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Abstract

Reconnaissance Blind Chess is a game that plays like regular chess but rather than
continuously observing the entire board, each player can only momentarily and privately
observe selected board regions. It has imperfect information and little common knowledge.
The Johns Hopkins University Applied Physics Laboratory (the game’s creator) and several
partners organized the third NeurIPS machine Reconnaissance Blind Chess competition in
2022 to bring people together to attempt to tackle research challenges presented by the
game. 18 bots played each other in 9,180 games (60 matches per bot pair) over 4 days.
The top bot exceeded the performance of all of last year’s bots yet a practical, sound
(unexploitable) algorithm remains unknown.

Keywords: reconnaissance blind chess, imperfect information, reinforcement learning,
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1. Introduction

Games are well-defined abstractions for general decision-making processes encapsulating se-
quential observations, choices, and effects of those choices as agents interact with their envi-
ronment and each other. Games have been central to many famous breakthroughs in artifi-
cial intelligence (AI) including the development of superhuman systems Deep Blue (Camp-
bell et al., 2002), AlphaGo (Silver et al., 2016, 2017), AlphaZero (Silver et al., 2018), Libra-
tus (Brown and Sandholm, 2017a), DeepStack (Moravč́ık et al., 2017), and Pluribus (Brown
and Sandholm, 2019).

Games with large amounts of private knowledge and particularly little common knowl-
edge and strategic planning have not been studied as extensively as others, however. Even
a round of Texas Hold’em poker, for example, a game that is famous for including imperfect
information, only has 2 hidden cards per player and lacks interesting strategy in the absence
of the uncertainty. Stratego is a recent partial exception (Perolat et al., 2022) in the sense
that it has large amounts of private knowledge and requires strategic planning. However,
the game has significant common knowledge, an algorithm for effective search in Stratego
remains an open question, and superhuman play has yet to be achieved. Reconnaissance
Blind Chess (RBC) (Newman et al., 2016) was created as a challenge for strategic decision-
making and planning in the face of uncertainty. Algorithms that were used to develop
famous poker systems break down in RBC due to their dependence on public information
(or common knowledge) while algorithms for games like regular chess break down due to
dependence on perfect information. In competitive non-game (real-world) settings, parties
are not forced or incentivized to make information public. Rather, they want to keep as
much information private as possible, so making strategic decisions with large amounts of
uncertainty is common.

For these reasons, the Johns Hopkins University Applied Physics Laboratory (JHU/APL)
and several partners have been hosting machine RBC competitions as part of NeurIPS (Gard-
ner et al., 2020; Perrotta et al., 2022). Several of the competition organizers and bot authors
wrote this paper to summarize the research challenges, algorithms, and results from the
competition held in 2022. Although the best bot in 2022 is an improvement from previous
competitions, none of the algorithms used converges to an optimal strategy or has directly
addressed all the game’s research challenges. RBC continues to be a challenging problem
for AI research.

2. Rules of Reconnaissance Blind Chess

RBC plays like chess with a few key differences. The pieces start in the same places as
in chess on a standard 8 × 8 chessboard and move in the same way. However, (as a blind
chess variant) players cannot directly observe their opponents’ pieces. Instead, prior to
making each move, a player chooses a 3 × 3 region of the board to sense; that player is
immediately informed of any pieces and their associated locations in that region at that
time. The opponent is not informed of the area sensed. For this reason, the game must be
facilitated by a third party (a computer in modern practice).

Both players are informed of all captures and the square where they occurred. Neither
player is informed of the captured or capturing piece.
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Several other modifications are made to accommodate the imperfect information. There
is no concept of check. The game is won by capturing the opponent’s king or if the opponent
runs out of time. Players may attempt to make moves that would be illegal in standard
chess because they are unaware of opponent pieces in the way. When a move is attempted,
pieces make the longest move that would be legal along the path of the attempted move
(again with the notion of check removed), including captures, and then stop. For example,
a rook attempting to move through an opponent piece, would capture that opponent piece
and stop. The moving player is informed of their piece’s stopping location.

We ran this tournament with a time limit of 15 minutes per game plus 5 seconds per
turn (sense and move), per player. A draw is called (automatically) if 50 consecutive moves
have no captures or pawn moves.

