of these benchmarks, even when we generated really long counterexamples, there were
never applications of the identification rule with long witnesses. As it turned out, a simple
explanation for this observed behavior is that for all these benchmarks the Maximum length
of the Shortest Separating Sequences for all pairs of inequivalent states (MS3) equals 1.
Consider an FSM with a set of states Q over a set of inputs I. A separating sequence for
two inequivalent states q, q′ ∈ Q is an input sequence σ ∈ I∗ s.t. both states have different
output responses to the input sequence, and MS3 is the length of the longest sequence in
the set of all shortest separating sequences for each pair of states:

max
(q,q′)∈Q×Q with q,q′ inequivalent

min
σ∈I∗ a separating sequence for q,q′

|σ|.

Via the extension rule, L# explores all outgoing transitions of each basis state, and this
allows the implementation to always find a witness of length 1. Figure 7 shows a histogram
of the MS3 values for all 46 benchmarks. As one can see more than 2/3 of the benchmarks
have an MS3 of at most 2.

Inspired by Figure 7, we consider, for each natural number h, the class h-FSM of finite
state machines with an MS3 value of at most h. Thus, for example, the FSM of Figure 2
(right) belongs to the class 2-FSM, and the FSM of Figure 11 belongs to the class 1-
FSM. Assuming that Figure 7 is indicative for a general pattern, it makes sense to look
for dedicated learning algorithms that are good at learning models in h-FSM, for small
h. In this section, we present L#

h , a variation of L# that can learn any model in h-FSM.

We first discuss L#
h , and then present some experimental results. L#

h is designed to learn
h-FSMs without posing any equivalence queries. It does so by exhaustively exploring all
input sequences of length h + 1 from each state in the basis (or equivalently, all input
sequences of length h from each state on the frontier). The idea to explore all words of
length h+1 from each discovered state is certainly not new and, for instance, also shows up
in the h-closed observation packs of Balcázar et al. (1997) and in the approach of Soucha
and Bogdanov (2020), which integrates learning and testing. Thus, besides observing the
practical relevance of h-FSM, for small h, our contribution is that we provide a correctness
proof, a lower bound, and an efficient implementation building on the L# algorithm.

The L#
h algorithm starts exactly as L#: from a trivial observation tree with just a single

root node in the basis. L#
h has the following rules:

166

https://automata.cs.ru.nl


Lower Bounds for Active Automata Learning

1 2 3 4 5 6 7 
Maximum length of the Shortest Separating Sequence

0

5

10

15

20

Nu
m

be
r o

f F
SM

s

Figure 7: Histogram of MS3 values for a collection of 46 benchmarks.

(R1) Promotion: This rule is the same as the promotion rule in L#. If frontier F contains
a state r with C(r) = ∅, then we move r from F to S.

(R2’) Extension: If a state q ∈ S does not have an outgoing word σ ∈ Ih+1, then we make
an output query access(q) σ. Here, Ik is the set of all words in I of length k.

(R4’) Equivalence: If neither rule (R1) nor rule (R2’) can be applied, then (see the proof
of Theorem 5), the candidate set of all the frontier states is a singleton. Therefore,
we may construct a hypothesis H from T . We return H as the learned model.

We show how L#
h learns the coffee machine FSM of Figure 1. Note that the set of

input sequences {1 coffee, 1, coffee} contains a separating sequence for each (distinct) pair

of states. Thus, the model is in 2-FSM and can be learned using L#
2 as follows:

1. Initially, the observation tree has a single node t0 and basis {t0}. The only rule that
can be applied (repeatedly) is extension rule (R2’). States t1 and t2 now become
frontier states.

2. We observe that 1 coffee is a witness for t1 # t0. This means we may apply promotion
rule (R1) and add state t1 to the basis. States t3 and t4 now become frontier states.

3. We observe that coffee is a witness for t3 # t0 and for t3 # t1. This means we may
apply promotion rule (R1) again and add state t3 to the basis. States t7 and t8 now
become frontier states.

4. We repeatedly apply extension rule (R2’) for states t3 and t2 (not visualized here).
This does not add any new states to the basis or frontier, but it allows us to identify
all frontier states (reduce their candidate set to a singleton).

