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Abstract

The Natural Language for Optimization (NL4Opt) Competition was created to
investigate methods of extracting the meaning and formulation of an optimization prob-
lem based on its text description. Specifically, the goal of the competition is to increase
the accessibility and usability of optimization solvers by allowing non-experts to interface
with them using natural language. We separate this challenging goal into two sub-tasks:
(1) recognize and label the semantic entities that correspond to the components of the
optimization problem; (2) generate a meaning representation (i.e. a logical form) of the
problem from its detected problem entities. The first task aims to reduce ambiguity by
detecting and tagging the entities of the optimization problems. The second task creates
an intermediate representation of the linear programming (LP) problem that is converted
into a format that can be used by commercial solvers. In this report, we present the LP
word problem dataset and shared tasks for the NeurIPS 2022 competition. Furthermore,
we present the winning solutions. Through this competition, we hope to bring interest to-
wards the development of novel machine learning applications and datasets for optimization
modeling.

Keywords: Operations Research, NLP, Entity Recognition, Semantic Parsing, Math Word
Problems, Controllable Generation, ChatGPT Comparison, Linear Programming
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1. Introduction

Operations research (OR) tools can be leveraged to model and solve many real-world
decision-making problems analytically and efficiently. OR is a field of applied mathematics
that has been proven beneficial in many applications such as supply chain management
(Maloni and Benton, 1997), production planning (Pochet and Wolsey, 2006), bike-share
ridership and efficiency in urban cities (Beairsto et al., 2021; Ma et al., 2016), managing
wastewater collection and treatment systems (Tao et al., 2020), and finding a revenue-
maximizing pricing strategy for businesses (Bitran and Caldentey, 2016). Different types
of optimization problems can be solved using standard optimization algorithms such as
the simplex (Nash, 2000) or interior-point method (Karmarkar, 1984). However, modeling
real-world problems into proper formulations as input to optimization solvers is still an
iterative and strenuous process. First, the problem must be described by the stakeholder in
the language of a domain expert. Then, an OR expert must extract the decision variables,
objective, and the constraints from the description. Finally, the problem must be re-written
in an algebraic modeling language that solvers can interpret.

Through the NL4Opt Competition, we investigate the feasibility of learning-based
natural language interfaces for optimization solvers. To do so, we explored the practicality
of partially automating the formulation of optimization problems. In particular, semantic
parsing is a general task for extracting machine-interpretable meaning representations from
natural language utterances. They have been well-studied for designing NLP systems that
interact with database systems (Zhong et al., 2017; Gan et al., 2020), Unix machines (Lin
et al., 2018), knowledge base systems (Berant and Liang, 2014; Dong and Lapata, 2016)
or dialog systems (Guo et al., 2018). However, extracting the formulation of optimization
problems is still an under-explored problem. Meanwhile, solving math word problems with
NLP has seen sustained research activity (Koncel-Kedziorski et al., 2016; Hopkins et al.,
2019; Miao et al., 2020; Patel et al., 2021) with researchers focused on finding the correct
answers to elementary algebraic and arithmetic problems. In contrast, rather than exploring
methods of producing the solution to the problem, we focus on converting optimization
problems into a form that can be passed to commercial optimization solvers to efficiently
find optimal solutions.

Lately, a few related challenges have been created for analyzing scientific texts. For in-
stance, Harper et al. (2021) proposed the MeasEval challenge focused on extracting counts
and measurements from clinical documents and finding the attributes of those quantities.
Another popular challenge was MultiCoNER (Malmasi et al., 2022) which focused on detect-
ing semantically ambiguous and complex entities from documents written in 11 languages
spanning 13 tracks. The NL4Opt Competition expands this task by not only detecting
complex entities from optimization problems but also generating the equivalent mathemat-
ical formulation.