The private sense action is fairly unique to RBC, and is the root of the core research
questions by making a agent’s key observations unknown to other agents.

Interested readers can get the complete list of rules and play at https://rbc.jhuapl.
edu. We also make all past games available for download.

3. Research Challenges and Related Work

The core algorithms used to develop playing strategies for games of perfect information
are typically minimax and Monte Carlo tree search (MCTS) (Kocsis and Szepesvári, 2006;
Browne et al., 2012). These search algorithms are usually limited in depth by using an
estimate of the value of a reached state. AlphaZero (Silver et al., 2017, 2018), for example,
used deep reinforcement learning to create a neural network that estimated the value of
states as well as move probabilities to help guide MCTS. However, these algorithms do
not yield optimal strategies, in general, in games of imperfect information. While the
optimal strategy in a perfect information game is deterministic, in general, with imperfect
information, it is not (else a player would be completely predictable). Additionally, with
perfect information, the past is irrelevant, but with imperfect information, even currently
unreachable portions of a game may impact the optimal strategy from the current state.

Core algorithms for converging on optimal (Nash equilibrium) strategies in two-player
zero-sum games with imperfect information include fictitious self-play (FSP) (Heinrich et al.,
2015) and counterfactual regret minimization (CFR) (Zinkevich et al., 2008). In their
unmodified forms these algorithms are intended to compute a policy offline (prior to game-
play); they iteratively sample from the start of the game. Simplifying this process to
estimate the strategy from a point many moves into the game is non-trivial because past,
unreachable portions of the game potentially affect probabilities of current states. RBC
is too large to sample from the start and sufficiently sample states several moves into the
game.

Approaches have been developed to limit both the breadth and depth of samples taken
using CFR online (during game-play) while continuing to approximate Nash equilibria. The
primary approach for limiting breadth decomposes the game along public belief states, where
a public belief state includes the closure of all possible game histories that are indistinguish-
able by at least one agent, i.e., histories where the public knowledge is the same (Burch
et al., 2014; Moravč́ık et al., 2017; Brown and Sandholm, 2017b; Sustr et al., 2019; Brown
et al., 2020). These approaches were central to the creation of the first superhuman poker
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bots (Brown and Sandholm, 2017a; Moravč́ık et al., 2017). Because RBC has little public
information, these approaches do not apply well to RBC. (Each public state would include
a large portion of the game.) Online outcome sampling (OOS) (Lisý et al., 2015) is an
approach that limits breadth in a sense by focusing samples on a breadth-restricted por-
tion of the game (e.g., the portion that is consistent with the current game’s history) via
importance sampling. It is currently unable to practically produce a strong RBC strategy
partly because all possible opponent senses are consistent with the current game’s history;
the number of possible sense sequences increases exponentially with the number of turns
taken.

Other approaches have limited search depth by using neural networks to approximate
values of all possible player states within each possible public state (Moravč́ık et al., 2017;
Brown et al., 2020). Again, because of the large amount of private information in RBC, a
public state frequently includes a large portion of the game. The number of possible player
states within a public state can again grow exponentially making this approach impractical
in its current form. Another approach (Brown et al., 2018) creates multiple strategies
an opponent could use after the depth limit to approximate the value of a state. This
approach does not rely on public information but it does require approximating a Nash
equilibrium policy for the entire game and either computing an opponent’s best response to
strategies developed each turn or modifying the Nash equilibrium policy in ways that would,
in culmination, meaningfully account for possible errors in the policy. Practical means of
doing these things have not been demonstrated for a game as complex as RBC.

Knowledge-limited subgame solving (KLSS) (Zhang and Sandholm, 2021) is an approach
created to compute strategies online when there is little common knowledge (public infor-
mation). They limit breadth by knowledge distance, where they define 0 to be the distance
to states consistent with the acting player’s current knowledge, and a state’s distance is
n + 1 if it is possible from a player’s perspective from one of the other player’s distance n
states. Even the number of states at distance 0 may grow exponentially in RBC (again, due
to the private sense), so raw KLSS limited to distance 0 seems impractical for RBC. The
authors further discuss reducing states that are indistinguishable after a certain point in
time, but this could disregard the order of sense actions in RBC, which may be significant.