5. We apply equivalence rule (R4’) and construct an hypothesis H2. The algorithm
terminates.
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Figure 8: Observation tree after steps 1-3.

The theorems below state the correctness of L#
h and provide lower and upper bounds

on the number of output queries posed by the algorithm. Theorem 5 relies on the fact that
rules (R1) and (R2’) can only be applied a finite number of times. If rules (R1) and (R2’)
cannot be applied anymore, the algorithm terminates. Upon termination, each state has
outgoing paths for each input sequence of length at most h. Because we assume that all
states are distinguishable with a sequence of length at most h, all states must have been
found because otherwise, rule (R1) can be applied. In the worst-case scenario of Theorem 6,
rule (R2’) has to be applied for each basis state and each h+ 1 sequence. In the best-case
scenario, some basis states have other basis states as successors, allowing for the reuse of
previously asked output queries.

Theorem 5 For any h, L#
h correctly learns any model in h-FSM.

Theorem 6 For any h, L#
h requires at least nkh+1 − (n− 1)kh and at most nkh+1 output

queries to learn a model in h-FSM.

We present some experimental results using L#
2 to learn 1-FSMs and 2-FSMs from the

FSMs available at https://automata.cs.ru.nl. We have selected 33 FSMs to learn. For
L#, we use our implementation of Hybrid-ADS (Smeenk et al., 2015) to answer equivalence
queries, constructing a complete test suite for up to 2 extra states. Additionally, while
we typically skip the final equivalence query, where we know the hypothesis generated is
correct (i.e., where the teacher answers YES), in this case, we do not. L#

2 is a learner which
essentially combines the learning and testing phase of active automata learning. Given that,
it would be unfair to skip the final equivalence query for Hybrid-ADS and not for L#

h .

Figure 9 shows the results of the number of queries made by L#
2 and L#+ Hybrid-

ADS while learning our FSMs.2 We also include the upper and lower bounds for each
model. As expected, L#

2 generally asks fewer queries than standard L# for learning FSMs
belonging to the classes 1-FSM and 2-FSM. While reaching the exact lower bound in practice
would be very difficult, we get quite close to it using some heuristics adopted from the L#

implementation. The L# + Hybrid-ADS version also performs well (with the exception

2. A full table with all the data can be found in Appendix B.
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Figure 9: Comparison of L#
2 and L#+ Hybrid-ADS. Models are sorted in ascending order

of (n, k). In addition to the experimental results, we also plot the upper and lower bounds
derived from Theorem 6.

of a couple of outliers); however, for most cases it performs slightly worse than L#
h . The

source code for our tool can be found online.3 We have also provided a Dockerfile for ease
of replication.

Discussion Our results by no means imply that L#
2 is ‘better’ than L# combined with a

conformance testing algorithm: both approaches offer different guarantees and advantages.

L#
h guarantees that the learned model is correct if we assume that the system under

learning is in the class h-FSM. However, in practice this is typically not a realistic as-
sumption. Similarly, a learner who uses a learning algorithm such as L# in combination
with a conformance testing algorithm to approximate equivalence queries, typically needs
to make an unrealistic assumption in order to claim correctness of a model. For instance,
standard conformance testing algorithms (such as Hybrid-ADS) construct test suites that
are t-complete, for some number t. A test suite T is t-complete for an hypothesis H if, for
any FSM M with at most t extra states with respect to H, M passes T iff M is equivalent
to H. In practice it is usually not realistic to bound on the number of states of a system
under learning with a small t. However, since the size of test suite T grows exponentially in
t, running test suits for values t > 3 is typically not feasible. Similarly, since by Theorem 6
the number of output queries of L#

h grows exponentially in h, running L#
h for values h > 3

is typically not feasible.

