
Proceedings of Machine Learning Research 217:291–294, 2023 Taysir competition papers

Testing-based Black-box Extraction of Simple Models
from RNNs and Transformers

Edi Muškardin1,2 edi.muskardin@silicon-austria.com and
Martin Tappler2,1 martin.tappler@ist.tugraz.at and
Bernhard K. Aichernig2 aichernig@ist.tugraz.at

Silicon Austria Labs, TU Graz-SAL DES Lab1, Graz, Austria and

Graz University of Technology, Graz, Austria2

Editors: François Coste, Faissal Ouardi and Guillaume Rabusseau

Abstract

In this technical report, we outline the testing-based black-box method used to extract
simple and interpretable models from RNNs and transformers. Our work was done in the
scope of the TAYSIR competition, in which it won the first place.

Keywords: Model extraction, Active automata learning, RNN, Transformers

1. Introduction

Method Overview. We used a testing-oriented black-box extraction method proposed
in Muškardin et al. (2022b). It considers a system under learning (SUL), in this case an RNN
or a transformer, as a black box and constructs a minimal regular language representation
of its input-output behavior. Extraction is performed with active automata learning. This
method is suitable for Track 1 without any modifications as both input and output alphabets
are discrete, while for Track 2 we add an output mapper which maps a large set of floating-
point numbers to a moderately-sized finite discrete set of outputs (explained in mode details
in Sect. 3). Approaches from Mayr and Yovine (2018) and Weiss et al. (2018) are similar
to ours, given that they also use automata learning to extract models from RNNs, but with
different testing strategies. The whole codebase required to extract models from RNNs,
as well as learned models, can be found at https://github.com/emuskardin/taysir_

competition_mbt.

Active Automata Learning. Active automata learning is a method to construct an
automaton that conforms to the SUL input-output behavior. This method interacts with
the SUL and constructs a behavioral model just by interaction (without knowing anything
about the internals of the system). This model is called a hypothesis. A procedure called
equivalence query tests whether a hypothesis conforms to the SUL. If it does, the learning
procedure stops, and if a counterexample to equivalence is found learning continues by
adapting the hypothesis so that the found counterexample is accounted for in its structure.
Learning stops when no more counterexamples between the learned model and the SUL can
be found. For more details, we refer to Angluin (1987).

Tool Use. For both tracks, we used AALpy from Muškardin et al. (2022a), an automata
learning library. It supports a variety of algorithms for deterministic, non-deterministic,
and stochastic automata learning. In particular, we used L* from Angluin (1987) and
the KV algorithm from Kearns and Vazirani (1994). Both are active learning algorithms
implemented in AALpy.

© 2023 E. Muškardin, M. Tappler & B.K. Aichernig.

https://github.com/emuskardin/taysir_competition_mbt
https://github.com/emuskardin/taysir_competition_mbt

Muškardin Tappler Aichernig

Difference between learning algorithms. While both L* and KV yield the same final
models if all counterexamples are found, the intermediate process of learning differs. Ab-
stractly, L* can be seen more as a systematic breath-first exploration of the SUL’s behavior,
while KV can be seen as a depth-first exploration. L* returns a final model in fewer learning
rounds and it is less dependent on testing, while KV requires n learning rounds for a DFA
of size n. This property of KV allows us to terminate learning early in case of models with
non-regular behavior that can not be encoded as finite automata.

Model Memory Footprint and Execution Time. All models in Track 1 are encoded
as a DFA, while models in Track 2 are encoded as Moore machines. All models are saved
as a Python dictionary, which defines the output of each state and all outgoing transitions.
Therefore, models have a small memory footprint. For example, a 1000-state DFA with an
input alphabet of 10 only uses 37kB. The execution time and memory footprint of these
models is minimal, as we only keep track of the current state while iterating over a test
sequence.

Precomputation of the Validation Set. For both tracks, we saved output values for
all sequences of the given/known validation set. This was done to speed up the testing of
the extraction procedure. This step is optional, but we have included it in the repository
to speed up the reproduction of results. We also used these sequences as additional test
cases in equivalence queries.

2. Track 1: Binary Classification

In Track 1, we used the method described in Muškardin et al. (2022b) without any modifica-
tions. This method is suited for the extraction of regular languages from RNNs/black-box
systems. However, not all RNNs were trained to recognize a regular language. Even if they
were trained on a regular language, the RNN’s input-output behavior might not be regular
due to faults in the RNN’s generalization compared with the ground truth.

In the remainder of this section, we outline some findings and specifics of the extraction
procedures:

• Datasets 2,3,4,5,7: All networks behave as a regular languages, with minimal DFA
sizes of {8,9,5,5,2}. Interestingly, the extracted model trained on Dataset 2 that
achieves 100% accuracy has 8 states, but when a stronger testing oracle is used we
can also extract a model with 10 states.

• Dataset 6:: Network trained with Dataset 6 also behaves as a regular language, with
18 states being found without a need for strong testing. These 18 states achieve a
0.0002% error rate on the unknown validation set. However, a strong equivalence
oracle can find many counterexamples to this 18-state model, leading to a substantial
increase in hypothesis size. We postulate that the underlying RNN was trained on a
regular language, but it fails to generalize for all sequences with respect to the ground
truth model.