Approaches have also been created for approximating optimal strategies for imper-
fect information games offline including neural fictitious self play (NFSP) (Heinrich and
Silver, 2016), deep counterfactual regret minimization (Deep-CFR) (Brown et al., 2019),
DREAM (Steinberger et al., 2020), ESCHER (McAleer et al., 2022), and regularized Nash
dynamics (R-NaD) (Perolat et al., 2022). By using neural networks, these approaches can
generalize across fairly large state-spaces, demonstrating expert-level play in Stratego (Per-
olat et al., 2022), and have been shown empirically to converge to a Nash equilibrium. How-
ever, online search has been shown to greatly improve play strength (Silver et al., 2017),
these methods have not achieved superhuman play in complex games without search, and
it is not clear that these approaches are practical on large games like RBC without extraor-
dinary hardware.

Other common blind chess variants include Kriegspiel (Ciancarini and Favini, 2010;
Russell and Wolfe, 2005) and Dark Chess (Zhang and Sandholm, 2021). In Kriegspiel,
players only observe the board through attempted moves. In Dark Chess, players can
observe the squares to which their pieces may legally move. Stratego is similar to RBC in
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that it involves a large amount of private information and strategic planning. In Kriegspiel,
Dark Chess, and Stratego, observations are tied to piece placement. We estimate that this
reduces the amount of private information compared to RBC although the games present
similar research challenges.

4. Competition Structure

The competition consisted of a tournament that started on October 19, 2022 (although we
also hosted several optional test tournaments). Anyone was welcome to compete at no cost.
Bot authors ran their own code and bots participated in the tournament by communicating
with our server (potentially using our bot-development kit or using their own communication
code).

In the tournament, each bot played each other bot 60 times, 30 as white and 30 as
black. We used the Bayesian Elo rating (Coulom, 2006) of each bot to determine rank.
Game order does not affect Bayesian Elo computation.

Bots were given 15 minutes per game plus 5 seconds per turn total time to select their
sense and move actions, and participants were required to support playing 4 simultaneous
games. The tournament last about 70 hours.

Affiliates of the Johns Hopkins University and organizers themselves were welcome to
submit bots but were not eligible for prizes.

5. Overview of Approaches

Our NeurIPS 2022 competition included a variety of approaches. We briefly summarize the
algorithms for several of the bots in Table 1 in descending rank. Table 2 further summarizes
high-level features of each bot.

Table 1: Brief description of select bots’ algorithms.

Bot Name Approach

StrangeFish2 Further development of the bot of the same name which competed in NeurIPS 2021 (Per-
rotta et al., 2022). It tracks all possible locations of opponent pieces and estimates po-
sition strengths and likelihoods for each. Both sense and move decisions are made to
maximize the expected outcome of the current turn. Improved performance was driven
by developments in board state value heuristics – which continue to augment Stockfish
engine analysis – and by prioritized sub-sampling of tracked positions when time limits
did not permit evaluation of all hypotheses.

Fianchetto Makes minor changes to last year’s version of Fianchetto, which is based on Strange-
Fish (Perrotta and Perrotta, 2019) and uses Leela Chess Zero (Lc0) to model a proba-
bility distribution over opponent board states as a POMDP. The most notable change is
an increased weight to defensive sensing and moving to detect opponent attacking moves
that have been given a low probability. These weights are opponent-specific, prioritizing
more defensive play against more aggressive opponents. Additionally, chooses its first
move from an opening book, designed to give preference to closed chess positions, with
the rationale that closed positions tend to have lower uncertainty and smaller information
set sizes.
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Bot Name Approach
Kevin Explicitly keeps track of a distribution over possible game histories. (Opponent senses

matter, not only board state.) Predicts opponent actions (both senses and moves) using
a neural network. The neural network is trained with imitation learning on game logs of
StrangeFish2. The neural net inputs come from OpenSpiel and its RBC implementation,
and they pass through a residual neural network (ResNet) and a long short-term memory
(LSTM) network, which output a distribution over legal actions. Selects the best move by
maximizing expected value over the distribution of histories, using Stockfish to evaluate
board states.