3. Available at https://gitlab.science.ru.nl/sws/lsharp.git under the branch “icgi.”
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If we approximate an equivalence oracle by running a h-complete test suite for the
hypothesis, then a learning algorithm may succeed to learn models from k-FSM, where
k > h, while L#

h will not be able to do so. However, if we somehow know to which class h-

FSM some system belongs, then we can learn the correct model using L#
h without resorting

to expensive equivalence queries, no matter the number of states of this system.
One may view the number of states and the MS3 value of the minimal FSM as complexity

measures of systems, similar to other complexity measures that have been considered in the
literature. Fisman (2018), for instance, suggests that the column-index can be viewed as
a complexity measure for a regular language. At a more speculative level, one may view a
low MS3 value as a guideline for design. Similar to the way in which Design for Testability
(Williams and Parker, 1983) is a well-known approach that aims to make digital circuits
easier to test during the manufacturing and debugging process, one could propose Design
for Learnability as an approach that aims to make it easier to learn models of reactive
systems. FSMs with an MS3 value of 1, for instance, can be constructed by introducing a
special input state that triggers a self-loop transition with the name of the current state as
output.

5. Conclusions and Future Work

We improved the lower bound of Balcázar et al. (1997) on the combined number of output
and equivalence queries required by any learning algorithm, and provided lower bounds for
the query complexity of L# that are rather close to the known upper bounds. As argued
in the introduction, in practical learning scenarios we are often not so much interested in
minimizing the number of queries required for learning, but rather in minimizing the number
of symbols required for learning plus testing. In this context, it may be interesting to explore
clever combinations of L# and algorithms that use exhaustive search like L#

h . Many open
problems remain, for instance defining efficient learning algorithms whose query complexity
does not depend on the length of counterexamples, proving nontrivial lower bounds on the
symbol complexity of learning algorithms, and proving that adaptive sequences do (or do
not) help to improve the asymptotic complexity of learning algorithms.
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Appendix A. Proofs

Proof of Theorem 1

We construct a family of FSMs Mn,k,f , for n ≥ 3, k ≥ 2, and any function f : [0, l − 1] ×
[1, k−1] → [l, n−1], where l = ⌊n2 ⌋. Figure 10 shows one element from this family. Machine
Mn,k,f is defined as follows:

• The set of states is {q0, q1, . . . , qn−1} and the initial state is q0.

• The set of inputs is I = {a0, a1, . . . , ak−1}. We write a = a0 and b = a1.

• The set of outputs is {0, 1}.

• There is a spine of a-transitions; for all 0 ≤ j < n− 1:

qj
a/0−−→ qj+1 (1)

All transitions carry output 0, except for a single transition with output 1:

qn−2
b/1−−→ qn−1 (2)

Function f specifies transitions, for non-a inputs, from the first half of the spine to
the second half of the spine. For 0 ≤ j < l and 1 ≤ p < k,

qj
ap/0−−−→ qf(j,p) (3)

State qn−1 acts as a sink state, that is, if for some pair qj and ap, no outgoing transition
is specified in any of the above three rules, this means there is a transition to the sink
state with output 0:

qj
ap/0−−−→ qn−1 (4)

q0q0 q1q1 q2q2 q3q3 q4q4 q5q5 q6q6
a/0

b/0

a/0

b/0

a/0

b/0

a/0 a/0 a/0

b/1

Figure 10: Example of construction for Theorem 1 with n = 7, k = 2, f(0, 1) = 3,
f(1, 1) = 4, and f(2, 1) = 6. For readability, some edges to sink state q6 are not drawn.

Note that all states of FSM Mn,k,f are reachable and that the machine is minimal. The set
C = {aj b | 0 ≤ j ≤ n− 2} constitutes a characterization set with a separating sequence for
each pair of states. Also note that amongst the outputs in response to any input sequence
there is at most one 1, all other outputs are 0. There are at most l·(k−1)+1 input sequences
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such that the output in response to the last input equals 1. We call these input sequences
important, and use S to denote the set of important input sequences. Note that set S
uniquely determines function f . This means that if f and g are different functions, their
sets of important sequences are different, and hence Mn,k,f and Mn,k,g are inequivalent.

We confront a given learning algorithm L against the family of target FSMs Mn,k,f .
This means that initially the learner knows n, I and important sequence an−2 b. The task
of the learner is to learn f , i.e., to determine the full set S of important sequences.

