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Abstract

The Driving SMARTS (Scalable Multi-Agent Reinforcement Learning Training School)
competition was designed to address one of the major challenges for autonomous driving
(AD), namely adaptation to distribution shift between data used for training and inference
and the problems caused by this shift in real-world conditions.

The two key features of the competition are 1) a two-track structure to encourage and
support a variety of approaches to solving the problem, such as reinforcement learning,
offline learning, and other machine learning methods; and 2) curated data for driving
scenarios of varying difficulty levels, from cruising to unprotected turns at unsignalized
intersections.

The competition attracted 87 participants in 53 teams. Top-ranking teams contributed
a diverse set of solutions highlighting the effectiveness of different methodologies on safe
motion planning for AD. This paper provides an overview of the Driving SMARTS com-
petition, discusses its organisational and design aspects, and presents the results, insights,
and promising directions for future research.
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1. Introduction

Distribution shift between data used for training and inference is one of the key challenges for
machine learning in the domain of autonomous driving (AD). Whether the chosen method
is reinforcement learning (RL), supervised learning, or classical planning and control, such
a challenge must be properly resolved to allow the deployment of autonomous vehicles in
the real-world.

The Driving SMARTS competition was designed to address the problems in AD motion
planning caused by distribution shift. Competition scenarios and evaluation schemes were
designed to highlight a wide range of situations that may be encountered by ADs. The goal
was to engage a diverse expertise in the machine learning (ML) community to contribute a
wide range of solutions, such as single- and multi-agent RL, supervised learning, and control
and optimisation methods with data-driven enhancements.

The competition consisted of two tracks. The first track was freestyle, meaning that it
was open to any method to encourage the participants to tackle real-world AD challenges
regardless of their domain of expertise. The second track was designed exclusively for
offline learning methods in order to highlight offline-to-online distribution shift and ways
of dealing with it for real-world deployment.

Another goal of Driving SMARTS was to make the challenges of real-world autonomous
driving R&D more accessible for ML researchers by simplifying the complex practicalities
of data preprocessing, scenario construction, training and test corpora curation, evalua-
tion, and real-world system integration. To this end, the competition provided a rich set of
representative scenarios integrated within a mature simulation platform. These scenarios in-
cluded multilane cruising with lane changes, on-ramp merge into a flow of background traffic
with subsequent lane changes in short sequence, and turns without traffic light protection.
Furthermore, naturalistic driving data were used to assess the performance, realism, and
real-world relevance of the proposed solutions. As our contribution to the ML community,
all data, scenarios, baselines, and winning models are made available via our open-source
simulation platform SMARTS1 Zhou et al. (2020).

This paper provides an overview of the Driving SMARTS competition design and out-
comes. We begin by describing different aspects of the competition including scenario
design, environment and data preparation, and evaluation metrics. This is followed by a
brief introduction of the three winning competition submissions and analysis of their per-
formance on the given driving tasks. The concluding section summarizes the results of the
competition and suggests future directions.

2. The Competition

In this section, we briefly review the competition, with a particular focus on the design of
the tasks and evaluation procedures. More detailed information on the competition can be
found in Rasouli et al. (2022).

1. https://github.com/huawei-noah/SMARTS/
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(a) Cruising (b) Overtaking

(c) Merging (d) Cutting off

(e) Turning at T-intersection (f ) Turning at intersection

Mission Agent Social Agent Target LocationMission Agent in 
multi-agent task

Figure 1: Illustration of the tasks used in the competition. Mission vehicle(s) that are
controlled by the proposed algorithms are shown in red and blue for single- and
multi-agent versions, respectively. Target symbols show locations of destinations.
Some tasks, such as cruising (a) and merging (c), have both single- and multi-
agent versions.

2.1. Tracks

The competition was organized into two tracks. Track 1 was freestyle and allowed partici-
pants to contribute solutions that used any methods and training data. Here, the goal was
to encourage a diversity of solutions without imposing any restrictions. Track 2, on the
other hand, was open exclusively to offline methods as they are a common choice for many
models that rely on naturalistic data for training.

In Track 1, participants provided their inference code to be evaluated using an automated
system. However, in Track 2, to ensure compliance with the offline training requirement,
both the training and the inference code were submitted by the participants. The models
were then trained and evaluated by the organisers.