Châteaux Based on deep synoptic Monte Carlo planning (Clark, 2021). Approximates information
states with a lossy stochastic abstraction, encoding sets of boards with compact fixed-size
synopses. The fixed-size representations are used as input to a residual neural network
which outputs a value estimation and a policy distribution over actions. The network was
trained on approximately 600,000 games available online. The bot maintains a “second-
order” belief state of the opponent’s information with an unweighted particle filter made
up of possible approximate information states from the opponent’s perspective. The bot
plans with playouts according to a variant of Monte Carlo tree search guided by the
neural network. A list of all possible piece placements is used to eliminate impossible
states in the particle filter and to initialize playouts for the tree search algorithm.

ROOKie Comprehensive multi-hypothesis-tracking of piece positions on the board, with actions
selected by voting among tracked boards. Each tracked board contributes votes of equal
weight for up to 5 moves, against any moves that leave the king in check, and is considered
neutral on all remaining moves. Computing top moves is often much faster than analysis
of position strength, enabling the bot to evaluate more boards than if it were analyzing
position. Sense actions are taken to maximize expected consensus in votes from remaining
boards.

Oracle Exhaustively tracks board states. Chooses sense action to identify possible checks, or
otherwise minimizes the expected number of possible board states. Chooses the move
that is recommended by Stockfish most across all possible board states.

Marmot Uses a Monte Carlo counterfactual regret minimization (MC-CFR) algorithm (Lisý et al.,
2015) for sensing and moving with novel modifications to make assumptions about the
past and start search from mid-game (sacrificing soundness). It uses a heuristic evaluation
function, which includes Stockfish’s board-evaluation, based on actual board state and
a tracked uncertainty measurement to evaluate the intermediate states reached from
action sequences sampled using MC-CFR. Tracks all possible opponent board states for
the current time and past timesteps based on current observations and uses subsets of
those for starting its MC-CFR searches.

JKU-CODA Uses contextual preference ranking (Bertram et al., 2021) to compute a probability dis-
tribution over the possible board states based on historical RBC games. Evaluates all
possible moves on the most likely boards with Stockfish and chooses the move with the
best combination of worst-case and weighted-average evaluation. Senses to maximize
the reduction in the number of possible board states and to decrease the uncertainty in
the evaluations of the most promising move. The contextual preference ranking uses a
Siamese neural network to generate an embedding of boards and observations, which is
transformed into the probability distribution used for weighting.

DynamicEntropy A pessimistic variant of single observer information set Monte Carlo tree search (Cowling
et al., 2012). This considers the game only from the searching player’s perspective, per-
mitting the simulated opponent to select observations directly instead of their own sense
and move actions. Leaf nodes are scored by shallow Stockfish evaluation of randomly
sampled possible board states.

trout (baseline) Maintains a single board-state estimate that is formed directly from the latest observation
of each square. Chooses the move recommended by Stockfish for its board estimate. If
a piece was just captured or it thinks it will capture a piece next turn, it senses over the
capture square. Otherwise it chooses a random location to sense that does not contain
any of its own pieces.
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Bot Name Approach
attacker
(baseline)

Randomly chooses and executes one of four scripted attack sequences. If that fails, no
more moves are made.

GarrisonNRL Maintains a set of possible boards. Selects sensing action as the location that maximizes
a sensing weight equal to the product of the number of potential opponent moves to
a location and the value of pieces moving to those locations. When the board set size
is below 50, utilizes chess engines and heuristic approaches to select its move. For each
board in the board sample, chooses a best move by attacking the opponent king if possible,
otherwise by using Lc0 with the Maia 1700 network (McIlroy-Young et al., 2020). Selects
a movement action by using the most common best move. With larger board sets, utilizes
a single observer information set Monte Carlo tree search approach (Cowling et al., 2012).

uccchess Based on StrangeFish (Perrotta and Perrotta, 2019), but has a set of 20 neural networks
to replace the chess engine. It evaluates the game history each turn and matches the
opponent to one of 20 different classes, which correspond with the 20 neural networks.
Using the network for the matched class as a replacement for the chess engine in Strange-
Fish, it computes a score for each action. The opponent’s class is selected by an agent
that is trained using reinforcement learning. During its training, uccchess plays againts
several predefined bots, and the results of the matches provide a reward signal.

random
(baseline)

Chooses moves uniformly at random. (Senses are irrelevant.)