By posing an equivalence query, the learner may sometimes force the teacher to reveal
an important sequence. For instance, if the learner offers a hypothesis in which an−2 b is
the only sequence that triggers an output 1, then the teacher will be forced to reveal a new
important sequence as a counterexample. However, since any path in any automaton from
our class contains at most one transition of type (3), any counterexample will provide the
learner with information about at most one function value f(j, p).

The learner may also use output queries to determine a function value f(j, p). For
instance, in the case of n = 7 and k = 2 of Figure 10, the learner may perform output
queries b a a b, b a b and b b to determine the value of f(0, 1): if one of the sequences
triggers an output 1 then the learner has discovered an important sequence (revealing the
value of f(0, 1)), and if none of the sequences triggers a 1 then the learner concludes that
f(0, 1) = 6. In general, the learner will in the worst case need n− l−1 queries to determine
the value of f(j, p).

In the worst case, learner L will need to perform n− l−1 output queries or 1 equivalence
query in order to discover the value of f(j, p). Therefore, since the domain of f contains
(k − 1) · l elements, we have

♯outp(L, n, k) + (n− l − 1) · ♯equiv(L, n, k) ≥ (k − 1) · l · (n− l − 1)

or equivalently

♯outp(L, n, k) + (⌈n
2
⌉ − 1) · ♯equiv(L, n, k) ≥ (k − 1) · ⌊n

2
⌋ · (⌈n

2
⌉ − 1)).

Proof of Theorem 2

1. Since k ≥ 1 the initial state has at least one outgoing transition. In order to determine
the output of that transition we need at least one query.

2. Assume that the set of inputs, known to the learner, is I = {a0, . . . , ak−1}. Then L0

performs a single output query a0 a1 · · · ak−1. The reply contains a unique output for
each input, allowing L0 to infer all outgoing transitions of the unique state.4

3. Let the input symbol be a and assume the learner knows a bound N on n. Algorithm
L1 performs a single output query a2N and then behaves as L# continuing adding
new states to the basis with promotion rule (R1). In L# the basis contains at most n
states. But since the length of separating sequence in an FSM is at most n−1, and the
length 2N of the single trace in the observation tree is at least 2n, L# will construct

4. In some papers on active automata learning, e.g. Steffen et al. (2011), the answer to an output query
only contains the output for the last input symbol. In such a setting, at least k output queries will be
required to learn a 1-state model.
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a basis with n states, and determine a singleton candidate set for the frontier state
after the n-th basis state. Thus, L# will construct the correct hypothesis without the
need to perform additional output queries.

4. This is a variant of the construction in the proof of Theorem 1. We consider a family
of FSMs Mk,f , for k ≥ 2, and any function f : [0, k− 1] → {0, 1}. Machine Mk,f has
states q0 (the initial state) and q1, inputs a0, . . . ak−1, and outputs 0 and 1. For each

j ∈ [0, k − 1] there are transitions q0
aj/f(j)−−−−→ q1

aj/0−−→ q1. We confront the learning
algorithm L against this family of target FSMs. Since each output or equivalence
query only provides information about at most one outgoing transition of q0, the
learner needs at least k queries in the worst case to determine the outputs on the
outgoing transitions of q0.

5. We present a learning algorithm L2 that only needs k+1 output queries and a single
equivalence query to learn an FSM M with 2 states:

(a) First L2 performs an output query a0 a1 · · · ak−1 containing all the inputs.

(b) Next, L2 performs an equivalence query for a hypothesis H with a single state
and outputs as observed in the output query. If H is incorrect, then the provided
counterexample must contain at least one input a with an output that is different
from the output triggered by a in the output query. This a is a separating
sequence for states q0 and q1.

