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Abstract

This paper is concerned with the identification in the limit from positive data of sub-
stitutable context-free languages cfls) over infinite alphabets. Clark and Eyraud (2007)
showed that substitutable cfls over finite alphabets are learnable in this learning paradigm.
We show that substitutable cfls generated by grammars whose production rules may have
predicates that represent sets of potentially infinitely many terminal symbols in a com-
pact manner are learnable if the terminal symbol sets represented by those predicates are
learnable, under a certain condition. This can be seen as a result parallel to Argyros and
D’Antoni’s work (2018) that amplifies the query learnability of predicate classes to that of
symbolic automata classes. Our result is the first that shows such amplification is possible
for identifying some cfls in the limit from positive data.

Keywords: Identification in the limit; Substitutable; Context-free languages; Infinite al-
phabets;

1. Introduction

Recently, several well-established grammatical inference approaches for learning formal lan-
guages over finite alphabets have been extended for targeting languages over infinite al-
phabets. One of the most popular extensions of finite-state automata for working over
infinite alphabets is symbolic finite state automata ( sfa). They have predicates as edge
labels instead of input symbols, which represent potentially infinite sets of input symbols
in a compact manner. While Fisman et al. (2022) have studied the efficient learnability of
sfas under the identification in the limit paradigm, most preceding studies on the learning
of sfas are concerned with query learning : more specifically, Angluin’s minimally adequate
teacher model (1987). Those works include the ones by Mens and Maler (2015); Argyros
et al. (2016); Drews and D’Antoni (2017); Maler and Mens (2017); Argyros and D’Antoni
(2018). Among those, Argyros and D’Antoni’s algorithm is quite generic. It learns deter-
ministic sfas over any predicates when an efficient learning algorithm for the Boolean closure
of the predicates is available. For example, as there exist learning algorithms for binary
decision diagrams (bdds) (Nakamura, 2005) and zero-suppressed binary decision diagrams
(zdds) (Mizumoto et al., 2017), sfas whose transitions carry bdds/zdds can be learned by
Argyros and D’Antoni’s algorithm. Their algorithm creates predicate learner instances for
transition edges and lets them learn the respective labels. Those predicate learners make
queries and the main algorithm answers them appropriately. The communication between
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the main algorithm and those predicate learners is the sophistication of their technique.
Their technique has been extended to nondeterministic automata (Chubachi et al., 2019)
and weighted automata (Suzuki et al., 2021) as well.

This paper attempts to investigate how learnability of predicates can be amplified for
learning formal languages over predicates, in a setting different from Argyros and D’Antoni’s
work. More specifically, we are concerned with the identification in the limit of substitutable
context-free languages (cfls) from positive data. Our algorithm extends the one proposed
by Clark and Eyraud (2007) for identifying substitutable cfls from positive data. We em-
ploy a predicate learner instance to obtain a predicate where Clark and Eyraud’s algorithm
puts a terminal rule in a hypothesis context-free grammar (cfg), by feeding the predi-
cate learner with appropriate characters extracted from positive example strings. Different
extensions of cfgs and cfls to those over infinite alphabets have been discussed for theoret-
ical interests (e.g., Autebert et al., 1980; Otto, 1985; Cheng and Kaminski, 1998) and have
appeared in application demands, such as model checking (e.g., Maurer, 1990; Majumdar
and Xu, 2007; Godefroid et al., 2008; Guo and Subramaniam, 2014). The extension we
will use is the simplest one among those: we extend cfgs by replacing terminal symbols
in cfgs with predicates. Still, as far as we know, our result is the first that demonstrates
Argyros and D’Antoni’s idea can be applied to learning cfls in the learning paradigm of
the identification in the limit from positive data.