2.2. Tasks

We designed the tasks to create a variety of degrees of difficulty for the automated agents.
First, there were different types of scenario, from simple cruising, where the agent had
to maintain its current path, to more challenging turning at an unsignalized intersection,
which required understanding the behaviour of other agents and coordinating with them.
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Within some scenarios, there were gradations of difficulty depending on the number of
mission agents, from single- to multi-agent cases with up to three agents to be controlled
concurrently to accomplish the task. The scenario descriptions are listed below (ordered
from simpler to more challenging) and illustrated in Figure 1. The tasks are single agent
by default.

• Cruising (single- and multi-agent) - an entry-level task to assess the stability and
human-like capabilities of the method. In this task, the vehicle has to safely cruise to
a predefined location without the need for any specific maneuvers. In the multi-agent
setting, all agents have to arrive to their respective destinations.

• Overtaking - tests the capability of the agent to maneuver around slow traffic to reduce
its travel time.

• Merging (single- and multi-agent) - the agent has limited time to perform a lane
changing maneuver to merge into traffic travelling in another lane, otherwise an ac-
cident may occur. In the multi-agent task, merging vehicles as well as the vehicles
travelling in the neighboring lane should be controlled.

• Cutting off - the agent is cut off aggressively by another vehicle controlled by the
simulator and has to take proper action to avoid an accident (e.g., by braking or
changing lane).

• Left turn at unsignalized T-intersection - tests the ability of the method to follow
the stop sign, estimate time to cross the intersection, turn into the correct lane, and
accelerate, all without causing accidents.

• Left/right turn at unsignalized intersection - this task requires the agent to be aware
of the traffic travelling in the opposite direction and encourages riskier maneuvers
that might trigger reactions of background vehicles.

2.3. Environment and Data

2.3.1. Simulation Platform: SMARTS

For the purpose of the competition we relied on the Scalable Multi-Agent Reinforcement
Learning Training School (SMARTS) Zhou et al. (2020) simulation platform, designed for
research on AD systems. SMARTS was used both for generating training data and as an
environment to evaluate the submitted solutions. The key characteristics of SMARTS that
make it suitable for this competition and research on AD in general include compositional
architecture that allows creation of scenarios from individual elements such as maps, traffic,
etc.; distributed computing for scalable simulation; and realistic interactions with accurate
physics and involving rule-based and data-driven social agents. A schematic diagram of the
SMARTS architecture is shown in Figure 2(a).

2.3.2. Synthetic Data

Synthetic data are composed of hand-crafted maps that are populated with SMARTS social
agents acting as background traffic. The social agents’ behaviours are controlled using a
built-in tool in SMARTS that generates realistic actions/reactions according to the current
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(a) SMARTS architecture (b) Scenarios in SMARTS

Figure 2: a) A schematic diagram of the SMARTS platform architecture. b) Examples of
generated synthetic (top row) and real (bottom row) scenarios.

status of the traffic. This provides a means of modelling interactions between mission agents
and surrounding traffic. Some examples of synthetic scenarios are shown in Figure 2(b) (top
row).

2.3.3. Naturalistic Data

SMARTS also provides a tool for generating realistic scenarios using replay of data from
naturalistic datasets. At the time of competition, two datasets were supported, Waymo
Open Dataset Sun et al. (2020) and NGSIM Kovvali et al. (2007), both of which were used
for evaluation. To create naturalistic scenarios, samples were selected from the datasets
and replayed in the SMARTS environment. Actions of surrounding traffic agents were
imported from the historical data, therefore the mission agent had to complete its task
without interaction with the traffic. Examples of naturalistic scenarios are shown in Figure
2(b) (bottom row).

2.3.4. Scenarios

Overall, we generated 128 different scenarios that cover all types of tasks defined in Section
2.2 with different levels of difficulty depending on traffic volume, road structure, and desti-
nation points. There were 57 non-reactive scenarios derived from natural datasets. The rest
were synthetic with reactive background traffic consisting of SMARTS-controlled agents.

2.4. Metrics

For evaluation, we used four metrics designed to highlight different aspects of methods’
performance. The metrics are listed below in the order of importance. The submissions
were ranked based on this order and in case of a tie, the next metric in the hierarchy was
used to break the tie. Smaller values are better for all metrics.

1. Completion captures how many scenarios have been successfully completed. It is con-
verted into an error measure as follows:

completion =
num. failures

num. sc
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where sc is scenario.