• Dataset 1: The network trained with Dataset 1 potentially behaves as a context-
free language, as we noticed that a 200-state DFA achieved 0.12% error rate on the

292

TAYSIR Competition Report - Muškardin et Al.

unknown validation set, while a 7708-state DFA achieved 0.075% error rate. The
7708-state DFA conforms to all sequences in the known validation set.

• Dataset 8: We were unable to identify any meaningful structure in this network.
Automata learning would run in a practically infinite loop and early stopping of that
loop at various points yielded models that had no improvement in accuracy.

• Datasets 9, 10, 11: The behaviour of these networks was not regular, and learn-
ing was bounded to 200, 1500, and 500 learning rounds with the KV algorithm.
Learned models (regular approximations of a non-regular language) have low error
rates (0.007%, 0.014%, 0.007%).

3. Track 2: Density Estimation

In Track 2, we have used the same technique as in Track 1, but with an addition of an output
mapper. Once a concrete output value is obtained after executing an input sequence, the
applied output mapper maps a virtually unbounded set of output values in the range [0,1]
to the final discrete set of abstract outputs.

Mapper Generation. We compute and sort the set of all observed outputs for known
validation sequences. This sorted list of outputs is then partitioned into a predefined number
of intervals. Each interval acts as a discrete output which is used to represent all values
that fall in this interval.

For example, consider that the validation set consists of 9 input sequences, and the
obtained outputs are: [0.01, 0.015, 0.02, 0.4, 0.45, 0.5, 0.7, 0.85, 0.95]. Let us set the
number of intervals to 3, therefore dividing the sorted output list into 3 equally sized
sublists. We then map discrete interval identifiers to the mean of each sublist. We end up
with the following mapping: {b1: 0.105, b2: 0.45, b3: 0.83}. These mean values are used
to compute the abstract value of a concrete output by choosing the interval with minimal
distance to the concrete output. Suppose we are then executing an input sequence on a
network and obtain the following outputs: [0.01, 0.3, 0.5, 0.99, 0.2]. This output sequence
would be abstracted to [b1, b2, b2, b3, b1].

On the Number of Intervals. For all experiments, the selected number of intervals
can be seen at Table 1. A higher number of intervals will yield more accurate models, but
with higher automata learning costs to account for a larger output alphabet. Therefore, we
set a relatively low number of intervals and focus on the quality of automata learning, as
we postulate that hitting the ”correct“ interval, i.e., predicting the correct interval with a
learned model, is more important than having more intervals. More details on the learning
parameterization can be found in the linked repository.

Learning outcome. Given the discrete input alphabet and a discretized output alphabet
computed by a mapper, the learning algorithms (L∗ or KV) create Moore machines that
approximate the SUL’s behavior. The output of every state in the learned Moore machine
is an interval identifier (eg. b1, b2,..). The extracted model makes predictions by simply
tracing an input sequence through the model, and returning a mean value of the reached
interval.

293

Muškardin Tappler Aichernig

Dataset 1 2 3 4 5 6 7 8 9 10

Error Rate
(MSE ×106)

0.175 0.0097 3× 10−5 6 ×10−6 7 ×10−8 0.1971 0 0.0443 0 0.1237

Model Size 866 131 110 105 123 318 170 162 55 1412

Learning Rounds 500 100 50 50 50 200 100 100 30 200

Intervals 200 10 10 10 12 20 15 15 10 20

Table 1: Parameterization and results of model extraction for Track 2.

Results. All extracted models achieve a low mean-square error rate (≤ 1 × 10-6). Re-
sults (error rate and number of states in the learned model) and learning parameterization
(number of learning rounds and number of intervals) are shown in Table 1.

Acknowledgments

This work has been supported by the ”University SAL Labs” initiative of Silicon Aus-
tria Labs (SAL) and its Austrian partner universities for applied fundamental research for
electronic based systems.

References

Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75
(2):87–106, 1987. doi: 10.1016/0890-5401(87)90052-6. URL https://doi.org/10.1016/

0890-5401(87)90052-6.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994. URL https://mitpress.mit.edu/books/

introduction-computational-learning-theory.

Franz Mayr and Sergio Yovine. Regular inference on artificial neural networks. In An-
dreas Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar R. Weippl, editors, Machine
Learning and Knowledge Extraction - Second IFIP TC 5, volume 11015 of Lecture Notes
in Computer Science, pages 350–369. Springer, 2018. URL https://doi.org/10.1007/

978-3-319-99740-7_25.

Edi Muškardin, Bernhard K. Aichernig, Ingo Pill, Andrea Pferscher, and Martin Tappler.
AALpy: an active automata learning library. Innov. Syst. Softw. Eng., 18(3):417–426,
2022a.

Edi Muškardin, Bernhard K. Aichernig, Ingo Pill, and Martin Tappler. Learning finite state
models from recurrent neural networks. In Maurice H. ter Beek and Rosemary Monahan,
editors, Integrated Formal Methods - 17th International Conference, IFM 2022, volume
13274 of Lecture Notes in Computer Science, pages 229–248, 2022b.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural
networks using queries and counterexamples. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, volume 80 of Proceedings of Machine
Learning Research, pages 5244–5253. PMLR, 2018.

294

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://doi.org/10.1007/978-3-319-99740-7_25
https://doi.org/10.1007/978-3-319-99740-7_25

	Introduction
	Track 1: Binary Classification
	Track 2: Density Estimation