2. The NL4Opt Competition

The NL4Opt Competition explores the design of natural language interfaces for opti-
mization solvers. The results of this competition forward the accessibility and usability of
these solvers and allow non-experts to solve important problems from various industries.
Specifically, we used this competition to explore methods of converting a natural language
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Figure 1: Description of dataset for sub-task 1: “recognizing the problem entities”

description of an optimization problem into a mathematical formulation. This goal was
separated into two inter-related sub-tasks:

1. Recognition of optimization problem entities,

2. Generation of problem formulation.

The first sub-task was to recognize optimization model entity types (i.e., constraint
direction, constraint limit, objective direction, objective name, parameter, variable) from
the problem description. In the first sub-task, the goal was to detect text spans from the
problem description that represent semantic entities of the optimization problem and to tag
them according to the listed entity types. This sub-task aimed to reduce the ambiguity by
identifying important components of the optimization model. An illustration of sub-task 1
is provided in Figure 1.

The second sub-task was to generate a precise meaning representation of the optimiza-
tion formulation. This sub-task was simplified using the ground truth information of the
problem entities from the first sub-task. An illustration of sub-task 2 is provided in Figure 2.

The proposed sub-tasks are characterized by the following challenges:

1. Unstructured multi-sentence input. An optimization description is the input
document that describes the decision variables, objective, and a set of constraints.
In addition, the structure of the input varies depending on the structure of the op-
timization problem and the linguistic style. Thus, the multi-sentence input exhibits
a high level of compositionality and ambiguity due to the variability of the linguistic
patterns, of the problem domains, and of the problem structures.

2. Mismatched inputs and outputs. The contextual information from the input
description is abstracted away in the target formulation. Therefore, the absence of
contextual clues in the output makes it difficult to align the input-output pair. Thus,
the meaning representation of the problem formulation (i.e. the output of genera-
tion model) is important as it bridges the problem description and the mathematical
formulation. In fact, semantically equivalent representations may have syntactically
different forms and can lead to different performance (Guo et al., 2020).
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Figure 2: Dataset annotation and evaluation protocol for sub-task 2: ”generating the prob-
lem formulation”

3. Low-resource learning constraint. Specialized knowledge is required to create
a dataset thereby drastically increasing the cost of dataset creation. The design of
machine learning models for this task is challenging as they must learn from a small
number of expert-annotated examples.

4. Domain-agnostic parsing. Finally, OR tools are applied to disparate problem
domains (e.g. forestry, transportation or medicine) (Williams, 2013). As a result, the
learning-based solution must generalize not only to new problem instances but also
to new application domains.

2.1. Evaluation

NER sub-task: we evaluated the models based on their achieved micro-averaged F1 score
given by:

F1 =
2× P ×R

P +R
, (1)

where P and R are the average precision and average recall further averaged over all entity
types, respectively.

Generation sub-task: we used an application-specific metric since the task was moti-
vated by the need to precisely formulate the optimization problem. We have benchmarked
the models based on the declaration-level mapping accuracy given by:

Acc = 1−
∑N

i=1min {FPi + FNi, Di}∑N
i=1Di

, (2)

where N is the number of linear programming word problems (LPWPs) in the test set. For
each LPWP i, Di is the number of ground-truth declarations. The false positive FPi is the
number of non-matched predicted declarations whereas the false negative FNi denotes the
number of ground-truth declarations without a match. To clarify the evaluation protocol,
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we have emphasized that the canonical representation, as described in Figure 2, would be
used to compare the ground-truth and predicted formulations.

2.2. Competition statistics

Over 150 teams registered for this competition combining for a total of more than 300
valid independent submissions. The demographics of registered participants were affiliated
as follows: 30% post-secondary, 30% independent, 30% unspecified, and 10% industry.
There were 19 teams with valid submissions to sub-task 1 and 9 to sub-task 2. These teams
reported the following affiliations: 60% industry, 25% post-secondary, and 15% independent.

2.3. Additional Competition Details

All the details and relevant information of the competition are made accessible at the compe-
tition website (https://nl4opt.github.io/). This website contains the rules, a FAQ/Tutorial
section, access to the starter kit, and final results of the competition. We have released the
test set and encourage all new and returning participants to leverage this competition as a
benchmark for new methods. We especially welcome those that are interested in tackling the
challenges listed above (i., unstructured input, misaligned input-output pair, low-resource
learning constraint, generalizability).