2. Preliminaries

2.1. Identification in the limit from positive data

We first review the identification in the limit paradigm (Gold, 1967). This paper discusses
learning from positive data only. For a countably infinite set D, called the domain, a concept
C is any subset of D and elements of C are (positive) examples of C. Let R be any recursive
set of finite descriptions and f be a function mapping descriptions to concepts. An infinite
sequence of elements of D is called a (positive) presentation of a concept C if and only if all
and only examples of C appear in the sequence. A learner A on R is an infinite procedure
that takes elements of D one by one and computes a description in R each time. We say
that A converges to R ∈ R on a positive presentation σ = ⟨c1, c2, . . .⟩ if there is n ∈ N such
that A outputs only R after taking c1, . . . , cn. The learner A identifies a concept C in the
limit using R if for any presentation σ of C, there is R ∈ R such that f(R) = C and A
converges to R on σ. Moreover, A identifies a class C of concepts in the limit using R if A
identifies every concept from C in the limit using R. We sometimes say that we identify R
when C = { f(R) ∣ R ∈ R}.

Example 1 Let the domain be the set N of natural numbers and the concept class be
C = {Cn,m ∣ 0 ≤ m < n} where Cn,m = {kn +m ∈ N ∣ k ∈ N}. We let ψn,m represent the
concept Cn,m = ⟦ψn,m⟧ for n,m ∈ N with the denotation funcion ⟦⋅⟧ and define Ψ0 = {ψn,m ∣

0 ≤ m < n}. Then, a procedure that hypothesizes ψn,m for the greatest common divisor n
of differences of given examples and the remainder m of the smallest example divided by n
identifies C in the limit.

If a concept class C contains all finite concepts and at least one infinite concept over D,
then C is called superfinite. Gold (1967) showed the following negative result.
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Theorem 1 (Gold 1967) Any superfinite class is not identifiable in the limit from posi-
tive data.

2.2. Languages and grammars

Let Σ be an alphabet, nonempty finite or countably infinite set of characters. Σ∗ denotes
the set of strings over Σ. Note that Σ∗ is countably infinite regardless of whether Σ is
finite or countably infinite. By ∣u∣ we denote the length of u ∈ Σ∗. We denote the empty
string by ε, for which ∣ε∣ = 0. We write Σ+ = Σ∗ − {ε}. Any element of Σ∗ ×Σ∗ is called a
context. The length of a context ⟨u1, u2⟩ is defined to be ∣⟨u1, u2⟩∣ = ∣u1∣ + ∣u2∣. For a string
v ∈ Σ∗ and a context ⟨u1, u2⟩ ∈ Σ

∗×Σ∗, the composition of them is ⟨u1, u2⟩⊙v = u1vu2 ∈ Σ
∗.

We assume an arbitrary but fixed well-order over Σ, so that every subset of Σ has a least
element. The well-order is referred to as the lexicographic order. We naturally extend the
lexicographic order < over Σ to the length-lexicographic order over Σ∗. We write u1 < u2 for
u1, u2 ∈ Σ

∗ if (1) ∣u1∣ < ∣u2∣, or (2) ∣u1∣ = ∣u2∣ and there are v0, v1, v2 ∈ Σ
∗ and a, b ∈ Σ such that

u1 = v0av1, u2 = v0bv2, and a < b. It is also extended for contexts so that ⟨u1, u2⟩ < ⟨v1, v2⟩ if
u1#u2 < v1#v2 for a fresh symbol # ∉ Σ which is assumed to be smaller than any elements
of Σ. The cardinality of a set X is denoted by ∣X ∣. Moreover, if X is a set of contexts or
strings, then its size is defined to be ∥X∥ = ∑x∈X ∣x∣.

We extract substrings from a language L ⊆ Σ∗ as

Sub(L) = {x ∈ Σ+ ∣ uxv ∈ L for some ⟨u, v⟩ ∈ Σ∗ ×Σ∗ }.

Note that Sub(L) consists of nonempty strings only.