Table 2: High-level comparison of features included in competing algorithms.
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StrangeFish2 1762 1 • •
Fianchetto 1644 2 • • • • •
Kevin 1623 3 • • • • • •
Châteaux 1621 4 • • • • • •
ROOKie 1551 5 • •
Oracle 1465 6 • • •
Marmot 1329 7 • • • • •
JKU-CODA 1283 8 • • •
DynamicEntropy 1194 9 • •
trout 1116 11 •
attacker 1099 12

GarrisonNRL 1039 13 • • • • •
uccchess 1025 14 • • •
random 893 15

6. Results and Observations

Figure 1 presents a crosstable of each bots’ wins, losses, and draws against each other bot.
StrangeFish2 won definitively with 68 total wins more than the bot with the next greatest
number and a winning record against every other bot. Second-place was won less decisively:
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Figure 1: Crosstable of wins each bot had against each other bot in the competition.

Fianchetto performed better against Kevin, Kevin performed better against Châteaux, and
Châteaux performed better against Fianchetto.

Ignoring StrangeFish2, this cycle in performance illustrates the exploitability one can
have in a seemingly strong algorithm by an adaptive opponent in games with imperfect in-
formation. E.g., although Fianchetto’s strategy seems strong against Kevin, clearly if Kevin
adapted its strategy (to be more like Châteaux’s, for example) after playing Fianchetto, it
would likely win. Adapting to a particular opponent is an opportunity for greater per-
formance in imperfect information games, but it is also, of course, a risk as it opens one
up to potential exploitability (compared to an equilibrium strategy). Table 2 notes bots
that attempt to model their specific opponent in some way (Uses opponent specific models
column).1 Although modeling or adapting to a bot’s specific opponent is not typical among
the best-performing bots, we expect this is incidental and due to a lack of resources to
dedicate to that effort at the current time. As the research advances, we expect strategies
closer to equilibrium to arise and the value of opponent modeling to diminish. However, in
the shorter term, specific-opponent modeling may become central to top bots, particularly
with all the game logs available online.

To provide some context over a few years, Oracle, now ranked 6, was the strongest
running bot before the NeurIPS competitions2 and was ranked 3rd in the 2019 NeurIPS
competition. Châteaux, previously known as penumbra, won the 2020 online competition
held by the Johns Hopkins University Applied Physics Laboratory. Fianchetto won in
NeurIPS 2021. Figure 2 illustrates Bayes Elo ratings of each bot with uncertainty (including
forfeits in the computation). Figure 3 illustrates the evolution of the Elo ratings as the
tournament progressed omitting forfeits (which may be caused by code crashes, computer
crashes, connection problems, or other issues unrelated to algorithm).3 One can see that

1. One’s opponent’s name is available in RBC.
2. Prior to hosting NeurIPS competitions, the organizers had one bot that outperformed Oracle head to

head although it was not maintained and we do not expect it was notably stronger than Oracle.
3. The Elo values in the two figures do not align since removing forfeits from the computation affects the

values for all bots.
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Figure 2: Bayes Elo ratings of each bot
with a 95% confidence interval.

Figure 3: Bayes Elo ratings and 95% con-
fidence intervals as the tournament pro-
gressed, excluding forfeits.

several bots’ ratings were significantly decreased by forfeits like uccchess, SomeRegret, and
srcork.

Uncertainty Management: We have historically asked how raw uncertainty is related
to performance. Specifically we measure uncertainty in terms of the number of board states
that are possible given all of a player’s observations up to a point in the game. This
measurement is far from comprehensive because it captures no notion of probability, but
it is something we can compute and gives a general quantitative sense for the amount of
uncertainty. (Ten states could, for example, represent less uncertainty than two, if one of
those ten states was the true state with .99 probability while the two states were equally
likely. Another example limitation of this metric is a bot could appear to have more or less
uncertainty because it tends to have longer or shorter games.)

The “Median # Board States” column in Table 3 contains the median number of board
states possible from each bots’ observations after the bot senses, each turn of the game. We
see that the winner, StrangeFish2 is only ranked 10 on this metric of uncertainty and that the
median number of possible board states for StrangeFish2 is twice that of some bots, among
the highest of the stronger bots. More generally, while the top bots all appear to keep this
number under 35, beyond that, the number-of-possible-board-states rank does not appear
to be strongly correlated with tournament rank. This limited correlation indicates that
simply minimizing uncertainty is insufficient. Accounting for the impact of exactly what
one will do with an observation appears to be critical, in alignment with StrangeFish2’s
primary upgrade from previous years.

We note that the number of board states is not the same as the number of game states or
histories, which includes all of both players’ senses (or belief states) and move history, all of
which potentially impact optimal strategy. The number of possible game states inevitably
grows exponentially each turn due to the private sense action.

Comparison to a Chess Engine: We also compare the tournament RBC bots’ moves
to moves that would be strong in traditional chess, specifically by comparing to the moves
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recommended by Stockfish (an available superhuman chess engine). The “Engine Move
Agreement” column in Table 3 displays the portion of time each bot’s selected move was
one of the top three moves recommended by Stockfish. Because RBC also includes board
states that are invalid in chess, we considered any moves that capture the opponent’s king
to be in the top three recommended by the engine when possible.

Like with the uncertainty, while we see most of the top bots keep this metric above some
threshold, roughly 50%, it is not a clear indicator of performance. StrangeFish2 only ranked
6 in chess-engine move agreement, for example. The lack of a stronger correlation here could
result from several intuitive notions. Bots may benefit from being more aggressive and risk-
taking than in standard chess (e.g., placing pieces where they would be less strategically
located if seen but enable attacks if temporarily unseen). Another possibility is that bots
benefit from moving more conservatively. For example, the optimal strategy in RBC may
be to frequently protect against attacks that are not actually possible given the true board
state.

We observe that Marmot and DynamicEntropy have especially low move agreement
among the top 10 bots. We hypothesize this results from the approaches accounting for
uncertainty, both explicitly keeping track of information sets in their search algorithms,
which starkly contrasts a perfect-information chess engine although they both use chess
engines on leaf nodes.

Table 3: A comparison of each bot’s tournament rank to their relative uncertainty manage-
ment and use of traditional chess moves.

Bot El
o

El
o
ra
nk

M
ed
ia
n
#
B
oa
rd
St
at
es

#
B
oa
rd
St
at
es
R
an
k

#
B
oa
rd
St
at
es
∆
R
an
k

En
gi
ne
M
ov
e
A
gr
ee
m
en
t

M
ov
e
A
gr
ee
.
R
an
k

M
ov
e
A
gr
ee
.
∆
R
an
k

StrangeFish2 1762 1 32 10 +9 62% 6 +5

Fianchetto 1644 2 20 4 +2 69% 3 +1

Kevin 1623 3 16 2 -1 74% 1 -2

Châteaux 1621 4 21 5 +1 53% 9 +5

ROOKie 1551 5 29 8 +3 72% 2 -3

Oracle 1465 6 16 2 -4 67% 4 -2

Marmot 1329 7 28 7 0 32% 11 +4

JKU-CODA 1283 8 29 8 0 55% 8 0

DynamicEntropy 1194 9 34 11 +2 29% 13 +4

SomeRegret 1184 10 13 1 -9 67% 5 -5

trout 1116 11 214 13 +2 44% 10 -1

attacker 1099 12 11356 15 +3 5% 15 +3

GarrisonNRL 1039 13 46 12 -1 31% 12 -1

Uccchess 1025 14 21 5 -9 58% 7 -7

random 893 15 2278 14 +1 8% 14 -1
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7. Conclusions

The NeurIPS 2022 machine RBC competition brought numerous people together to attempt
to create better methods for making strategic decisions with significant private information
and little common knowledge. We continue to see a wider diversity of algorithms, and
they are improving in general. Conducting practical and sound search in settings like RBC
remains an open problem. We hope to hold future competitions to make progress toward
this goal until such an algorithm has been convincingly identified.
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