3. The NL4Opt Dataset

Dataset description. A total of 1101 annotated LPWPs from 6 different domains were
created for the NL4Opt Competition. We separated the dataset into 713, 99, and 289
samples for training, development, and testing, respectively. The data samples were dis-
tributed identically for both sub-tasks. It is important to evaluate submissions for gener-
alizability towards unseen problem domains. Therefore, we include LPWPs from the three
similar (source) domains of sales, advertising, and investment in both training, development
and test splits. However, problems from three other (target) domains (production, trans-
portation, and sciences) have been reserved for the development and test splits. To ensure
that the development set was never used for training, we reviewed the final submitted code
and re-trained all submissions prior to announcing the winning teams. Table 1 presents
the number of samples and the ratio between the source and target domains for the three
splits of data. An example of data and its annotations for the two sub-tasks is illustrated
in Figures 1 and 2.

Table 1: Data Distribution.

Split #/samples source:target

Train 713 1:0
Dev 99 1:3
Test 289 1:3

For the first sub-task, the input is the problem description and the output is the set
of entities that correspond to the components of the problem (Figure 1). The entities are
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labelled according to predefined entity types. The labels were provided in Spacy format
and in BIO tagging format.

For the second sub-task, the inputs are the problem description, its set of problem
entities, and the order mapping of variable mentions. The ground-truth label annotations
consist of the objective declaration and the constraints declarations as shown in Figure 2.
The output of the semantic parser is the meaning representation of those declarations. As
shown in Figure 2, the meaning representation should be converted to a canonical form for
evaluation. Participants were encouraged to either design their own meaning representation
or use the representation and conversion scripts from our pilot study.

Dataset creation. A team of 20 AI engineers and OR experts spent three months to
create our preliminary LPWP dataset. This team used the Prodigy tool (Montani and
Honnibal, 2018) to manually create and annotate this preliminary dataset containing 600
problems. Within the team, five were tasked with verifying that each problem adhered to
specific guidelines to ensure diversity in problem types and language patterns. Throughout
the process of creating the remaining 501 samples, suggested annotations were generated
using a preliminary NER model trained on the preliminary dataset. For the second sub-task,
we created a custom Prodigy recipe and a Python script to efficiently annotate the ground-
truth declarations of the objective and constraints. All of the new problems and annotations
for both sub-tasks were verified and corrected by at least two experts. Ramamonjison et al.
(2022) describes in more details the data creation process (e.g., exclusion criteria, inter-
annotator agreement, correction process, average duration of each step, etc.).

Note that we did not use existing datasets from third parties and have released the
dataset1 under the MIT License to benefit the research community.

4. Baseline Models

Participants had access to the code base from our pilot study that is described in more
details in Ramamonjison et al. (2022). Most participants built upon this by implementing
their own methods on the provided code base.

4.1. Sub-task 1

The starter kit for sub-task 1 can be found in the NL4Opt repository2. The baseline model,
XLM-RoBERTa-base (XLM-R-base) (Conneau et al., 2019), was trained and fine-tuned
by minimizing the log-likelihood loss. As part of the pilot study, we reported3 the baseline
model’s performance on the test set when evaluated on the source domain, target domain,
and entire test set for all entity types (i.e., constraint direction, limit, etc.). Based on this
preliminary analysis, the objective name was the most difficult to identify potentially due
to its ambiguity. We expect the greatest improvements would arise from methods that are
capable of accurately recognizing the objective names and their spans. Evaluation: This
baseline achieved an F1 score of 0.906 on the test split.

1. All data are available at: https://github.com/nl4opt/nl4opt-competition
2. Sub-task 1 baseline is available at: https://github.com/nl4opt/nl4opt-subtask1-baseline
3. Stratified performance: https://github.com/nl4opt/nl4opt-subtask1-baseline/tree/main/baseline#results
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4.2. Sub-task 2

The starter kit for sub-task 2 can be found in the NL4Opt repository4. The starter kit
for sub-task 2 contains code to parse the XML-like intermediate representations and anno-
tated examples into our Problem Formulation dataclass and code to score the submission.
Additional information regarding the canonical representation, parsing, and scoring can
be found in this notebook. For the generation sub-task, the baseline model is a BART
encoder-decoder (Lewis et al., 2019) that leverages a prompt-guided generation and a copy
mechanism to generate a meaning representation of the optimization formulation. Evalu-
ation: This baseline achieved an accuracy of 0.610 on the test set.

