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Abstract
Experimentation on real robots is demanding in terms of time and costs. For this reason, a
large part of the reinforcement learning (RL) community uses simulators to develop and
benchmark algorithms. However, insights gained in simulation do not necessarily translate
to real robots, in particular for tasks involving complex interactions with the environment.
The Real Robot Challenge 2022 1 therefore served as a bridge between the RL and robotics
communities by allowing participants to experiment remotely with a real robot – as easily
as in simulation.

In the last years, offline reinforcement learning has matured into a promising paradigm for
learning from pre-collected datasets, alleviating the reliance on expensive online interactions.
We therefore asked the participants to learn two dexterous manipulation tasks involving
pushing, grasping, and in-hand orientation from provided real-robot datasets. An extensive
software documentation and an initial stage based on a simulation of the real set-up made
the competition particularly accessible. By giving each team plenty of access budget to
evaluate their offline-learned policies on a cluster of seven identical real TriFinger platforms,
we organized an exciting competition for machine learners and roboticists alike.

In this work we state the rules of the competition, present the methods used by the
winning teams and compare their results with a benchmark of state-of-the-art offline RL
algorithms on the challenge datasets.
Keywords: Reinforcement Learning, Robotics, Manipulation, Competition, Offline RL
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1. Introduction

Robots have the potential to help humans in many tasks provided that they are adaptive and
versatile. Learning methods are a promising route to creating such flexible control strategies,
as they can learn to cope with the complexities of the real world. Indeed, reinforcement
learning (RL) approaches have recently achieved good performance in challenging robotics
tasks (Kalashnikov et al., 2018; OpenAI et al., 2019; Rudin et al., 2022). However, training
such policies requires either a large number of expensive and potentially unsafe environment
interactions (Dulac-Arnold et al., 2020) or a good simulator. The field of offline RL (Lange
et al., 2012; Levine et al., 2020; Prudencio et al., 2022) therefore aims to learn from pre-existing
datasets without the need for online interactions.

This paradigm could potentially have a transformative effect on robotics similar to the
impact of large datasets in supervised learning. Yet, as the experiments on real robots are
costly and time consuming, the offline RL community mostly benchmarks their algorithms
in simulated environments (Fu et al., 2020). It is, however, not clear to which extent results
obtained in simulation transfer to the real world with its noisy and delayed observations and
complex dynamics.

To fill this gap, we organized the Real Robot Challenge 2022 which was hosted at NeurIPS
2022. We asked the community to learn two dexterous manipulation tasks from pre-collected
real-robot datasets we provided, using either offline RL or imitation learning. We chose
dexterous manipulation as a challenge as it is a fundamental building block for more complex
tasks and a challenging research topic in its own right. Participants could evaluate their
solutions remotely by submitting them to a cluster of TriFinger robots (Wüthrich et al.,
2020) hosted at the Max Planck Institute for Intelligent Systems, Tübingen, Germany.

In the rest of this paper, we describe the challenge in detail in section 3, explain the data
collection in 4, present the baselines and top submissions in section 5 and discuss the results
in section 6. Finally, we summarize takeaways from the competition in section 6.3.

2. Related Work

There have been numerous reinforcement learning competitions for continuous control
problems at top machine learning conferences. However, almost all of them exclusively
focused on scenarios in simulation. For instance, in the NeurIPS competition track from
20192 and 20203, the only competition involving real robots was AI Driving Olympics 3
and 5, which provided a toy environment aiming to replicate a real system via miniaturized
self-driving cars (Censi et al., 2019). However, it did not include the highly non-linear
behavior of contacts which are ubiquitous in manipulation and difficult to learn. All other
robotic challenges (e.g. REAL (Cartoni et al., 2020), MineRL (Kanervisto et al., 2022) and
Learn to Move (Song et al., 2021)) were restricted to simulations. Unfortunately, the policies
learned in simulation often do not transfer to the real world.

The Real Robot Challenge II (Bauer et al., 2022), hosted last year at NeurIPS, was the
first challenge in the NeurIPS competition track that is geared towards learning methods for
control on real robots in a fully remote setup. However, in the previous instantiations of the

2. https://nips.cc/Conferences/2019/CompetitionTrack
3. https://neurips.cc/Conferences/2020/CompetitionTrack
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Real Robot Challenge, there were no restrictions on the algorithms used for controlling the
robot.