We write x ∼L y for x, y ∈ Σ+ and L ⊆ Σ+ if there are ⟨u, v⟩ ∈ Σ∗ ×Σ∗ such that uxv ∈ L
and uyv ∈ L. We write x ≡L y when uxv ∈ L ⇐⇒ uyv ∈ L for all ⟨u, v⟩ ∈ Σ∗ ×Σ∗.

Definition 2 (Clark and Eyraud, 2007) A language L is substitutable if x ∼L y im-
plies x ≡L y for any x, y ∈ Sub(L).

The substitutability can be rephrased as

uxv, uyv, u′xv′ ∈ L Ô⇒ u′yv′ ∈ L for all u, v, u′, v′ ∈ Σ∗ and x, y ∈ Σ+.

Let us denote the transitive closure of ∼L by ≈L and the equivalence class of x modulo ≈L
by [x]L. If L is substitutable, ∼L, ≈L, and ≡L all coincide over Sub(L). In this case, [x]L
is called a congruence class.

A context-free grammar (cfg) is denoted by a quadruple G = ⟨Σ, V,P,S⟩, where Σ is the
finite set of terminal symbols, V , disjoint from Σ, is the finite set of nonterminal symbols, P
is the finite set of production rules and S ∈ V is the start symbol. A production rule in P has
the form A→ β for some A ∈ V and β ∈ (Σ ∪ V )+. If A→ β ∈ P , we write αAγ ⇒G αβγ for
any α, γ ∈ (Σ ∪ V )∗. The reflexive and transitive closure of ⇒G is ⇒∗G. The subscript G of
⇒G is omitted if it is understood from the context. The context-free language (cfl) L(G)

generated by G is the set L(G,S), where L(G,α) = {w ∈ Σ∗ ∣ α
∗
⇒ w } for α ∈ (Σ ∪ V )∗.

The description size of G is defined as ∥G∥ = ∑A→β∈P (∣Aβ∣). A nonterminal symbol A ∈ V

is useless in G if there are no x, y, z ∈ Σ∗ such that S
∗
⇒ xAz

∗
⇒ xyz. Note that we do not
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allow empty right hand side to production rules, and thus any cfls dealt with in this paper
are ε-free.

We extend the definition of cfgs by allowing production rules to have concise repre-
sentations of sets of terminal symbols. Hereafter, we allow Σ to be a countably infinite or
finite set. Let C be a class of (possibly infinite) subsets of Σ that is equipped with finite
representations for those subsets. That is, we have a set Ψ of predicates and its semantic
function ⟦⋅⟧ such that every set C ∈ C has some predicate φ ∈ Ψ with ⟦φ⟧ = C. This paper
assumes it is decidable whether a ∈ ⟦φ⟧ for any a ∈ Σ and φ ∈ Ψ. A Ψ-cfg is a quadruple
G = ⟨Ψ, V,P,S⟩, which is defined in the same way as a cfg except that P ⊆ V × (V ∪Ψ)+.
Those predicates φ shall be rewritten to any of the elements of ⟦φ⟧, i.e., we have φ⇒G a iff
a ∈ ⟦φ⟧. This allows us to handle languages over infinite alphabets. The language generated
by a Ψ-cfg is called a Ψ-cfl. We disallow useless nonterminals. Hence, we assume that Ψ
has no predicate that represents the empty set. A Ψ-cfg is said to be in the branching nor-
mal form if P ⊆ V × (V V ∪Ψ). Obviously every Ψ-cfl admits a grammar in the branching
normal form.

Example 2 Let Ψ0 be the predicate class discussed in Example 1 and consider the Ψ0-cfg
whose production rules are

S → ψ4,3Sψ8,1 ∣ ψ2,0 .

This generates a substitutable language

L = {a1 . . . anbc1 . . . cn ∣ a1, . . . , an ∈ C4,3, b ∈ C2,0, c1, . . . , cn ∈ C8,1, n ≥ 0} ,

which includes, say, 4, 3 8 9 and 43 27 0 41 9.