5. Solutions

Table 2: Sub-task 1 winning results.

Rank Team F1 score

1 Infrrd AI Lab 0.939
2 mcmc 0.933
3 PingAn-zhiniao 0.932
4 Long 0.931
5 VTCC-NLP 0.929
- Baseline 0.906

Table 3: Sub-task 2 winning results.

Rank Team F1 score

1 UIUC-NLP 0.899
2 Sjang 0.878
3 Long 0.867
4 PingAn-zhiniao 0.866
5 Infrrd AI Lab 0.780
- Baseline 0.610

5.1. Sub-task 1

5.1.1. First Place: Team Infrrd AI Lab

Team Infrrd AI Lab (JiangLong He, Mamatha N., Shiv Vignesh, Deepak Kumar, Akshay
Uppal) leveraged ensemble learning with augmentation to achieve an F1 score of 0.939
on the test set. Their base model consists of text embedding, BiLSTM, and CRF layers.
Through ablations studies, they found that the majority voting of an ensemble of 5 different
models that were designed in a combination of XLM-R-base and RoBERTa-base trans-
formers for text embeddings, BiLSTM layers, and CRF layers performed the best on the
test set. They also implemented 4 types of data augmentation techniques during training.
Namely, label-wise token replacement, synonym replacement, mention replacement, and
shuffle within segments. For more details, refer to (He et al., 2022).

5.1.2. Second Place: Team mcmc

Team mcmc (Kangxu Wang, Ze Chen, Jiewen Zheng) trained models for ensemble learn-
ing with adversarial attacks to achieve an F1 score of 0.933 on the test set. They found
that implementing adversarial attack using the FGM proposed by Goodfellow et al. (2014)
on the DeBERTa-large transformer (He et al., 2021) with a CRF layer performed the
best on the development set. They trained 9 variations of this model using different random

4. Sub-task 2 baseline is available at: https://github.com/nl4opt/nl4opt-subtask2-baseline
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initializations to form their ensemble and leveraged majority voting for the final prediction.
For more details, refer to (Wang et al., 2023).

5.1.3. Third Place: Team PingAn-zhiniao

Team PingAn-zhiniao (Qi Zeng, Xiuyuan Yang, Yixiu Wang, Chang Shu) augmented the
fine-tuning process of the XLM-R-large transformer by implementing a global pointer
decoder followed by a multi-head decoder to achieve an F1 score of 0.932 on the test
set. This was the only sub-task 1 winning submission that did not use ensemble learning.
Initially, they fine-tuned using the XLM-R-large encoder to produce the embeddings
which was fed into both the global pointer decoder and multi-head decoder. Upon reaching
an F1 score of 0.9 on the development set, the global pointer decoder was removed while
the encoder with multi-head decoder model continued training.

5.1.4. Fourth Place: Team Long

Team Long (Yuting Ning, Jiayu Liu, Longhu Qin, Tong Xiao, Shangzi Xue, Zhenya Huang,
Qi Liu, Enhong Chen, Jinze Wu) leveraged ensemble learning, adversarial training,
and some post-processing techniques to achieve an F1 score of 0.931 on the test set.
They used XLM-R as the base model and leverage projected gradient descent method
(Madry et al., 2017) and FGM for adversarial training. Augmentations included variables
swapping, synonym replacement in objective names, and randomizing of numbers. They
also implemented some quick-check rules to enforce consistency in tagging entity spans. Four
models (XLM-R-base and XLM-R-large) were optimized for specific entity types and the
final prediction was obtained through an emsemble learning framework. For more details,
refer to (Ning et al., 2023) or their code5.

5.1.5. Fifth Place: Team VTCC-NLP

Team VTCC-NLP (Xuan-Dung Doan) proposed ensemble learning to achieve an F1
score of 0.929 on the test set. They also explored the use of ELMo embedding (Peters et al.,
2018) and GCN models (Yao et al., 2018) and found that both improved the performance
of the baseline model accuracy, but negatively impacted the performance when included for
ensemble learning. The final ensemble consisted of XLMR, DeBERTaV3, and BART. For
more details, refer to (Doan, 2022).