2. Time is the average time to finish a scenario. This metric captures the efficiency of the
generated path as follows:

time =

∑
sc

T i

num. sc

where T i is the number of time steps to complete scenario i.

3. Humanness measures driving similarity to that of human drivers. While frequent direc-
tion changes, hard acceleration, and braking might score higher on other metrics, they
are not human-like. The humanness metric is computed as:

humanness =

∑
T

distanceobs + jerk+ lcoff∑
sc

T i

where obs is obstacle, jerk is the rate of change in vehicle’s acceleration between consec-
utive time points, and lcoff is lane center offset given by,

lcoff =

(
distance from center

lane width

)2

.

4. Rule violations assess whether the agents follow traffic laws. We consider two viola-
tions: exceeding speed limits and driving in the wrong direction:

rule =

∑
sc

∑
T i

min

(
sviolate

0.5 · slimit
, 1

)
+ roadviolate∑

sc

T i

where sviolate = max(0, sa − slimit) measures speeding (i.e., speed over the posted limit)
and roadviolate ∈ {0, 1} is whether the road direction was violated.

Vehicle collisions are detected when the bounding box of the mission agent overlaps with
that of another vehicle (e.g., another mission agent or traffic vehicle). Mission agent involved
in collisions is removed in subsequent time steps. Its partial trajectory still contributes to
humanness and rule violations metrics, computed as averages over timesteps and number
of agents.

3. Competition Submissions

A total of 87 individuals in 53 teams participated in the competition and contributed 18
valid submissions. The top three teams, tjudrllab-fanta, VCR, andAID, proposed offline
learning methods and were eligible to compete in both tracks. Before discussing the winning
teams’ submissions2, we briefly describe the baseline method that was provided as a sample
solution.

2. Detailed descriptions of the methods are available on the competition webpage at https://

smarts-project.github.io/
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(a) Architecture overview (b) Decision making steps

Figure 3: An overview of the model proposed by team tjudrllab-fanta.

3.1. Baseline

The baseline for the competition is an online RL model based on Proximal Policy Opti-
mization (PPO) Schulman et al. (2017) which is an actor-critic method capable of handling
continuous and discrete action spaces. The input to the model is comprised of a bird’s-eye
view (BEV) image of the traffic scene with superimposed waypoints, distance to the agent’s
goal, and the angle between the current heading of the ego vehicle and the goal position.

The mission agent’s action space is discretized into four predefined actions: brake, move
forward, turn right, and turn left. The agent receives a reward signal that combines penalties
for going off road, driving on the wrong side, and collisions, a large reward for reaching the
goal location, and another reward for the distance travelled.

3.2. 1st Place: tjudrllab-fanta (TF)

The model proposed by team TF follows a hierarchical structure as illustrated in Figure
3(a). Given the information from the SMARTS simulator, an upper-level module (the
Meta Controller) decides whether to pass the information to the lower-level module (the
Scheduler) to make further decisions. If the Scheduler is activated, it produces specific
driving decisions and returns them to SMARTS. Otherwise, an Emergency Break decision
is made.

The Meta Controller is in charge of deciding whether the mission agent should move
or remain static. This module consists of an offline learning agent, trained using rein-
forcement learning via supervised learning (RvS) Emmons et al. (2021), and a rule-based
collision detection module. The Scheduler maintains a policy repository with three policies
that control the agent’s speed, heading, and lane changes (see Figure 3(b)).3

Meta Controller. The Meta Controller uses a rule-based collision detection module to
detect vehicles that might cause incidents with the agent. This module is augmented with
an additional collision detector using an offline agent trained using RvS method.

The RvS method follows a Markov decision process (MDP) design. States are repre-
sented with information about the agent and its surroundings (e.g., an agent’s bounding

3. Additional information and implementation is available at https://github.com/superCat-star/

fanta-code
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box and speed), and the dynamics of the closest vehicles. Actions are either to move or
remain stationary. The goals are defined as waypoints and headings in the next 5 time
steps.

Training data is processed as follows: abnormal headings are corrected, data corre-
sponding to core tasks is selected, waypoints are simulated if missing, speed information is
discretized, and irrelevant vehicles (e.g. parked ones) are removed.

Scheduler. The Scheduler module executes the decision policy provided by the Meta
Controller using the following policies:

• The speed policy computes the speed as a product of a baseline speed (based on the
curvature of the lane where the agent is currently located) and speed attenuation
coefficient (based on traffic density near the agent).