A (conventional) cfg over a finite alphabet Σ can be seen as a special case, where each
terminal symbol a ∈ Σ has a unique predicate a ∈ Ψ = Σ that represents ⟦a⟧ = {a}. So we
call a cfg a Σ-cfg.

The following lemma is easy.

Lemma 3 Suppose a Ψ-cfg G generates a substitutable language L. Then, for every
nonterminal N , L(G,N) ⊆ [x]L for any x ∈ L(G,N).

Proof There is a derivation S ⇒∗G uNv and thus every member of L(G,N) shares the
context ⟨u, v⟩ ∈ Σ∗ ×Σ∗. By the substitutability assumption, the conclusion holds.

Therefore, if a Ψ-cfg G that generates a substitutable language has two nonterminals whose
languages are subsets of the same congruence class, those nonterminals can be merged
without changing the language of the grammar.

2.3. Our learning target

Argyros and D’Antoni (2018) have established a technique to obtain query learnable classes
of symbolic automata from learnable classes of predicates. This paper tackles the problem
of obtaining a parallel result on substitutable Ψ-cfls. Clark and Eyraud (2007) have shown
the following theorem, for finite alphabets Σ.
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Theorem 4 (Clark and Eyraud, 2007) Substitutable Σ-cfls are identifiable in the limit
from positive data.

We first claim the following negative result.

Proposition 5 There is a predicate class Ψ which is identifiable in the limit from positive
data, but the class of substitutable Ψ-cfls is not.

Proof Consider Σ = N and Ψ = N ∪ {∗} where ⟦n⟧ = {n} and ⟦∗⟧ = N. Clearly Ψ is
identifiable in the limit from positive data. If every given positive example is the same
number n, one conjectures n as its hypothesis. Otherwise, one should conjecture ∗. On
the other hand, for any finite subset X ⊊ N of natural numbers, we can have a Ψ-cfg G
whose language is L(G) = X. The rules are just S → n for all and only n ∈ X. Note that
every subset of N is substitutable. Another Ψ-cfg can generate N using S → ∗. That
is, all nonempty finite subsets of N and N itself are substitutable Ψ-cfls. The class of
substitutable Ψ-cfls is a superclass of a superfinite class (over N rather than N∗) and thus
is not identifiable in the limit from positive data by Theorem 1.

We note that the technique by Argyros and D’Antoni (2018) applies only to symbolic
automata over Boolean algebras, where the predicate class must be closed under union,
intersection, and complement. So far we have not assumed any closure property on the
predicate class Ψ in concern. Indeed, one can show that if Ψ is closed under union and
is identifiable in the limit from positive data, then the class of substitutable Ψ-cfls is
also identifiable in the limit from positive data, using our main result (Theorem 12) and
Proposition 8.

Corollary 6 Suppose that Ψ is closed under union and is identifiable in the limit from
positive data. Then, substitutable Ψ-cfls are identifiable in the limit from positive data.

This might appear as a result analogous to Argyros and D’Antoni. However, requiring Ψ
to be closed under union looks a little too strong, particularly for the learning paradigm
of the identification in the limit from positive data. The predicate class Ψ0 in Examples 1
and 2 is not closed under union, and one can show that its union closure is not identifiable
in the limit from positive data (See Appendix A). Many more predicate classes which are
interesting from the learnability point of view are not closed under union. Instead, we target
the following broader class Ψ-SCFL of substitutable Ψ-cfls.

Definition 7 Let Ψ be a set of predicates which is identifiable in the limit from positive
data. By Ψ-SCFL, we denote the class of substitutable Ψ-cfls L such that every character
a ∈ Σ ∩ Sub(L) admits some predicate φ ∈ Ψ satisfying [a]L ∩Σ = ⟦φ⟧.

Proposition 8 If Ψ is identifiable in the limit and closed under union, then every substi-
tutable Ψ-cfl belongs to Ψ-SCFL.