In this year’s competition, we exclusively focused on the offline RL paradigm. The goal
of offline RL is to learn effective policies from large and diverse datasets covering a sufficient
amount of expert transitions without additional online interaction (Levine et al., 2020).
Although several algorithmic advances have been proposed in offline RL in recent years, a
standardized benchmark of real-word robotic data has not been established yet. As featured in
Mandlekar et al. (2021), there exist small real-world datasets with human demonstrations for
a robot arm with a gripper (using operational space control). However, a dataset sufficiently
large for offline RL with low-level control to solve more challenging manipulation tasks had
been missing. In our challenge, we have provided one such benchmarking dataset that can
easily be evaluated remotely on a real-robot platform. This benchmark dataset has also been
featured in our concurrent work (Gürtler et al., 2023).

3. Challenge

The goal of the Real Robot Challenge 2022 was to solve manipulation tasks with TriFinger
robots by learning solely from pre-recorded datasets, without access to additional online
interactions.

3.1. Tasks and Stages

We considered two dexterous manipulation tasks involving a tracked cube (see Fig. 1, right):

Push The goal is to push the cube to a target position which is sampled from a uniform
distribution on the ground of the arena. The orientation of the cube does not influence the
reward in this task.

Lift For the Lift task a target position in the air and a target orientation have to be
matched. The target position is sampled up to a height of 10 cm such that the desired cube
pose does not intersect with the ground. The desired orientation is sampled uniformly.

The Lift task is significantly more challenging than the Push task as it requires flipping the
cube to an approximately correct orientation, acquiring a stable grasp, lifting it to the goal
position and turning it in-hand to match the target orientation. If the cube slips from the
fingers all progress is usually lost. This renders the Lift task – together with the noise on the
pose estimation of the cube – quite unforgiving.

We calculate the reward by applying a logistic kernel to the difference between desired
and achieved position (for the Push task) or to the differences between the desired and
achieved corner points of the cube (for the Lift task) similar to Allshire et al. (2022). This
choice results in a smooth falloff of the reward when deviating from the goal and does not
require manually balancing the influence of position and orientation. Further details can be
found in Appendix D.

We divided the challenge into two overlapping stages:

Pre-stage (July 1 to September 1, 2022): The pre-stage served as an open qualification
round in which everybody could participate. The objective was to learn proficient policies for
the Push and Lift tasks from provided simulated datasets containing expert trajectories. The
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Figure 1: Left: TriFingerPro robot holding a cube. Right: Examples of initial and final
states of successful episodes of the Push and Lift tasks.

submissions were then evaluated in a simulated version of the TriFinger platform. Teams
that reached a promising level of performance on both tasks were admitted to the next stage.

Real-robot stage (August 1 to October 7, 2022): With the start of the real-robot
stage we released four datasets recorded on real TriFinger robots. All qualifying teams were
provided with remote access to the robot cluster (see section 3.4). For each task, two policies
had to be learned separately from two datasets with different compositions (see section 4).

3.2. Hardware

For the real-robot phase we used the same TriFingerPro robot cluster that was already used
in the previous iterations of the competition (Bauer et al., 2022).

The TriFingerPro robots consist of three fingers that can pick up and manipulate objects
within a circular arena (see left side of Fig. 1). They are an enhancement of the open-source
TriFingerEdu (Wüthrich et al., 2020) to make them even more robust and thus reduce the
maintenance effort. The cluster consists of seven such robots that can be accessed remotely
(see section 3.4). The joints can be torque-controlled through electric motors. Push sensors
on the finger tips can be used to detect contact. Each robot platform is further equipped
with three RGB cameras that are used to estimate the pose of the manipulated object.

The robots are designed to be able to operate 24/7 without human supervision. This is
made possible by the robust hardware design, several safety measures in the software (e.g.
limits on torques or position range of the joints), automated self-tests after each run and the
ability to reset the object position autonomously.

3.3. Rules

The participants were allowed to use any method to learn policies from the provided datasets
as long as they complied with the following rules4:

4. The complete list of rules for the competition (including technicalities) is given in Appendix B.
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• Policies had to be learned exclusively from one dataset at a time, i.e., combining
datasets or training on additional data (simulated or real) was not allowed.

• The training code had to be released under an OSI-approved license and a report
describing the method had to be published in a publicly accessible way (e.g. on arXiv).

The final ranking of the teams was determined by their submissions in the real-robot stage,
as the pre-stage served only as a qualifying round. The main criterion was the score obtained
by the submitted policies (see section 3.5). For teams which were closely matched in terms
of scores, we also considered the quality of the published report as a secondary criterion for
the final ranking.

Due to generous support by DeepMind, we were able to award the following sums as
prize money to the highest ranking teams: (1) 2500 USD (2) 1500 USD (3) 1000 USD (split
into two times 500 USD as the third rank was shared by two teams with similar results).

3.4. Submission System

In the real-robot stage, participants got access to the submission system of our robot cluster.
This system allows users to remotely submit jobs with their policies to the cluster, which are
then automatically executed on a randomly selected robot. The resulting data can then be
downloaded by the user, once the job is finished.

Compared to the previous challenges (Bauer et al., 2022), two major changes were made:

1. Participants only implemented a policy using a given interface in Python. The actual
control loop was implemented on the server side and could not be modified by the
participants (apart from a few configuration options like specifying the task).

2. Since the task was to learn policies from the given datasets, participants were not
allowed to collect additional data for the training. Therefore the recorded sensor data
was not provided to participants. They only received the resulting score and related
statistics as well as a video of their runs.

One job has a runtime of around four minutes, so multiple episodes can be executed
within one job, depending on the task. For the push task nine episodes are executed, for the
lift task (which has a longer episode length) only six. Between each episode a short “object
reset trajectory” is executed to bring the cube back towards the center of the arena.

3.5. Evaluating Submissions

Pre-stage

Solutions for the pre-stage were submitted via a form and evaluated in the simulated
environment. The same evaluation protocol as in the real-robot stage (see below) was used
except for sampling random goals instead of using a fixed sequence.

Real-robot stage

For evaluating the policies of the participants we used the following procedure:
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1. Get the current code of all teams from the submission system.

2. Select NR robots to be used for the evaluation. For each robot generate a list of NG

random goals for each task/dataset combination.

3. Run the code of all teams on these goals.

For each episode a score is computed as the cumulative reward over all time steps. For
each task/dataset combination the mean score of the episodes of all corresponding runs is
computed.

The total score for the ranking is then the mean over all task/dataset combinations. Note
that the episode length of the lift task is longer than that of the push task. Since the score
is the unnormalised cumulative reward over all time steps, this means that the scores for the
lift task tend to be higher than those of the push tasks. This results in the lift task getting a
higher weight in the total score computation, which is, however, intended as it is the more
challenging task.

4. Data Collection

We collected datasets on 6 real TriFinger robots and in a simulated PyBullet environment
(Joshi et al., 2020) which was closely modeled after the real system. We used policies from
Gürtler et al. (2023) which were trained with Proximal Policy Optimization (Schulman et al.,
2017). The training pipeline of Gürtler et al. (2023) builds upon the work of Allshire et al.
(2022), which uses a fast, GPU-based rigid body physics simulator (Makoviychuk et al., 2021)
to parallelize rollouts. In addition to the converged expert policies, we also consider an early
training checkpoint with additive noise on the actions to which we refer as weak policy.

We provided datasets with two different compositions for each of the two tasks: (i) The
expert dataset consists solely of trajectories collected with the converged policies and tests
the ability to imitate a proficient behavior policy. (ii) In contrast to this, half of the mixed
dataset consists of trajectories obtained with the weak policy while the other half contains
expert trajectories. Learning a good policy from this dataset requires a training algorithm
that either performs credit assignment or distills high-quality trajectories to imitate. Table 2
summarizes the six datasets used in the competition.

5. Methods

We present the participants’ solutions in the context of state-of-the-art offline RL methods
to which we compare quantitatively in section 6.

5.1. State-of-the-Art Algorithms

In the following, we briefly summarize a selection of offline RL algorithms: Behavioral
Cloning (BC) (Bain and Sammut, 1995; Pomerleau, 1991; Ross et al., 2011; Torabi et al.,
2018) is a purely supervised method in which the mean squared error between the actions of
the behavioral policy a ∼ πβ(· | s) and the learned policy a ∼ π(· | s) is minimized. Critic
Regularized Regression (CRR) (Wang et al., 2020) is a BC variant in which the actions
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are weighted according to advantage-based estimates using Q-values. CRR optimizes the
following objective:

argmax
π

E(s,a)∼B [f(Qθ, π, s, a) log π(s, a)] ,

where f is a non-negative, scalar function whose value is monotonically increasing in Qθ.
Advantage Weighted Actor Critic (AWAC) (Nair et al., 2020) is an actor-critic method in
which the policy improvement step is formulated as a constrained optimization problem
that forces the policy to stay close to the behavioral policy. Conservative Q-Learning
(CQL) (Kumar et al., 2020) is an actor-critic method that combines the Bellman update in
the critic loss with a conservative loss that aims to push down Q-values of out-of-distribution
(OOD) actions. Implicit Q-Learning (IQL) (Kostrikov et al., 2021) is an offline RL algorithm
that avoids out-of-distribution action queries during training. It mitigates overshooting of
the value function by estimating a Q-function expectile, and then performs policy extraction
with weighted Behavioral Cloning. For more details on Offline RL, we refer the reader to the
surveys Levine et al. (2020); Prudencio et al. (2022).

5.2. Team “excludedrice” (1st place)

Qiang Wang and Robert McCarthy – University College Dublin

The training of the robot controller used by team excludedrice is based on BC. Their
full solution can be found at (Wang et al., 2023b). Simply put, in their work, they found
that BC performed better when cloning expert demonstrations than when training with
complex offline reinforcement learning applied to data containing demonstrations with mixed
skill levels. Nevertheless, BC tends to perform poorly on mixed datasets that contain mixed
skill levels, which can introduce ambiguity and make it more difficult for BC’s supervised
learning process to accurately perform the required regression. In general, BC is best suited
to situations where the actions being modeled are conditioned on states from a unimodal
distribution, or when the target action mode makes up the majority of the data in the dataset.
After investigating the composition of the mixed quality datasets, they discovered that half
of the data was collected by experts, and this subset of data was potentially adequate for
training a good policy. Thus, their objective was to filter out this expert data for training a
controller using BC. However, simple manual methods were unable to differentiate the expert
data as the performance of both expert and non-expert data was similar. As a result, they
proposed a novel semi-supervised learning data filtering approach in their strategy. Initially,
they extracted a small portion of the data with the highest scores from the entire dataset
that was presumed to be mostly collected by an expert agent. It is worth noting that the size
of this initial extracted data subset was insufficient to train a well-performing policy model.
They fed this portion of data into a neural network (NN) to learn patterns from expert data,
and then used it as a binary classifier to separate out more expert data for training the next
iteration of the NN. They repeated this semi-supervised learning process iteratively until the
number of separated expert data no longer increased. They improved this algorithm after
the competition, and their methodology can be found in Wang et al. (2023a).

Furthermore, they augmented the training data of the robotic arena using spatial rotation
transformations, taking advantage of the rotational symmetry of the physical TriFinger robot.
However, it is important to note that data augmented through mathematical theory may
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not be entirely accurate in real-world scenarios. For instance, factors like friction and the
dimensions of different fingers of the robot may not be identical due to physical errors during
manufacturing. To address this issue, they proposed a policy training paradigm to make
the model trained on theoretical data to better fit the data distribution of the real robotic
environment.

5.3. Team “decimalcurlew” (2nd place)

Hangyeol Kim and Jongchan Baek Pohang – Pohang University of Science and
Technology (POSTECH)
Wookyong Kwon – Electronics and Telecommunications Research Institute (ETRI)

Team decimalcurlew used offline RL and a regularization technique to obtain robust
policies that perform well in a real robot system, even with measurement noise. They trained
a feed-forward neural network policy for each task with nonlinear rectified linear units and
400 and 300 hidden units. The team preprocessed the dataset for training by performing
state and action normalization, and scaling the actions to fit within the range of [−1, 1]. They
then trained the policy networks on the normalized dataset using the offline RL algorithm
TD3+BC Fujimoto and Gu (2021).

Given the uncertainty of observation noise in a real-robot system, the team aimed to
obtain policies that could work robustly against such noise. To accomplish this, they adapted
the policy training objective of TD3+BC and added a regularization term that encourages
the policy’s actions to be spatially smooth Mysore et al. (2021), leading to similar actions
for comparable states in the robot system. In the final stage of the challenge, their policies
exhibited competitive performance across all tasks.

5.4. Team “superiordinosaur” (shared 3rd place)

Shanliang Qian – Independent

Team superiordinosaur observed an important feature of the real dataset, the vision
tracking system is far from perfect and sometimes suffers from: i) high delay and ii) noisy cube
pose estimation. They proposed a simple approach that combines supervised learning, early
stopping and the introduction of a validity check with a smoothing process that maintains a
moving average of the cube pose. In particular, for a new cube pose, their algorithm checks
whether the delay is less than or the confidence is greater than certain thresholds, in order
to decide whether to update the cube pose with a moving average or to keep the last cube
pose instead. The team also report unsatisfactory results with the TD3+BC algorithm and
LSTM architectures.

5.5. Team “jealousjaguar” (shared 3rd place)

Yasunori Toshimitsu, Mike Yan Michelis, Amirhossein Kazemipour,
Arman Raayatsanati, Hehui Zheng, and Barnabasa Gavin Cangan – ETH Zurich

Team jealousjaguar used the offline RL algorithm “Implicit Q-Learning” (IQL) Kostrikov
et al. (2021), due to its ability to avoid out-of-distribution action queries during training
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Figure 2: Number of job submissions to our robots over time and per team.

and to mitigate a value function overshooting by estimating a Q-function expectile via an
asymmetric ℓ2 loss. They selected the IQL implementation provided by the open source
library d3rlpy (Seno and Imai, 2021).

The team has furthermore created an automation pipeline that allows submissions to
be queued, and sent to the real robot cluster automatically (the RRC system only accepted
submissions if there was no ongoing submission by the same team), which allowed the
performance of the policy to be gauged periodically during training and uploaded to Weights
& Biases (Biewald, 2020). This made the comparison of different algorithms and parameters
easier, allowing the team to develop their own ideas and compare in real time with others.
They also introduced various methods to improve the performance and consistency of a
policy, such as data augmentation, or the inclusion of previous observations and actions in
the state.

6. Results

We present the results of the real-robot stage in this section and compare them to what
state-of-the-art offline RL algorithms can achieve on the challenge datasets. The results of
the pre-stage are summarized in Appendix C.

6.1. Usage Statistics

Throughout the real-robot stage, the participating teams submitted a total of 1660 jobs to
the robots. Moreover, the number of submitted jobs differed highly between teams. Figure 2
shows the distribution of jobs over time and teams.

6.2. Results

Table 1 shows the average returns the teams achieved on all task/dataset combinations
in the real-robot phase. The last column contains the overall score which is obtained by
averaging these returns. We furthermore include the relevant benchmarking results from
Gürtler et al. (2023) as a point of reference5. The scores of the teams are compared to those
of the benchmarked offline RL algorithms in Fig. 3. We additionally provide success rates in
Table 4 in appendix C .

Team excludedrice achieved the highest score by a significant margin by combining self-
supervised dataset filtering with Behavioral Cloning. This approach even outperformed the

5. Note that the Mixed datasets correspond to the Weak&Expert datasets in Gürtler et al. (2023).
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Table 1: Returns and overall score in the real-robot stage: For each combination
of task and behavior policy the mean return and the standard error of the mean
return are given (failed runs correspond to a return of 0). The overall score is the
return averaged over all tasks.

Push/Expert Push/Mixed Lift/Expert Lift/Mixed Score

behavior policies 660± 2 429± 4 1064± 7 851± 8 751± 3

Teams

1. excludedrice 624± 6 635± 5 956± 21 923± 21 784± 8
2. decimalcurlew 639± 4 613± 5 841± 20 717± 18 703± 7

3. superiordinosaur 618± 6 575± 8 856± 22 571± 17 655± 7
jealousjaguar 639± 5 561± 7 855± 19 506± 17 640± 7

Algorithms (results from Gürtler et al. (2023))

BC 562± 14 388± 21 676± 35 437± 26 516± 13
CRR 638± 8 621± 11 890± 34 707± 28 714± 12

AWAC 623± 9 567± 14 747± 36 481± 28 605± 12
CQL 514± 15 346± 17 288± 16 269± 14 354± 8
IQL 592± 10 555± 14 900± 32 574± 31 655± 12

behavior policy on the challenging mixed data from the Lift task, unlike all other competitors.
As a result, excludedrice is the only team that exceeds the score of the behavior policies.

On the second rank, decimalcurlew also achieves good results on the Lift-Mixed dataset
with a regularized version of TD3+BC. In contrast to this, the remaining teams fall behind
on this decisive dataset. Surprisingly, the BC-based approach of team superiordinosaur
slightly outperforms team jealousjaguar’s solution built around the offline RL algorithm
IQL. This may be a result of team superiordinosaur’s effort to take the confidence of the
tracking system into account when updating the pose estimate which seems to result in
better performance on the Lift-Mixed dataset.

Two of the offline RL algorithms benchmarked in Gürtler et al. (2023) achieved scores com-
parable to some of the top submissions. CRR reaches a score similar to that of decimalcurlew
while IQL matches the score of superiordinosaur. Note, however, that the hyperparameters of
the benchmarked algorithms used for the Lift task were optimized on the simulated version
of Lift-Mixed. This requires a significant amount of computational resources but increases
the scores on the real Lift-Mixed dataset.

6.3. Challenge Takeaways

Imitation learning vs offline RL: In principle, offline RL should be able to outperform
imitation learning on datasets containing suboptimal trajectories (which is the case for all
challenge datasets), as it takes the reward signal into account. We were therefore surprised
that two out of four top teams built their methods around Behavioral Cloning. We see
several factors that could contribute to the popularity of BC: (i) Offline RL algorithms are
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Figure 3: Scores in the real-robot stage: Overall scores of the winning teams and state-
of-the-art offline RL algorithms for comparison. The averaged score of the behavior
policies is indicated by a dashed line.

sometimes difficult to implement and tune, unlike BC, (ii) the robotics community might
not have fully adopted the offline RL paradigm yet, and (iii) in practice other parts of the
method might have a bigger impact on performance.

Algorithmic vs. problem-specific adaptations: Instead of optimizing the choice of
learning algorithm or the algorithm itself, most teams concentrated on orthogonal contri-
butions like filtering, data augmentation and regularization which were partly tailored to
the robotics problem. They reported significant improvements in performance following this
strategy.

Simulation vs. real world: The gap between expert policy and learned policies was,
on average, bigger on real-world data. This may be caused by more complex real-world
dynamics as also discussed in Gürtler et al. (2023).

7. Conclusion

In summary, the competition provided an opportunity to apply offline RL where it matters
most: in the real world. The results show somewhat surprisingly that simpler methods, such
as Behavioral Cloning combined with suitable filtering and data augmentation, can be more
effective in real-world applications than more elaborate offline RL algorithms. This in turn
means that more research on offline RL is required and that new algorithms should be also
evaluated on real hardware (Gürtler et al., 2023).
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Appendix A. Datasets

We provide an overview of the datasets provided to the participants in table 2.

Appendix B. Complete set of rules

The complete set of rules of the Real Robot Challenge 2022 was as follows:

• Any algorithmic approach may be applied that learns the behavior only from the
provided data and does not make use of any hard-coded/engineered behavior. As
an example, two prominent algorithmic approaches meeting this criteria are: offline
reinforcement learning and imitation learning.
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Table 2: Overview of the offline RL datasets provided to the participants.
task dataset overall duration [h] #episodes #transitions [106] episode length [s]

Push-
Sim-Expert 16 3840 2.8 15
Real-Expert 16 3840 2.8 15
Real-Mixed 16 3840 2.8 15

Lift-
Sim-Expert 20 2400 3.6 30
Real-Expert 20 2400 3.6 30
Real-Mixed 20 2400 3.6 30

• It is not permitted to use data collected during evaluation rollouts or obtained from
other sources.

• It is not permitted to use data provided for one task to train a policy for an other task
(e.g. use simulation data for the real robot or the "expert" dataset for the "mixed"
task).

• It is not permitted to filter the datasets based on the position of a sample in the dataset.
However, you may filter based on the properties of a transition or an episode if you
want to.

• Participants may participate alone or in teams.

• Individuals are not allowed to participate in multiple teams.

• Each team needs to nominate a contact person and provide an email address through
which they can be reached.

• Cash prizes will be paid out to an account specified by the contact person of each
team. It is the responsibility of the team’s contact person to distribute the prize money
according to their team-internal agreements.

• To be eligible to win prizes, participants agree to release their code under an OSI-
approved license and to publish a report describing their method in a publicly accessible
way (e.g. on arXiv).

• Participants may not alter parameters of the simulation (e.g. the robot model) for the
evaluation of the pre-stage.

• The organizers reserve the right to change the rules if doing so is absolutely necessary
to resolve unforeseen problems.

• The organizers reserve the right to disqualify participants who are violating the rules
or engage in scientific misconduct.

Appendix C. Additional results
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Table 3: Returns in the pre-stage which were obtained by evaluating in the simulated
environment after training on datasets recorded in simulation. The teams are listed
as they ranked in the real-robot stage.

Push/Expert Lift/Expert

behavior policies 674 1334

Teams

excludedrice 676 1273
decimalcurlew 675 1132

superiordinosaur 653 1325
jealousjaguar 658 1137

Table 4: Success rates in the real-robot stage: For each combination of task and
behavior policy the mean success rate and the standard error of the mean success
rate are given (failed runs correspond to a return of 0). The last column is the
success rate averaged over all datasets.

Push/Expert Push/Mixed Lift/Expert Lift/Mixed

behavior policies 0.92± 0.01 0.51± 0.01 0.66± 0.01 0.40± 0.01

Teams

1. excludedrice 0.82± 0.02 0.83± 0.01 0.48± 0.02 0.46± 0.02
2. decimalcurlew 0.80± 0.02 0.71± 0.02 0.28± 0.02 0.13± 0.02

3. superiordinosaur 0.80± 0.02 0.69± 0.02 0.40± 0.02 0.11± 0.02
jealousjaguar 0.79± 0.02 0.59± 0.02 0.25± 0.02 0.03± 0.01

Algorithms (results by Gürtler et al. (2023))

BC 0.74± 0.02 0.48± 0.03 0.28± 0.02 0.09± 0.02
CRR 0.87± 0.03 0.84± 0.04 0.54± 0.04 0.29± 0.04

AWAC 0.80± 0.01 0.69± 0.03 0.31± 0.02 0.12± 0.03
CQL 0.54± 0.06 0.14± 0.00 0.00± 0.00 0.00± 0.00
IQL 0.75± 0.03 0.68± 0.03 0.48± 0.03 0.15± 0.01
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Appendix D. Reward function and success criterion

The reward is obtained by applying the logistic kernel

k(x) = (b+ 2) (exp(a∥x∥) + b+ exp(−a∥x∥))−1 (1)

to the difference between desired and achieved position (for the Push task) or the desired
and achieved corner points of the cube (for the Lift task). The parameters a and b control
the length scale over which the reward decays and how sensitive it is for small distances x,
respectively.

We consider an episode successful if at its end the desired position is matched up to
a tolerance of 2 cm and the deviation from the desired orientation does not exceed 22 deg,
similar to Allshire et al. (2022) and Gürtler et al. (2023).

Appendix E. Code repositories of the winning teams

Teams URL to repository

excludedrice https://github.com/wq13552463699/Real-Robot-Challenge-2022.git
decimalcurlew https://github.com/paekgga/RRC2022Training
superiordinosaur https://github.com/QianSL/rrc_solution
jealousjaguar https://github.com/QianSL/rrc_solution

Table 5: URLs of the code repositories of the winning teams.
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