
Proceedings of Machine Learning Research 222, 2023 ACML 2023

Adaptive Riemannian stochastic gradient descent and
reparameterization for Gaussian mixture model fitting

Chunlin Ji� chunlin.ji@kuang-chi.org
Kuang-Chi Institute of Advanced Technology, Shenzhen, China

Yuhao Fu yuhao.fu@kuang-chi.com

Kuang-Chi Institute of Advanced Technology, Shenzhen, China

Origin Artificial Intelligence Technology Co., Shenzhen, China

Ping He saber@ssr.fund

HeGuangLiangZi Tech., Shenzhen, China

Editors: Berrin Yanıkoğlu and Wray Buntine

Abstract

Recent advances in manifold optimization for the Gaussian mixture model (GMM) have
gained increasing interest. In this work, instead of directly addressing the manifold opti-
mization on covariance matrices of GMM, we consider the GMM fitting as an optimization
of the density function over a statistical manifold and seek the natural gradient to speed
up the optimization process. We present an upper bound for the Kullback–Leibler (KL)
divergence between two GMMs and obtain simple closed-form expressions for the natural
gradients. With the natural gradients, we then apply the Riemannian stochastic gradient
descent (RSGD) algorithm to optimize covariance matrices on a symmetric and positive
definite (SPD) matrix manifold. We further propose a Riemannian Adam (RAdam) algo-
rithm that extends the momentum method and adaptive learning in the Euclidean space
to the SPD manifold space. Extensive simulations show that the proposed algorithms scale
well to high-dimensional large-scale datasets and outperform expectation maximization
(EM) algorithms in fitted log-likelihood.

Keywords: Gaussian mixture model; Reparameterization; Symmetric positive definite
matrix manifold; Riemannian stochastic gradient descent; Riemannian Adam algorithm

1. Introduction

Gaussian mixture model, also called a multivariate normal mixture, is a powerful statistical
tool that could be used to approximate any density defined on Rd with a large enough num-
ber of mixture components. GMM is widely used as a flexible model with various successful
applications in speech recognition (Povey et al., 2010), image representation (Beecks et al.,
2011) and time series classification (Campbell et al., 2006) among many others.

GMM fitting is commonly solved by the expectation maximization (EM) algorithm
(Dempster et al., 1997). However, EM suffers from the local optimal of the likelihood
function (Jin et al., 2016) and has its speed limits for highly overlapping clusters (Xu
and Jordan, 1996). Recently, alternative approaches have tried to address the GMM fitting
from a nonlinear optimization perspective and solving it by the manifold optimization Absil

© 2023 C. Ji, Y. Fu & P. He.

Ji Fu He

et al. (2009). Although several manifold optimization approaches, such as Riemannian
LBFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) (Hosseini and Sra, 2015;
Godaz et al., 2021) and Riemannian Newton trust region (Sembach et al., 2022) have been
proposed and show promising results, stochastic gradient descent (SGD) type algorithms
have not been thoroughly studied.

In this work, we explore the Riemannian SGD-type algorithm for GMM fitting. We fol-
low the reparameterization strategy for Gaussian mixtures introduced in Hosseini and Sra
(2015), which alleviates the dependence when iteratively estimating the mean and covari-
ance of a GMM and allows us to focus only on estimating the covariance matrices. Instead
of directly addressing the manifold optimization on covariance matrices, we consider the
GMM fitting as an optimization of the probability density function defined over a statisti-
cal manifold and seek the natural gradient, a second-order optimization method (Lin et al.,
2019; Martens, 2020), to speed up the optimization process. We present an upper bound for
the KL divergence between two GMMs and obtain simple closed-form expressions for the
natural gradients. Given the natural gradients, we apply the Riemannian stochastic gradi-
ent descent (RSGD) algorithm to optimize the covariance matrices while preserving their
positive definiteness constraint. Furthermore, we propose a Riemannian Adam (RAdam)
algorithm, which employs past gradients to compute a local distance measure on the SPD
matrix manifold and subsequently rescales the learning rate to gain faster convergence.
Experimental studies show that both the proposed RSGD and RAdam methods scale well
to large-scale high-dimensional datasets. The RAdam algorithm generally obtains a better
log-likelihood than the RSGD and is more robust to the learning step size. Compared to
EM, we find that the RSGD and RAdam gain significantly better log-likelihood for most
datasets, including several challenging scenarios for GMM fitting.