• The moving direction policy maintains the agent in its current lane, unless a lane
change command is issued, in which case the agent sets the target lane to the adjacent
one in the appropriate direction.

• The merging policy estimates the expected speed for the current and adjacent lanes
using the speeds of vehicles within the certain range. To mitigate collision risk and
avoid speed loss due to lane changes, a penalty term is imposed for the expected speed
of two adjacent lanes.

3.3. 2nd Place: VCR

The model proposed by team VCR consists of two controllers: base and filtering. The base
controller generates future waypoints given the observations. A Bezier curve is fit to the
waypoints to generate a smooth path, from which the speed and the next goal position of
the agent vehicle are selected. The filter controller receives a local BEV image of the scene
together with the agent’s information. Based on this input, it determines the safety of the
proposed speed and classifies the action of the vehicle into one of the 6 categories: collision,
wrong way, on shoulder, off road, off route, and safe.4

Baseline Controller. Baseline controller relies on the waypoints provided in the obser-
vation space. Since not all waypoints lead to the final goal position, the following policy is
implemented to select the correct set of waypoints. First, the lane index of the final desti-
nation is determined and then the distance between the destination location and the last
waypoint of each path is calculated. Based on this information, lane index is selected for the
mission agent. To choose the next waypoint on the given lane, additional constraints are
imposed to prevent irregular behaviors, such as driving perpendicular to the lane caused by
selecting a waypoint too close to the vehicle or exceeding speed limit caused by waypoints
too far away.

Filtering Controller. Given the baseline policy action, the filtering controller selects n
samples from the line between the current mission vehicle’s position and the next. Then,
a pretrained neural network module is used to score the probability of collision or other
termination events caused by executing those actions in the next time step. Based on these
samples, the actions might be re-sampled again. This process is demonstrated in Figure 4.

4. The implementation of the method is available at https://github.com/yuant95/SMARTS_VCR
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Figure 4: Illustration of sampling in filtering controller proposed by team VCR.

(a) Overall architecture (b) Predictor module

Figure 5: An overview of the model by team AID.

Action classifier This module categorizes the actions into one of the six classes men-
tioned earlier using a multi-class classifier composed of a convolutional neural network
(CNN) and a multi-layer perceptron (MLP). The input to the CNN consists of a BEV im-
age of the scene centered at the mission vehicle and the mission vehicle’s current position.
The next 5 waypoints and the vehicle’s action (position and heading angle) are fed to the
corresponding networks. The outputs of the networks are combined and fed into another
MLP for the final classification.

3.4. 3rd Place: AID

The solution proposed by team AID is a hybrid model consisting of a Transformer-based
motion predictor and a sampling-based planner (see Figure 5). The former is responsible for
forecasting the future trajectories of social agents surrounding the mission vehicle, and the
latter is in charge of selecting the optimal trajectory considering the distance to the goal,
ride comfort, and safety. The prediction/planning horizon is set at 3 seconds, but only the
first five steps (0.5s) of the planned trajectory are executed.5

Motion Predictor. The motion predictor receives the information for the mission vehicle
and five surrounding vehicles as input and predicts the future trajectories of the neighbour-
ing vehicles. The state of an agent at a given time step consists of its x and y coordinates,
heading angle, and velocities along the x and y axes. The network employs factorised atten-
tion along the time and agent axes to exploit dependencies between the agents (see Figure

5. The implementation is available at https://github.com/MCZhi/Predictive-Decision
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5(b)). The last time step of the feature of each surrounding agent is selected to create an
ensemble of MLP heads to predict multi-modal trajectories and an MLP-based scorer to
predict the probability of each trajectory.

Planner. The planner first generates a set of candidate trajectories based on the the
mission vehicle’s current state, available routes, and target speed profiles. The trajectories
are first decoupled into longitudinal and lateral directions in the Frenét frame Werling et al.
(2010) to generate different speed profiles and trajectories. These are then combined and
transformed back to Cartesian space. Next, the planner obtains the prediction results from
the predictor and selects the most likely trajectory for each agent. To check whether the
trajectory leads to a collision, a cost function is used that takes into account distance to
the goal, longitudinal jerk, lateral acceleration, collisions, distance to other agents, and
time-to-collision. At the end, the planner outputs the optimal trajectory to the controller.
If all the candidate trajectories cause collisions with other agents, an emergency braking
command is outputted instead.