Proof Let G = ⟨Ψ, V,P,S⟩ be a Ψ-cfg generating a substitutable language L. For a ∈
Sub(L) ∩Σ, let

Ψa = {φ ∣ N → φ ∈ P for some N and ⟦φ⟧ ⊆ [a]L } .

Since Ψ is closed under union, there is φa such that ⟦φa⟧ = ⋃φ∈Ψa
⟦φ⟧ = [a]L ∩Σ.
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Lemma 9 For every L ∈ Ψ-SCFL, there is a grammar G such that every predicate φ in
G satisfies ⟦φ⟧ = [a]L ∩Σ for all a ∈ ⟦φ⟧.

Proof Every predicate φ in a Ψ-cfg generating L can be replaced by φ′ such that ⟦φ′⟧ =
[a]L ∩Σ if ⟦φ⟧ ⊆ [a]L for some a ∈ Σ. The definition of Ψ-SCFL ensures that such φ′ can
be found in Ψ.

3. Learner

This section presents a learner for Ψ-SCFL using Ψ-cfgs. Let Λ be a predicate learner
for Ψ. That is, against an infinite sequence ⟨a1, a2, . . .⟩ of characters of Σ, it hypothesizes
an infinite sequence of predicates in Ψ which finally converges to a predicate represent-
ing {a1, a2, . . .}. We embed instances of predicate learner Λ into the language learner for
substitutable cfls by Clark and Eyraud (2007). Let us briefly review Clark and Eyraud’s
hypothesis construction in a simplified form (Yoshinaka, 2008). When learning a substi-
tutable Σ-cfl, given a positive example set W , the algorithm constructs nonterminals from
all the nonempty substrings of W . We denote the nonterminal symbol indexed by a sub-
string u of a positive example by ⟪u⟫ (Here, ⟪⋅⟫ is not an operator, but it denotes just a
nonterminal symbol). We would like ⟪u⟫ to generate [u]L∗ for the learning target L∗. To
this end, we first create trivial branching rules ⟪uv⟫ → ⟪u⟫⟪v⟫ and terminal rules ⟪a⟫ → a
for a ∈ Σ, by which we obtain ⟪u⟫ ⇒+ u for all nonterminals ⟪u⟫. In addition, in accordance
with the substitutability of the learning target, we add unary rules ⟪u⟫ → ⟪v⟫ iff u ≈W v.
The start symbol is ⟪w⟫ for an arbitrary w ∈ W . Then, after sufficiently many positive
examples are collected, the grammar will eventually generate the target language. If we up-
date the hypothesis grammar always, the hypotheses will never converge unless the target
language is finite. We reconstruct the grammar only when we find an example which the
current hypothesis cannot generate. If the newly given example is generated by the current
hypothesis, we do not change the hypothesis.

When Σ is infinite, we cannot have rules of the form ⟪a⟫ → a for all terminal symbols a
that appear in some positive examples. Instead, we let the Ψ-learner compute an appropri-
ate predicate that might represent [a]L∗ ∩Σ. To this end, we create a copy instance Λa of
the Ψ-learner Λ for each observed terminal symbol a ∈ Σ, and give it the terminal symbols
that share some context with a. We use the predicate φ output by Λa in a terminal rule
as ⟪a⟫ → φ. Under the assumption that Λ identifies Ψ in the limit from positive data, Λa

will converge to a predicate φa ∈ Ψ such that ⟦φa⟧ = [a]L∗ ∩ Σ. Indeed, the definition of
Ψ-SCFL guarantees that such a predicate can be found in Ψ. Other part of the grammar
construction (branching and unary rules) will remain the same as the case where Σ is finite.