2. Related Works

Using gradient-based optimization to learn the parameter of a statistical model has become
a popular approach for model inference. Unlike a simple vector in Euclidean space, the
parameter of a statistical model may have an intrinsic structure. Observing the specialty
of the Riemannian manifold structure on a statistical model, we can take advantage of the
natural gradient descent method (Amari, 1997), a second-order optimization method, to
improve convergence. It has recently gained increasing interest from various areas such as
variational inference (Lin et al., 2019) and reinforcement learning (Schulman et al., 2015).
In case the statistical model is an exponential family distribution, the derivation of natural
gradient is effective, as the required Fisher Information Matrix (FIM) has a simple explicit
form. However, for a mixture distribution, such as a GMM, the computation of FIM
becomes challenging. Recently, Lin et al. (2019) used a minimal conditional exponential
family representation for the mixtures and obtained a natural gradient update. In this work,
we propose a simple alternative to obtain the natural gradient by using an upper bound of
the KL divergence instead of directly computing the FIM from the KL divergence.

When optimizing the parameters of a statistical model, we always need to consider
the constraint on these parameters, for example, guaranteeing that the covariance matrix is
SPD. To this end, manifold optimization (Absil et al., 2009) is an elegant way to fit this goal
by processing the model parameter in a manifold space (Hosseini and Sra, 2015; Kasai et al.,

Adaptive SGD and reparameterization for GMM fitting

2019; Tran et al., 2021). Hosseini and Sra (2015) introduce a reparameterization strategy
for the Gaussian distribution, resulting in a simple model where we only need to optimize
the mixture weights and the augmented covariance matrix. They propose a Riemannian
LBFGS (RLBFGS) to optimize the covariance matrix on the SPD manifold. However,
the RLBFGS is relatively complex for implementation and requires heavy computation to
calculate Hessian matrices. In a following-up work, Godaz et al. (2021) proposes a vector
transport free Riemannian LBFGS, for matrix manifold optimization, which simplifies the
computation but the performance is similar to that of the previous manifold LBFGS. In
addition, Tran et al. (2021) use manifold optimization for the covariance of the Gaussian
distribution in a variational inference setting; however, they do not mention their method
for GMM fitting. In a closely related work, Lin et al. (2020) uses a retraction on the SPD
matrix manifold to update the covariance matrices to handle the positive constraint. In this
work, we leverage advantages of the Riemannian SGD algorithm (Bonnabel, 2013), which
is a generalization of the (Euclidean) SGD algorithm to Riemannian manifolds. Moreover,
we develop an Adam-style algorithm, which significantly improves the convergence rate.

3. Proposed Methods

3.1. Problem setup

Let x ∈ Rd denote the variable whose distribution, denoted as π(x), is the target we
want to infer, and generally a set of i.i.d. samples {x1, ..., xn} are given. Our goal in
this paper is to approximate the target distribution π(x) with a Gaussian Mixture Model
(GMM), whose probability density is q(x) =

∑K
k=1wkN (·;µk,Σk), where

∑K
k=1wi = 1

and N (x;µ,Σ) is a (multivariate) Gaussian with mean µ ∈ Rd and covariance Σ ≻ 0,
where · ≻ 0 denote positive definite. Given the samples {x1, ..., xn}, we want to estimate
the parameter {wk, µk,Σk}Kk=1. Generally, we use the the marginal log-likelihood as the
optimization criterion for model fitting,

L({wk, µk,Σk}Kk=1) =
1

n

n∑
i=1

log

K∑
k=1

wkN (xi;µk,ΣK). (1)

3.2. Reparameterization

EM and many of its variants directly optimize the parameter µ and Σ respectively; however,
the estimation of Σ depends on the estimation of µ, particularly when using a batch data
for training µ, the variance of estimated µ becomes larger and therefore causes negative
effects on the estimation of Σ. Following the previous work (Hosseini and Sra, 2015), we
reparameterize the GMM, which leads to a way to optimize µ and Σ simultaneously.