5.2. Sub-task 2

5.2.1. First Place: Team UIUC-NLP

Team UIUC-NLP (Neeraj Gangwar, Nickvash Kani) tagged the input and implemented
a “decode all-at-once” strategy to achieve an accuracy of 0.899 on the reserved test set.
They used the BART-large encoder-decoder model and enriched the input by surrounding
entities with XML-like tagging. Through ablation studies, they found the best performance
when combining this input tagging strategy with generating all objective and constraint
declarations at once. This team also reports higher sensitivity to hyperparameters and

5. Team Long code: https://github.com/bigdata-ustc/nl4opt
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initial seeds when using the large version of BART compared to the base version. For more
details, refer to (Gangwar and Kani, 2022) or their code6.

5.2.2. Second Place: Team Sjang

Team Sjang (Sanghwan Jang) used a scaling hyperparameter to introduce entity tag
embeddings and they implement simple data augmentation to achieve an accuracy of
0.878 on the reserved test set. Compared to the baseline, they report a 16% increase in
accuracy by implementing the BART-large model, a further 10% improvement by scaling
the tag embedding, and another 1.5% through simple augmentations to the constraints by
reversing the constraint direction. For more details, refer to (Jang, 2022) or their code7.

5.2.3. Third Place: Team Long

Team Long redesigned the prompt, implemented data augmentation, and leveraged
adversarial training to achieve an accuracy of 0.867 on the reserved test set. They used
the baseline BART-base with copy mechanism as the generator and leverage adversarial
training during fine-tuning by using FGM. They enhance the entities by inserting XML-like
tags, and alter the location of constraint and objective direction entities to where they occur
in the original input description. For more details, refer to (Ning et al., 2023) or their code5.

5.2.4. Fourth Place: Team PingAn-zhiniao

Team PingAn-zhiniao primarily leveraged data preprocessing and hyperparameter
tuning to achieve an accuracy of 0.866 on the reserved test set. Data preprocessing
included wrapping entity types with tags and they report that the most improvement was
brought when the bert dropout hyperparameter was set to 0.5.

5.2.5. Fifth Place: Team Infrrd AI Lab

Team Infrrd AI Lab preprocessed the input and utilized multitask training to
achieve an accuracy of 0.780 on the reserved test set. They used the text-to-text transfer
transformer (T5) (Raffel et al., 2019) and processed the input by wrapping entities with the
markup of entity types. They also reported an increase in performance when they sepa-
rated each sample into multiple samples, each corresponding to one declaration. Multitask
learning was leveraged to train the model to generate text when given different prompts.
For more details, refer to (He et al., 2022).

5.3. Experiments with large language models

After the competition ended, we wanted to compare the performance of black-box large
language models. In particular, we conducted some experiments with ChatGPT to see how
it would perform in our competition. For these experiments, we combined the two sub-
tasks and directly asked ChatGPT to generate a problem formulation from a given LPWP
(problem description). We evaluated the performance of ChatGPT on both the test and

6. Team UIUC code: https://github.com/mlpgroup/nl4opt-eq-generation
7. Team Sjang code: https://github.com/jsh710101/nl4opt

197

https://github.com/mlpgroup/nl4opt-eq-generation
https://github.com/jsh710101/nl4opt


Ramamonjison et al.

development datasets using the declaration-level mapping accuracy defined in Equation (2).
To ensure consistent output from ChatGPT, we structured our prompts as follows:

“ <Problem description> Use the above problem description and write the optimization
formulation of the problem. Please only give me the model with just one-line explanations
for each model element. I don’t need the solution. Remove all non-essential spaces. Don’t
simplify the expressions and don’t use LaTeX code or any code in your responses. Use “x”,
“y”, and “z” as variables name.”

For these experiments, we used the gpt-3.5-turbo model trained on data up to September
1st, 2021. To evaluate the performance of ChatGPT, we asked OR experts to manually ver-
ify the correctness of the generated models by ChatGPT and measured the per-declaration
accuracy. ChatGPT achieved an accuracy of 0.927 on the reserved test set for this com-
bined task.