Training Process. An agent equipped with the predictor and planner manages the in-
teraction with the environment. An episodic buffer is used to store the trajectories of all
agents in the environment and load data into a replay buffer at the end of each episode. At
each training step, a batch of data is sampled from the replay buffer from different episodes
and time steps. The historical trajectories of the agents and their ground truth future tra-
jectories at each time step are obtained from the episodic memory. A vehicle is randomly
selected as the ego vehicle and its surrounding vehicles are determined to improve the gen-
eralisation ability of the predictor. The position and heading attributes of the input data
are normalised according to the state of the ego vehicle at the given time step. The training
loss is the sum of trajectory regression loss (smooth L1 loss) on the closest-to-ground-truth
trajectory and cross-entropy loss of the predicted scores. The closest-to-ground truth mode
is the target.

3.5. Discussion

All three winning methods discussed in the previous section were offline, however, each
had a unique design using a variety of techniques, from classical offline RL methods to
hybrid predictive-planning approaches. Since task completion was the primary criterion for
determining the winner, the methods were optimised to complete the tasks while sacrificing
performance on other metrics such as time and driving style. This was particularly apparent
in the performance of the top two solutions proposed by teams TF and VCR teams, which
often generated illegal behaviours and unnatural driving actions, such as sudden changes
in the heading angle, acceleration / deceleration, etc.. The AID model, on the other hand,
achieved comparable results on the task completion metric, while also performing very well
on other metrics. Specifically, it had similar or better completion time to the other models
and significantly better performance on the humanness metric (up to 92%) and rule violation
(up to 98%).

All things considered, the solution proposed by the AID team was more successful. Its
balanced performance can be partly attributed to the use of the planner module which
enforces conformity of the generated trajectories to naturalistic behaviors via a carefully
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designed cost function. Performance of the other two models demonstrated that purely
learning-based approaches are less efficient in extracting implicit information from the train-
ing data, especially when the number of constraining criteria is large.

In terms of the completion of different driving tasks, there were no specific patterns in
the performance of the methods, i.e., no link could be established between the nature of the
tasks and the success rate of a given method. There were, however, a number of exceptions.
As anticipated, the nonreactive naturalistic scenarios were the most challenging, and all
methods failed to complete approximately half of the given scenarios. Rear-end accidents
were the most common problems, as all methods were designed to behave conservatively.
In reactive scenarios, most errors occurred in multi-agent merging tasks where, in addition
to safe planning, the agents had to cooperate with other vehicles to accomplish the task.

4. Conclusions and Future Work

The driving SMARTS competition was designed to address the distribution shift problem
in the context of autonomous driving systems. We designed two tracks for the competition:
Track 1 (freestyle) allowed participants to apply any methods to solving real-world AD
challenges, and Track 2 (offline) tackled the question of the effectiveness of training on
naturalistic AD datasets. Four metrics were proposed for evaluating the performance of the
submissions, with a focus on task completion with other metrics serving as tie breakers.

A total of 53 international teams participated in the competition, of which three teams
won the top spots on both tracks. All three winning solutions had unique designs that
demonstrated different strengths and weaknesses on different scenarios and metrics. As such,
they highlight the need for diverse ML-based solutions for motion planning and advantages
and disadvantages of various techniques that will be useful for guiding future research.

Besides providing a testbed to engage researchers in tackling real-world AD challenges,
Driving SMARTS made a number of contributions to the ML community, including open-
source implementation of motion planning methods, a benchmark standard for evaluation
of AD methods, a dataset of diverse driving scenarios, and tools for experimenting with
different approaches using both naturalistic and synthetic data.

Future work Evaluation on a single metric, although it is a common approach in AD
benchmarking, is not sufficient to assess the performance of the model. In addition to
completing the task, the optimal algorithm should also generate behaviours that are rea-
sonable and comply with rules and safety. Therefore, in the future, we intend to use a
weighted combination of metrics that address different aspects of performance. Additional
metrics can also be introduced to address other aspects of planning, such as cooperation.
For example, even though the intention of the merging tasks in the competition was to
encourage methods to cooperate explicitly, in practise the proposed solutions were planning
individually and treating other agents as part of the regular traffic.

To engage a wider range of participants, such as novice machine learning practitioners,
we intend to add simpler driving scenarios, provide a lighter and easier to work with version
of the simulation platform, design tracks based on different level of task difficulty, and add
additional tools and training materials for using the platform.
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