However, to guarantee that the hypotheses will converge to a correct grammar, a little
care is required on the rule update procedure. Whereas the hypothesis grammar is kept
unchanged when no counterexample is given in Clark and Eyraud’s algorithm, our algorithm
keeps giving examples to the predicate learner instances and may update terminal rules
using the output predicate. This is to ensure that all created predicate learner instances
will converge to a correct predicate.

The pseudocode of our learner is shown in Algorithm 1. The variable ΣΛ ⊆ Σ main-
tains predicate learner instances we have created so far. Note that we never “reset” those
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instances once they have been created. They have their own memory, and in each iteration
of the main for loop, Λa is fed with a and other characters known to belong to [a]L∗ . It
outputs as many predicates as the input characters, among which we take only the last one
and discard the others. We say the output φ by Λa is correct if ⟦φ⟧ = [a]L∗ ∩Σ. Similarly,
a rule of the form ⟪a⟫ → φ of our hypothesis grammar is correct if ⟦φ⟧ = [a]L∗ ∩Σ.

Algorithm 1: Learning Ψ-SCFL

Input: positive presentation ⟨w1,w2, . . .⟩
Output: sequence of hypothesis Ψ-cfgs ⟨G1,G2, . . .⟩
ΣΛ ∶= ∅;
for t ∶= 1,2, . . . do

W ∶= {w1, . . . ,wt};
if t = 1 or W ⊈ L(Gt−1) then

V ∶= {⟪u⟫ ∣ u ∈ Sub(W ) };
P1 ∶= {⟪u⟫ → ⟪v⟫ ∣ ⟪u⟫,⟪v⟫ ∈ V and u ≈W v };
P2 ∶= {⟪uv⟫ → ⟪u⟫⟪v⟫ ∣ ⟪u⟫,⟪v⟫,⟪uv⟫ ∈ V };
for a ∈ Σ ∩ Sub(W ) −ΣΛ do

Create a Ψ-learner instance Λa;
Add a to ΣΛ;

end

end
P0 ∶= ∅;
for a ∈ ΣΛ do

Get a predicate φ from Λa by feeding it with elements of [a]W ∩Σ in an
arbitrary order;

Add ⟪a⟫ → φ to P0;

end
Output Gt = ⟨Ψ, V,P0 ∪ P1 ∪ P2,⟪w1⟫⟩;

end

Lemma 10 Suppose that the algorithm creates a predicate learner instance Λa for a ∈
Σ∩Sub(L∗). Then its hypotheses will eventually converge to φa such that ⟦φa⟧ = [a]L∗ ∩Σ.

Proof Since the algorithm has created Λa, there are u, v ∈ Σ
∗ such that uav ∈W ⊆ L∗. For

every b ∈ [a]L∗ ∩Σ, at some point ubv ∈ L∗ appears in W as a positive example. Then, b is
in [a]W ∩Σ. After that, b will be given to Λa infinitely many times. Thus, Λa is fed with
a positive presentation of [a]L∗ ∩ Σ and its hypotheses eventually converge to a predicate
representing [a]L∗ ∩Σ.

Lemma 11 If every rule of the form ⟪a⟫ → φ ∈ P0 is correct in our hypothesis grammar
G, then L(G) ⊆ L∗.

Proof Define f(⟪u⟫) = [u]L∗ for ⟪u⟫ ∈ V , f(φ) = ⟦φ⟧ for φ ∈ Ψ, and f(a) = {a} for a ∈ Σ.
Then, one can show that α⇒∗G β with α,β ∈ (Σ ∪ V ∪Ψ)+ implies f̂(β) ⊆ f̂(α), where f̂ is
the homomorphic extension of f .
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Now we give a sort of a “characteristic set”. The definition is just the same as the one
defined for substitutable Σ-cfls (Clark and Eyraud, 2007). Let G∗ = ⟨Ψ, V∗, P∗, S∗⟩ be a
Ψ-cfg in the branching normal form generating L∗. By Lemma 9, we assume that every
predicate in G∗ represents a congruence class [a]L∗∩Σ for some a ∈ Σ. For each nonterminal
symbol N ∈ V∗, define