Taking a single Gaussian as an example, we augment the sample vectors xi by an extra
dimension and consider yi = [xTi , 1]

T ; correspondingly, we can transform the marginal log-
likelihood of a single Gaussian estimation, L(µ,Σ) := 1

n

∑n
i=1 logN (xi;µ,Σ) into L(S) =

1
n

∑n
i=1 log qN (yi;S), where qN (yi;S) := 2π exp(12)N (yi;S), S is the augmented covariance

matrix. Hosseini and Sra (2015) has been proved that if µ∗ , Σ∗ maximize L(µ,Σ), and if

S∗ maximizes L(S), then L(S∗) = L(µ∗,Σ∗) for S∗ =

(
Σ∗ + µ∗µ∗T µ∗

µ∗ 1

)
.

Ji Fu He

Similarly, we can reparameterize the GMM model, and transform Eq.(1) into

L({wj , Sj}Kj=1) =
1

n

n∑
i=1

log

 K∑
j=1

wjqN (yi;Sj)

 . (2)

The local maximum of the reparameterized GMM log-likelihood (Eq.(2)) is also a local
maximum of the original log-likelihood (Eq.(1)).

Given the function L(·), we expect to optimize the model parameter ϕ := {wj , Sj}Kj=1

with the SGD type algorithm. Supposing the batch data {yi}Ns
i=1 is given, we can derive the

gradient of L with respect to wk and Sk respectively as follows (detailed in the Appendix),

∇wk
L =

1

Ns

Ns∑
i=1

qN (yi;Sk)

qϕ(yi)
− 1, (3)

∇Sk
L =

1

Ns

Ns∑
i=1

wkqN (yi;Sk)

qϕ(yi)

1

2

(
S−1yiy

⊤
i S

−1 − S−1
)
, (4)

where we denote qϕ(·) =
∑K

j=1wjqN (·;Sj) for simplicity.

3.3. Natural Gradient Descent

When we optimize the parameter ϕ of a distribution qϕ, we expect small distances between
the statistical manifold of qϕ and qϕ′ rather than small naive Euclidean distances between
ϕ and ϕ′. The purpose of natural gradient descent is to take advantage of the information
geometry of qϕ to accelerate convergence. To optimize over a manifold, we need to modify
our Euclidean gradients using an appropriate local scaling, also known as a Riemannian
metric (Amari, 1997). A common Riemannian metric for statistical manifolds is the Fisher
Information Matrix (FIM), which is defined as Fϕ = Eqϕ(·)[∇ϕ log qϕ(·)(∇ϕ log qϕ(·))T]. Cor-
respondingly, the natural gradient can be obtained by ∇nat

ϕ L = F−1
ϕ ∇ϕL (detailed in the

Appendix). The natural gradient ∇nat
ϕ L corresponds to the direction of the steepest ascent

along the statistical manifold qϕ(·). The preconditioning of the gradients F−1
ϕ leads to a

proper local scaling of the gradient in each dimension and takes into account the dependen-
cies between variables. This always leads to faster convergence in optimizing qϕ.

When qϕ is a single Gaussian, the Fisher information matrix for the multivariate Gaus-

sian distribution N(µ,Σ) is Fϕ =

(
Σ−1 0
0 IF (Σ)

)
where IF (Σ) ≈ Σ−1 ⊗ Σ−1, with ⊗ de-

noting the Kronecker product. Therefore, F−1
ϕ ≈

(
Σ 0
0 Σ⊗ Σ

)
, which gives a convenient

form for obtaining an approximate natural gradient. For the reparameterized Gaussian
qN (yi;S) := 2π exp(12)N (yi;S), the natural gradient of qN (yi;S) w.r.t S becomes,

∇nat
S L = vec−1

(
(S ⊗ S)∇vec(S)L

)
= 2S (∇SL)S (5)

= 2S

(
1

Ns

Ns∑
i=1

1

2

(
S−1yiy

⊤
i S

−1 − S−1
))

S =
1

Ns

Ns∑
i=1

(
yiy

⊤
i − S

)
, (6)

where vec(X) denotes the vector obtained by stacking the columns of X below one another;
vec−1(X) denotes the inverse processes of vec(X) that vec−1(vec(X)) = X.