(c) Now L2 determines the output and target states of all transitions using one
adaptive output query and at most k − 1 preset output queries. The adaptive
query begins with 2 a’s. After the first a we know the output of a in q0 and
after the second a we know the target state after input a in q0. As long as the
target state of transitions is q0 we explore the output and target for other inputs
d in q0, simply by doing d followed by a. But since state q1 is reachable, at some
point there will be an input b that brings us to state q1 (it may be that b = a).
Now we first determine the target of input a in state q1 by doing another a. As
long as the target state of transitions is q1 we explore the output and target for
other inputs d in q1, simply by doing d followed by a. Some input c may bring us
back again from q1 to q0 (possibly c = a). If we discover such a c then we can go
wherever we want since b brings us from q0 to q1, and c brings us from q1 back to
q0. In this case we may simply continue our adaptive query and determine the
output and target state for each input d in each of the states by first going to
that state (using either b or c) if necessary, then doing d (observing the output),
followed by a (to observe the target state). If there is no c that brings us from q1
back to q0 then, after having determined the outputs for all outgoing transitions
in q1, we need to perform at most k− 1 additional (preset) output queries da for
all the inputs for which we do not know yet the output and target state from q0.

Proof of Theorem 3

We construct a family of FSMs Mn,k, for n ≥ 1 and k ≥ n. Figure 11 shows one el-
ement from this family. Machine Mn,k has states {q0, . . . , qn−1}, initial state q0, inputs
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{a0, . . . , ak−1} and outputs is {0, 1}. There is a spine of a0-transitions; for all 0 ≤ j < n−1:

qj
a0/0−−−→ qj+1

In state qj there is a self-loop for input aj with output 1, for 0 < j < n; these are the only
transitions with output 1:

qj
aj/1−−→ qj

All other inputs trigger self-loops with output 0; for all 0 ≤ j < n and 0 ≤ p < n such that
either p = 0 ∧ j = n− 1 or p ̸= 0 ∧ p ̸= j:

qj
ap/0−−−→ qj

q0q0 q1q1 q2q2 q3q3 q4q4 q5q5
a0/0

ap/0, p ̸= 0

a0/0

a1/1

ap/0, p ̸= 0, 1

a0/0

a2/1

ap/0, p ̸= 0, 2

a0/0

a3/1

ap/0, p ̸= 0, 3

a0/0

a4/1

ap/0, p ̸= 0, 4

a5/1

ap/0, p ̸= 5

Figure 11: Example of construction for Theorem 3 with n = 6.

After exploring all outgoing input transitions from the initial state, L# constructs a first
hypothesis H1 with a single state and self-loops with output 0 for all k inputs. We assume
that the teacher always provides a counterexample of minimal length, in this case a0 a1.
Since this leads to a conflict at the frontier, counterexample processing finishes immediately,
and a state in which input a1 triggers output 1 is added to the basis. Input a1 witnesses
the apartness of the two basis states, so after completing the frontier witness a1 is used to
identify the frontier states. A second hypothesis is H2 is constructed, for which the teacher
generates counterexample a0 a0 a2, a state in which input a2 triggers output 1 is added to
the basis, etc. Whenever L# identifies frontier states it only tries inputs that played a role
in separating the basis states that it has found thus far, not any other input that would
reveal the presence of a new state. Each time, L# needs the help of the teacher to discover
a next state, and thus n− 1 (non-terminating) equivalence queries will be made.

Proof of Theorem 4

We construct a family of FSMs Mn,k, for n ≥ 2 and k ≥ n + 1. Figure 12 shows one
element from this family. Machine Mn,k has states {q0, . . . , qn−1}, initial state q0, inputs
I = {a0, . . . , ak−1} and outputs is {0, 1}. There is a spine of a0-transitions; for all 0 ≤ j <
n− 1:

qj
a0/0−−−→ qj+1

In state qj there is a self-loop for input aj with output 1, for 0 < j < n; these are the only
transitions with output 1:

qj
aj/1−−→ qj

176



Lower Bounds for Active Automata Learning

Additionally, each state qj has a self-loop with input ak−1 with output 0, for 0 ≤ j < n

qj
ak−1/0−−−−→ qj

All other inputs trigger transition to the initial state with output 0; for all 0 ≤ j < n and
0 ≤ p < k such that either p = 0 ∧ j = n− 1 or p ̸= 0 ∧ p ̸= j ∧ p ̸= k − 1:

qj
ap/0−−−→ q0

q0q0 q1q1 q2q2 q3q3 q4q4 q5q5
a0/0 a0/0

a1/1
a6/0

a0/0

a2/1
a6/0

a0/0

a3/1
a6/0

a0/0

a4/1
a6/0

a5/1
a6/0

Figure 12: Example of construction for Theorem 4 with n = 6. For readability, the
transitions to state q0 are not drawn.

After exploring all outgoing input transitions from the initial state, L# constructs a first
hypothesis H1 with a single state and self-loops with output 0 for all k inputs. The teacher
always finds a minimal counterexample and then modifies it. A minimal counterexample
always has the form aj0 aj where j is equal to the current number of states in the hypothesis.
But instead of returning a minimal counterexample, the teacher returns the result of the
conversion function gi : I+− > I+ where i is some natural number that is fixed for the
complete learning procedure. We specify function gi as follows:

gi(a
j
0 aj) = aj0 a

n·2i
k−1 aj

Function gi blows up the length of the counterexample. Because i can be chosen freely,
the length of the counterexample after application of gi is unbounded. While processing
a counterexample generated by gi, we find that σ2 only contains input symbols ak−1 if
|σ1| ≥ n. Moreover, the access sequence cannot contain j symbols a0 because the last
found state qj has an access sequence of length j− 1. Together, this means that the output
query performed by counterexample processing never contains enough a0’s to get output 1
if |σ1| ≥ n. Therefore, the output query gives us no useful information which means we
have to use σ1 again in the recursive call and the witness η gets longer. We know that
|σ1| ≥ n occurs at least i times during the processing of the counterexample.

j + n · 2i + 1

2i
=

j + 1

2i
+

n · 2i

2i
=

j + 1

2i
+ n ≥ n

When counterexample processing finishes, a state where input aj triggers output 1 is pro-
moted to the basis. Input aj witnesses the apartness of the new basis state with all other
basis states, so after completing the frontier witness a1 is used to identify the frontier states.
Whenever L# identifies frontier states, it only tries inputs that played a role in separating
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the basis states that it has found thus far, not any other input that would reveal the pres-
ence of a new state, and thus n−1 (non-terminating) equivalence queries will be made each
using i at least output queries. The maximal counterexample generated by gi has length
m = (n− 1) + n · 2i + 1 = n+ n · 2i. We can rewrite this statement to find

i = log

(
m− n

n

)
= log

(m
n

− 1
)

Therefore, we know that L# needs at least log(mn − 1) output queries to process each
counterexample.

Additionally, each state has at least k − 3 transitions leading to the initial state. The
initial state can never be identified by a witness found during the learning process because
we only use witnesses of the form aj with 0 < j < n for identification and these witnesses
always lead to output 0 in state q0. This means that for each of these k− 3 transitions, we
need to rule out all other n− 1 states during the learning process. In total, this means that
L# needs at least (k − 3) · n · (n− 1) output queries to identify frontier states.

By combining the output queries needed to process counterexamples and to identify the
frontier states, the theorem holds.

Proof of Theorem 5

Fix a number h and fix an FSM M from the class h-FSM.
At any point when we run the L#

h algorithm, there exists a functional simulation f from
the states of the observation tree to states of M: a function that preserves initial states
and transitions. If q and q′ are two different states in the basis then, by definition, there
exists a witness σ for q # q′. Since f is a functional simulation, this implies that σ is also
a separating sequence for f(q) and f(q′). This in turn implies that the number of states in
the basis S can be at most equal to the number n of equivalence classes of reachable states
of FSM M. Therefore, rules (R1) and (R2’) can only be applied finitely many times and

the L#
h algorithm will terminate.

Let T be the observation tree upon termination of the algorithm. Then each state of
the basis S and each state of the frontier F will have outgoing paths for each sequence of
inputs of length at most h.

Suppose r and r′ are two states of M that are inequivalent. Then, by definition of an
h-FSM, there exists a separating sequence σ of length at most h such that the outputs
triggered by σ from r and r′ are different. Now suppose that q and q′ are two distinct
states in the basis. Since f(q) and f(q′) are inequivalent and therefore have a separating
sequence of length at most h, and because q and q′ enable all input sequences of length h,
there exists a witness of length at most h such that σ ⊢ q # q′. It also follows that for
each state t in the frontier F the candidate set C(t) is a singleton: C(t) cannot be empty
because then we could apply rule (R1), but also does not contain two distinct basis states
q and q′, as t enables the witness σ of length at most h which demonstrates that q # q′. In
the terminology of Vaandrager et al. (2022), all states of the frontier have been identified.
Since rule (R1) cannot be applied anymore, we know that the number of states in basis
S is equal to the number n of equivalence classes of reachable states of M. Let H be the
hypothesis constructed from the observation tree and basis S. We may now apply Theorem
3.7 of Vaandrager et al. (2022) to conclude that H and M are equivalent.
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Proof of Theorem 6

Clearly, in the worst case L#
h performs rule (R2’) for each basis state and for each input

sequence of length h + 1. This explains the upper bound nkh+1. However, the actual
number of queries may be lower. For instance, if in Figure 8 we first apply rule (R2’) eight
times in state t3, we only need to apply (R2’) four times in state t1. A lower bound can
be derived as follows. Frontier states are successors of basis states that are not basis states
themselves. Upon termination of the algorithm there are n basis states. This means that
there are at least nk− (n− 1) frontier states (we know that the root of the observation tree
is not a successor of a basis state). For each frontier state we must explore all possible input
sequences of length h. For this we will need at least kh(nk − (n− 1)) = nkh+1 − (n− 1)kh

output queries.
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Appendix B. Benchmarking Results for L#
2

n k L# + H-ADS Lower L#
2 Upper

SUL name Bound Bound

4 learnresult SecureCode Aut fix 4 14 13501 10388 10394 10976
ASN learnresult SecureCode Aut fix 4 14 13501 10388 10394 10976
1 learnresult MasterCard fix 5 15 22333 15975 15986 16875
OpenSSL 1.0.1l client regular 6 7 1936 1813 1875 2058
OpenSSL 1.0.1j client regular 6 7 1936 1813 1875 2058
OpenSSL 1.0.2 client regular 6 7 1936 1813 1875 2058
RSA BSAFE Java 6.1.1 server regular 6 8 3277 2752 2768 3072
miTLS 0.1.3 server regular 6 8 3368 2752 2824 3072
4 learnresult PIN fix 6 14 21813 15484 15506 16464
Rabo learnresult MAESTRO fix 6 14 21813 15484 15506 16464
4 learnresult MAESTRO fix 6 14 21813 15484 15506 16464
ASN learnresult MAESTRO fix 6 14 21813 15484 15506 16464
10 learnresult MasterCard fix 6 14 21904 15484 15506 16464
Rabo learnresult SecureCode Aut fix 6 15 45243 19125 19141 20250
OpenSSL 1.0.2 server regular 7 7 2245 2107 2174 2401
GnuTLS 3.3.12 server regular 7 8 3336 3200 3218 3584
GnuTLS 3.3.12 client regular 7 8 3336 3200 3218 3584
NSS 3.17.4 client regular 7 8 4317 3200 3223 3584
Volksbank learnresult MAESTRO fix 7 14 21224 18032 18234 19208
NSS 3.17.4 server regular 8 8 6629 3648 3726 4096
RSA BSAFE C 4.0.4 server regular 9 8 4499 4096 4175 4608
OpenSSL 1.0.2 client full 9 10 8493 8200 8538 9000
GnuTLS 3.3.12 server full 9 12 14745 14400 14428 15552
GnuTLS 3.3.12 client full 9 12 15180 14400 14689 15552
learnresult fix 9 15 34607 28575 29246 30375
OpenSSL 1.0.1g client regular 10 7 3227 2989 3089 3430
OpenSSL 1.0.1l server regular 10 7 3240 2989 3110 3430
OpenSSL 1.0.1j server regular 11 7 3541 3283 3402 3773
NSS 3.17.4 client full 11 12 26037 17568 17885 19008
TCP FreeBSD Client 12 10 15130 10900 11053 12000
TCP Windows8 Client 13 10 16107 11800 11949 13000
OpenSSL 1.0.1g server regular 16 7 5475 4753 4924 5488
DropBear 17 13 114081 34645 35254 37349

180


	Introduction
	A Brief Introduction to L#
	Lower Bound Results
	Adding Lookahead
	Conclusions and Future Work
	Proofs
	Benchmarking Results for L#2