ωN =minL(G∗,N) ,

χN =min{ ⟨x, z⟩ ∈ Σ∗ ×Σ∗ ∣ S ⇒∗G∗ xNz } ,

where min is with respect to the length-lexicographic order. Note that ωN and χN are well-
defined since the lexicographic order is well-ordered and thus so is the length-lexicographic
order. If L(G∗,N) ∩Σ ≠ ∅, then ωN ∈ Σ. The core set W∗ of G∗ is defined by

W∗ = {χN ⊙ ωN ∣ N ∈ V∗ }

∪ {χN ⊙ ωN1ωN2 ∣ N → N1N2 ∈ P∗ } .

We remark that while it is guaranteed that the Σ-cfg constructed using any superset of
the core set is correct when learning substitutable Σ-cfls, it is not necessarily the case for
our learner. There may be some delay to let the predicate learner instances converge.

Theorem 12 The class Ψ-SCFL is identifiable in the limit from positive data.

Proof We show that our learner eventually converges to a grammar G such that L(G) = L∗.
Let t0 be the least number such that W∗ ⊆ {w1, . . .wt0}.

(Case 1) For all t ≥ t0, it holds {w1, . . . ,wt} ⊆ L(Gt−1). In this case, the nonterminal set V
and the predicate learner set ΣΛ will never be updated after t0. The difference between Gt−1

and Gt can be only in the terminal rules of the form ⟪a⟫ → φ. By Lemma 10, the hypotheses
of each predicate learner Λa will converge to a correct predicate. Let t1 be the point when
all the predicate learners converge. We have L(Gt1) ⊆ L∗ by Lemma 11 and after that our
algorithm will never update the hypothesis. The assumption that {w1, . . . ,wt} ⊆ L(Gt1) for
all t ≥ t1 means L(Gt1) = L∗.

(Case 2) For some t ≥ t0, it holds {w1, . . . ,wt} ⊈ L(Gt−1). At this moment, the learner’s
hypothesis is updated so that Gt has nonterminals ⟪ωN⟫ for all N ∈ V∗. The start symbol
S∗ of G∗ can be “simulated” by ⟪w1⟫ → ⟪ωS∗⟫ in Gt. Each rule of the form N → N1N2 ∈ P∗
is simulated by the combination of the rules

⟪ωN⟫ → ⟪ωN1ωN2⟫ ∈ P1 by χN ⊙ ωN , χN ⊙ ωN1ωN2 ∈W∗,

⟪ωN1ωN2⟫ → ⟪ωN1⟫⟪ωN2⟫ ∈ P2 .

For each rule of the form N → φ ∈ P∗, we have a predicate learner ΛωN
. By Lemma 10,

at some point t1 ≥ t0 each predicate learner ΛωN
converges to a predicate ψ such that

⟦ψ⟧ = [ωN ]L∗ ∩ Σ and we have ⟪ωN⟫ → ψ ∈ P . Now, the grammar Gt with t ≥ t1 can
simulate every derivation of G∗ and thus L∗ ⊆ L(Gt) holds. After that, the same arguments
of (Case 1) apply and finally our hypotheses converge to a correct grammar.
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4. Learning efficiency

Our learning algorithm is not optimized on its efficiency. It creates many nonterminals
which play obviously the same role, as well as Ψ-learner instances. Those should be merged
for efficient algorithm implementation.

Nonetheless, evaluating the learning efficiency of a learner under the identification in the
limit paradigm is controversial. Even with de la Higuera’s criterion (1997), identification in
the limit with polynomial time and data, which is one of the most popular criteria, still it
is not obvious how we should apply the definition when learning cfls. Moreover, anyway
the efficiency of our algorithm depends on the predicate learners. Hence, it is not easy to
give a clear theorem on the efficiency. Instead, this section gives a flavor that our algorithm
would be reasonably efficient only.