Adaptive SGD and reparameterization for GMM fitting

3.4. Gaussian Mixture updates

In this work, qϕ is a mixture of multivariate normal distribution. Unfortunately, it is not
easy to find a simple closed-form expression for FIM in this case. Here, instead of using the
KL divergence directly, we seek some bounds for approximation. We utilize an upper bound
of the KL divergence between the two Gaussian mixture densities, qϕ =

∑K
k=1wkqN (·;Sk)

and qϕ′ =
∑K

k=1w
′
kqN (·;S′

k) which is given as follows (Hershey and Olsen, 2007),

KL[qϕ||qϕ′] ≤
K∑
k=1

wkKL[qN (·;Sk)||qN (·;S′
k)] +KL[w||w′], (7)

where w = [w1, ..., wK]T and KL[w||w′] =
∑K

k=1wk log(wk/w
′
k). Here, we use the upper

bound, KL[w||w′]+
∑K

k=1wkKL[qN (·;Sk)||qN (·;S′
k)], as the regularization term instead of

KL[qϕ||qϕ′], that we keep this upper bound as a constant in deriving the natural gradients.
As shown in the last section, the KL divergence between the two single multivariate

normal distributions has led to a closed-form solution for natural gradients. The upper
bound with a mixture of KL divergence between individual qN (·;Sk) and qN (·;S′

k) (for
k = 1, ...,K) can also lead to a closed-form solution for the natural gradient (refer to the
Appendix for detailed derivation). The resulting natural gradients for all the parameters
{wk, Sk}Kk=1 in the reparameterized GMM are

∇nat
wk
L = wk∇wk

L =
1

Ns

Ns∑
i=1

wkqN (yi;Sk)

qϕ(yi)
− wk, (8)

∇nat
Sk
L =

1

wk
2Sk (∇Sk

L)Sk =
1

wkNs

Ns∑
i=1

wkqN (yi;Sk)

qϕ(yi)

(
yiy

⊤
i − Sk

)
. (9)

3.5. Riemannian stochastic gradient descent

To update a covariance matrix S with gradients, we need to ensure that the resulting matrix
is SPD. Riemannian SGD-style algorithms (Bonnabel, 2013) have been widely applied for
optimization on various manifolds, including the SPD matrix manifold. To begin with such
an algorithm, we briefly introduce some concepts of Riemannian geometry and optimiza-
tion. The key Riemannian operation for the SPD matrix manifold is also provided in the
Appendix. We refer interested readers to Absil et al. (2009) for more details.

Riemannian manifold. A Riemannian manifold (M, ρ) is a smooth manifold M
equipped with a Riemannian metric ρ defined as the inner product on the tangent space
ΓSM for each point S, ρS(·, ·) : ΓSM× ΓSM → R. The tangent space ΓSM is the first
order approximation of M around a point S ∈ M. The tangent space ΓSM contains
all tangent vectors to M at S. In this work, we study the manifold M of SPD matrices
M = {S ∈ Mat(d+ 1, d+ 1) : S = ST , S ≻ 0}, with ρS(ξ, η) = tr(S−1ξS−1η).

Exponential map and Retraction. Exponential maps are mappings that, given a
point S on a manifold M and a tangent vector ξS ∈ ΓSM at S, generalize the concept
S + ξS in Euclidean spaces. ExpS(ξS) is a point on the manifold that can be reached by
leaving from and moving in the direction ξS while remaining on the manifold. As computing

Ji Fu He

an exponential map is usually expensive, a retraction map is often used as an efficient
alternative. The SPD matrix manifold has a simple closed-form formula for retraction,

RS(αξS) = S + αξS +
α2

2
ξSS

−1ξS , ξS ∈ ΓSM. (10)

Parallel transport and vector transport. Parallel transport is a method to translate
tangent vectors from one tangent space to another, while still preserving the length and angle
of the original tangent vectors. Vector transport is a computationally efficient alternative
to parallel transport. Let ΓSt→St+1(ξSt) denote the vector transport of the tangent vector
ξSt ∈ ΓStM to the tangent space ΓSt+1M. For the SPD matrix manifold, the vector
transportation also takes a simple closed-form formula,

ΓSt→St+1(ξSt) = EξStE
T , E = (St+1S

−1
t)1/2. (11)

3.6. The proposed algorithms

The RSGD extends the traditional SGD gradient update in the Euclidean space to the
Riemannian space by (Bonnabel, 2013)

St+1 = RSt(−αtPS(∇StL)), (12)

where αt > 0 is a (decaying) step size. The orthogonal projection PS(∇StL) trans-
forms the gradient ∇StL, the Euclidean gradient with respect to St calculated at time
t, into the tangent space ΓSM. For the SPD matrix manifold, the orthogonal projec-

tion PS(∇StL) = 1
2S
(
∇StL+ [∇StL]

T
)
S is coincident with the natural gradient ∇nat

S L in

Eq.(9). In addition, the retraction RS(·) is given in Eq.(10). The detailed RSGD algorithm
for GMM fitting is provided in the Appendix.

As one of the most successful variants of SGD, the Adam algorithm (Kingma and Ba,
2014) update rule for a scaler variable x is given by xt+1 ← xt − αmt/

√
vt, where gt is the

gradient, mt = β1mt−1+(1− β1) gt is a momentum term and vt = β2vt−1+(1− β2) (gt)
2 is

an adaptivity term. Similarly to the Adam in Euclidean space, we propose the Riemannian
Adam (RAdam) for the optimization of the SPD matrix manifold. Extending the momen-
tum term in Euclidean space to a manifold space requires the vector transportation defined
in Eq.(11). The term (gt)

2 in the Euclidean space is extended to the square of the Frobenius
norm of a SPD matrix ||S||2F = tr(STS). In addition, the natural gradients in Eqs.(8-9)
(the gradient on the tangent space ΓSM) and retraction update Eq.(10) are also required.
Specifically, the RAdam algorithm is shown in Algorithm 1.

The learning rate (or step size) αt is another important hyperparameter in manifold
optimization. Unlike using the Armijo or Wolfe condition to find the best step size in
traditional manifold optimization (Hosseini and Sra, 2015), the SGD/Adam method allows
us to choose a predefined learning rate, such as a small constant. In our problem setting,
we find that a sequence of decreasing learning rates is easier to obtain a faster convergence
than a constant one. Here, we provide some reduction strategies, such as g1(t; a0, t0) =
a0/
√
(t+ t0), g2(t; a0, t0) = a0/(t+ t0), g3(t; a0, γ) = a0γ

t, where t0 is a predefined constant
and 0 < γ < 1.

Given the optimized S∗, following Hosseini and Sra (2015), we can translate S∗ back
to µ∗ and Σ∗ by µ∗ = S∗[1 : d, d + 1], Σ∗ = S∗[1 : d, 1 : d] − S∗[1 : d, d + 1] ∗ S∗[d + 1, 1 :
d]/S∗[d+ 1, d+ 1]

Adaptive SGD and reparameterization for GMM fitting

Algorithm 1: RAdam algorithm for GMM fitting

Input: learning rate αw, a0, t0, momentum coefficients β1, β2, ϵ = 1e−6.
Output: estimate {wk, Sk}Kk=1 or {wk, µk,Σk}Kk=1.

Initialize GMM parameter {wk,0, Sk,0}Kk=1, ensure
∑K

k=1 wk,0 = 1, Sk,0 ≻ 0.
Initialize natural gradients ξSk,0

= ∇nat
Sk,0
L and the momentum, Mk,0 = ξSk,0

, vk,0 = ||ξSk,0
||2F .

for t = 0 to T do
for k = 0 to K do

w−
k,t+1 ← wk,t + αw∇nat

wk,t
L ▷ update the weights

end

wt+1 ← w−
t+1/

∑
k(w

−
k,t+1) ▷ normalize the weights

αS,t ← g(t; a0, t0) ▷ update the learning rate
for k = 0 to K do

ξSk,t
← ