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1. Introduction

Sequential functions are those that can be represented with a deterministic finite state
transducer (DFT). Jardine et al. (2014) show that classes of sequential functions can be
learned given a class-defining structure of such a DFT and a finite characteristic sample
in linear time and data. In this work we show that learning sequential functions can be
achieved with much less data if the representation of the data is changed from letters to
smaller units — the properties of those letters. This begins to address a question raised by
de la Higuera (2006) on the grammatical inference with structured alphabets.

Sequential functions are of particular interest in phonology, which is a study of sound
patterns and sound changes in natural languages. Heinz and Lai (2013); Chandlee (2014,
2017); Chandlee and Heinz (2018) show that sequential functions can successfully model
the majority of phonological processes, describing various types of sound alternations. The
equivalent of letters in phonology are phonemes, which are the contrastive sound units
within a language. Every phoneme can be described in terms of their articulatory or acous-
tic properties, called features. A few examples of such features are [nasal], which distin-
guishes oral from nasal sounds, [consonantal], that differentiates vowels from consonants,
or [coronal] that identifies sounds produced with the tongue blade raised (Hayes, 2009).
Each of those features typically have two values: + and —. Features are important for
modelling phonological processes, as they group together different phonemes into natural
classes. That explains why certain sounds are affected by some processes, while others are
not. For example, in Polish only the following sounds undergo palatalization: /s,z,t,d,n,lr/
and they all share the [coronal] feature (Rubach, 1984).

2. Preliminaries

A DFT is a seven-tuple T' = (Q, X, A, qo, vo, 6, F'), where @ is a finite set of states; 3 is the
input alphabet; A is the output alphabet; gy € @Q is the initial state; vg € A* is the initial
string; 6 is a transition function with domain @ x ¥ and co-domain @) x A*; F is a final
function with domain @ and co-domain A*. A transition (q,a,r,v) € § means there is a
transition from state g to state r reading letter a and writing string v.
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One class of sequential functions are input strictly local (ISL) functions defined by
Chandlee (2014); Chandlee et al. (2014). For all ISL functions f, there is a k such that
there is a DFT representing f which is structured in a particular way: the current state of
the machine is always determined by the previous k — 1 symbols read in the input. Such
DFTs are called k-ISL DFTs.

As an example let us consider regressive nasalization (RN), a 2-ISL function. In English,
vowels can be nasalized when followed by a nasal consonants. For instance, the a [#] in
man [mé&n| will be most likely produced with air flowing through the nasal cavity, similarly
to the consonant n that follows it. The a [z] in mat [meet], on the other hand, is produced
as a fully oral vowel. To represent this process, a window of length & = 2 is required. This
is because in order to know whether the input a will be an oral or a nasal vowel in the
output, we need to consider the sound that follows it.

Phonological features are useful to model such sound changes. During the process of
regressive nasalization it is only one feature that changes in a phoneme, as opposed to the
entire phoneme. For example, the only difference between [&] and [&] is that the latter one
is [+nasal|, while the former is [-nasal]. With features as a tool we can target a specific
property of a sound that undergoes a change, and a trigger that causes the change. In the
case of RN, the targets are vowels and the triggers are nasal consonants. We can express
this generalization as follows “RN: [-consonantal]phonemes become [+nasal] when followed
by [+consonantal, +nasal] phonemes.” If phonemes were used instead of features, there
would have to be rules for every combination of vowel and nasal such as “& becomes &
followed by n”, “i becomes 1 followed by n” (cf. [mit] ‘meet’ vs. [min] ‘mean’), “i becomes
1 followed by m (cf. [sip] ‘seep’ vs. [sim] ‘seem’),” and so on.

The Structured Onward Sequential Function Inference Algorithm (SOSFIA) was intro-
duced by Jardine et al. (2014). It takes as its arguments a finite sample of input-output
pairs S C ¥* x A*, and an output-empty DFT, i.e. a transducer where vg = O for all g,
F(q) = O, and for every (q,a,v,r) € §, v = [, where [J represents a ‘blank’ that needs
to be filled in. If the characteristic sample S sufficiently represents the process, SOSFIA
fills in every [J by calculating the minimal change in the output strings for each transition
to be consistent with the sample, and returns a complete DFT. If the training sample S
is incompatible with the given DFT, SOSFIA can return an error with that information.
SOSFTA identifies classes of sequential functions in time linear in the size of the sample,
and the size of the characteristic sample is linear in the size of the given DFT.

3. SOSFIA with features: strategy and theoretical benefits

When a k-ISL DFT is constructed over letters of the alphabet, there are \E!Sk*l states,
one for each sequence up to length & — 1. Consequently, as |X| and k grow, the size of
the characteristic sample grows as well. Our goal is to reduce the size of the DFT using
properties of the letters of ¥. When the letters of ¥ can be characterized with a set of
properties, these can be used to effectively reduce the size of the alphabet. For example, n
binary features, like the ones mentioned, can represent up to 2" letters.

Formally, a binary feature ¢ is a homomorphism from ¥ to the set {4, —}. For example,
Onasal(mat) = +——. If @ is an ordered set of binary features, then ® is a pointwise product
of its homomorphisms. For instance, ®(,qsal,consonantal] (Mat) = [++][——=][—+]. Given ®x,
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we observe that it effectively maps ¥ to an alphabet of size 21X!, which we refer to as the
size of the featural alphabet, denoted |®x|. Finally, given a sample S of input/output pairs,
let (Px, Py)(S) ={(®x(2), Py (y)) : (z,y) € S}.

We aim to decompose the target sequential function f : ¥* — ¥* into n-many sequen-
tial functions, one for each binary feature, each represented with a k-ISL DFT and apply
SOSFIA to each of these n DFTs, where the data sample has been projected appropriately.
Each DFT can be thought of as aiming to predict a particular feature = of the output. The
output alphabet for each DFT is therefore {+, —} which will be interpreted as the value of
x. It follows then given a sample of input/output string pairs, the output strings will be
projected according to ¢,.

For each DFT, the input alphabet depends on which homomorphisms ® is used. Here
we propose a simple search strategy. For the DFT predicting feature z, denoted DFT,,
project the input strings in the sample with homomorphism ®(,;. SOSFIA can be run to
see whether the sample is compatible or not with this structure. If it is, learning has been
successful. If it is not, we choose another feature y, and project the input strings in the
sample with homomorphism ®(, ,; and try again. We observe that adding y to also affects
the size of the DFT for . This process repeats until learning is successful. In the worst
case, the requires an exponential search, but we believe in practice only a few features are
necessary to generalize successfully.

To illustrate these ideas, consider regressive nasalization again and the features nasal,
consonantal, and coronal. We consider three 2-ISL DFTs, one for each: DFT,sai,
DFT consonantals DFTeoronai and assume some sample of input/output pairs S. In the first
stage, SOSFIA runs three times: once with input DFT},454; and sample (®(,q5a1; Pirasar) (),
once with input DFT consonantar and sample <(I>[consommtal]v (I)[cansonantal}>(s)’ and once with
input DFT coronar and sample (@(coronai)s Pleoronar]) (S)- For regressive nasalization, it is ex-
pected that learning will succeed for DFT consonantar @nd DET .oronei. This is because those
features do not change in RN and are in fact well-predicted by the consonantal and coronal
features in the input respectively.

However, for the nasal feature, SOSFIA should throw an error since regressive nasaliza-
tion requires the interaction of two features to correctly predict the nasality as explained
in the generalization (RN) in Section 2. In this particular example SOSFIA will send a
failure signal because (®(,q4541)> Plnasa) (S) will most likely not be functional. This is be-
cause a segment that was [-nasal] in the input can change to [+nasal] or remain [-nasal]
when followed by [+nasal]. The [consonantal] feature is also needed to determine whether
a non-nasal phoneme in the input becomes nasal in the output.

To understand the impact the featural representation has on the size of the data sam-
ple, consider the sizes of the phonemic-based DFT and the n-many feature-based DFTs
describing regressive nasalization. If ¥ is the set of phonemes then the number of states
will be |X| + 1 since RN is 2-ISL. When we consider the featural representations, there
are n DFTs, one for each feature. With k = 2, the DFTs for features like consonantal
will have 3 states (the initial state, and one for each {+,—}). The only DFT requir-
ing more states is the one for nasal because SOSFIA will eventually apply the homomor-
phism (D (,401,consonantal] Pnasay)) o0 the sample. Since the size of the featural alphabet
|(I)[nasal,consonantal]‘ = 4 this DF'T will have 5 states. The number of states no longer depends
on the number of phonemes, but instead on the number features interacting.
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4. Preliminary experimental results

Preliminary experiments with regressive nasalization support our claim that feature based
strategy uses less data. We repeatedly ran SOSFIA to find a minimally sized successful
training sample S for both phonemic, letter-based representations (X), and featural-based
representations using ®. Table 1 shows the minimal number of strings that were needed for
successfully learning where the number of phonemes was varied but the number of features
was fixed at 4 (nasal, consonantal, coronal, sonorant).

We first built the phonemic and individual machines for each feature. Then we generate
all logically possible input/output string pairs up to the length k& + 1, which meets the re-
quirements of a characteristic sample. Next, using the structure of the machines we created,
we “empty” the outputs and we feed the machine together with the appropriately projected
training sample to SOSFIA. The algorithm made correct predictions in all the cases ex-
cept for DFT)4501. We then augmented DFT;454; to work with (®(,q5a1,consonantal]s Pnasat])
instead of (®(,qsa1]s Pnasa)- This time SOSFIA successfully output the expected DFT.

In order to find a minimal data sample, we subtracted one data point at a time from
the original sample we generated and ran SOSFIA again to check whether this example is
crucial for the function we are trying to learn. Repeating this process produced a minimal
set of essential examples that are required for the training sample since the moment when
SOSFIA fails to return the correct output, the process stops.

‘ Y size
PFLLype 59 11 1
seg 47 71 196 374 972
foat 62 62 62 62 62

Table 1: A minimal sample needed for SOSFIA depending on size of the input alphabet

While the phonemic machine requires slightly smaller sample for ¥ < 6, the featural
approach proves to be better with larger alphabet sizes. Since the size of natural languages
alphabets are definitely larger than 6, the featural approach definitely looks promising.

5. Future work

While the featural approach to sequential function learning is promising, there is of course
much to do. The most immediate tasks include running additional experiments on different
processes, as well as automating the procedure by which the homomorphisms are refined.
The fact that SOSFIA can indicate when a data sample is incompatible with the given DFT
suggests that it can also begin with k£ = 1 and increase this value only when necessary. We
plan to test for processes of varied complexities that require larger k values, as well as for
simultaneous interactions of multiple processes. Finally, a further step will be to test the
approach for natural data, i.e. one that resembles what children are exposed to in the early
years of language acquisition.
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