Suppose that the Ψ-learner is efficient in de la Higuera’s sense. That is, Λ returns a
hypothesis in polynomial time in the total size of the given data, and each learning target
φ ∈ Ψ admits a finite set Kφ ⊆ ⟦φ⟧ of polynomial size in the description size of φ such
that whenever a superset of Kφ is given to Λ, then it immediately converges to a correct
predicate. Then, obviously our algorithm outputs a hypothesis grammar in polynomial time
in the total size of the given data each time a new positive example is given. Moreover, the
size of data required for convergence is not too big. Let us call

W ′
∗ =W∗ ∪ {ωN ⊙Kφ ∣ N → φ ∈ P∗ }

a semi-characteristic set. The set cardinality ∣W ′
∗∣ is linear in κ∥G∗∥ where κ is the maxi-

mum size of Kφ for predicates φ used in G∗. Note that the set W ′
∗ is not necessarily the

characteristic set in de la Higuera’s sense. The algorithm may not converge immediately
after the positive example set includes W ′

∗. Yet, once (Case 2) of the proof of Theorem 12
happens after observing W ′

∗, the convergence is immediate. On the other hand, in (Case 1),
when the positive examples include W ′

∗, all the created predicate learner instances converge
and so does our learner.

5. Discussions

This paper attempts to give a result parallel to Argyros and D’Antoni’s work

• for learning (non-regular) cfls

• in the paradigm of identification in the limit from positive data.

We succeeded in this challenge for substitutable languages. It was possible because the
constructed nonterminals have clear semantics and we are able to find the right positive
example characters for predicate learners along the semantics. The learning approaches
generically called “distributional learning” use nonterminals with such semantics (Clark and
Yoshinaka, 2016). Thus, it would be interesting and promising to target subclasses of cfls
which are “distributionally learnable” in various learning paradigms. Namely, identifying
k, l-substitutable cfls in the limit from positive data (Yoshinaka, 2008), learning context-
deterministic and congruential cfls from membership and equivalence queries (Shirakawa
and Yokomori, 1993; Clark, 2010a), learning cfls with finite kernel/context properties using
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positive data and membership queries (Clark, 2010b; Yoshinaka, 2011a), and other more.
Furthermore, there are distributional learnable languages beyond cfls (Yoshinaka, 2011b;
Yoshinaka and Kanazawa, 2011). Those should be also targeted as future work.

One might be unsatisfied with our definition of cfls over infinite alphabets. The palin-
drome language with a center marker is a simple non-regular example of a substitutable
Σ-cfl:

{a1 . . . an#an . . . a1 ∣ a1, . . . , an ∈ Σ − {#}, n ≥ 0} ,

and many proposals extending cfls to be over infinite alphabets include the palindrome
language over infinite alphabets. However, our definition does not accept this language as a
Ψ-cfl unless the alphabet is finite. It is interesting future work to target cfls over infinite
alphabets under more elaborated definitions than the one we have used in this paper.
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Appendix A.

We show that the union closure of the concept class of Example 1 is not identifiable in the
limit from positive data, using the following theorem.

Theorem 13 (Blum and Blum, 1975) If a learner A identifies a concept class C in
the limit from positive data, for every positive presentation σ of a concept C ∈ C, there is a
prefix σt of σ, called a locking sequence, such that A(σt) represents C and A(σt ⋅τ) = A(σt)
for any sequence τ of positive examples from C.

Suppose a learning algorithm A identifies C1,0. Obviously σ = ⟨0,1,2, . . .⟩ is a positive
presentation of C1,0. Let a prefix σn = ⟨0,1,2, . . . , n − 1⟩ of σ be a locking sequence. The
sequence σn is also a prefix of a positive presentation of ⋃k<nCn+1,k ⊊ C1,0. Thus, A cannot
learn ⋃k<nCn+1,k.
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