6. Discussion

Sub-task 1: Four of the top 5 teams used ensemble learning to maximize the F1 score
for the NER task. While this is a great technique for competitions like NL4Opt that only
consider performance metrics, it drastically increases the complexity which makes the train-
ing and inference more computationally expensive and less transparent. When considering
methods from this competition for real-world time-sensitive applications, methods such as
the Student-Teacher learning framework (Wang and Yoon, 2022) could be explored. Other
successful techniques included simple augmentation and preprocessing. Some methods also
included adversarial training, or training through a two-step approach (i.e., fine-tuning us-
ing a global pointer then switch to the multi-head decoder). It is also worth pointing out
that many winning teams used the transformer-based language model, DeBERTa, often as
part of an ensemble. These winning methods resulted in a 2.3 to 3.3% increase in F1 scores
compared to baseline with the highest F1 score of 0.939 by Team Infrrd AI Lab (He
et al., 2022).

Sub-task 2: The improvements from the winning teams primarily resulted from prepro-
cessing and data augmentation. Every winning team implemented some data augmentation
or alterations to the input. The top two submissions replaced BART-base with BART-
large which was responsible for higher top accuracy but a higher standard deviation was
also reported. This sub-task highlights the importance of the input prompt design. We will
continue to explore different input representations and the impact it has on performance.
We are also interested in further exploring methods of data augmentation and training
methods (i.e., ensemble learning, adversarial learning, etc.). The results of these winning
submissions were encouraging as we saw a 17 to 29% increase in declaration-level accuracy
from the winning submissions with the highest accuracy of 0.899 by Team UIUC-NLP
(Gangwar and Kani, 2022).

Comparison with large language model Although ChatGPT was not trained or fine-
tuned on our training set, it outperformed the winning submission of sub-task 2 by 2
percentage point. The common errors made by ChatGPT, in order of frequency of occur-
rence, include incorrect variable coefficients in constraints, extraneous constraints, wrong
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constraint directions, extra variables, missing constraints, and incorrect variable coefficients
in the objective.

The datasets used in this competition have had a lower level of complexity compared
to real-world problems. As a result, it remains unclear how ChatGPT would perform
when faced with more realistic and challenging problem descriptions that are frequently
encountered in practical scenarios. Therefore, further research is required to examine the
generalizability of large language models across a more extensive range of problem descrip-
tions with varying levels of complexity and realism. Furthermore, it is crucial to explore
methods for enhancing the trustworthiness and robustness of these models to extend their
usefulness in practical applications.

7. Conclusion

We hosted the NL4Opt Competition at NeurIPS 2022 to draw attention towards the
potential of machine learning in augmenting the user experience of OR tools. This compe-
tition presented two engaging tasks that successfully attracted many unique solutions. The
two tasks (NER and generation) combine to take a linear programming word problem, tag
its relevant entities, and generate a canonical representation that can be easily converted
into a format that optimization solvers can interpret.

To summarize, many winning teams of sub-task 1 reported a significant improvement
in performance when leveraging ensemble learning and various augmentation techniques.
Winning teams of sub-task 2 reported the main contributor for improved performances
resulted from redesigning the input prompt. These solutions improved upon the baseline
(up to 3.3% for sub-task 1 and 29% for sub-task 2) and will be explored for their use in
making commercial solvers more accessible to non-experts by accepting natural language
problem descriptions. ChatGPT achieved a 2.8% improvement over the top-performing
submission for sub-task 2 without the need for intermediate entity tagging. Future research
should investigate the generalizability of large language models and the potential benefits
of fine-tuning them for specific applications.

In addition to the impact of providing an alternative input format to solvers, the labelled
dataset from this competition has been released and may be used to evaluate methods for
multi-sentence inputs, low-resource learning (eg. zero-shot/few-shot learning), and gener-
alizability to unseen domains. We encourage and look forward to continual applications of
the open-sourced dataset and the subsequent exciting new research interests that may stem
from the solutions of the NL4Opt Competition.
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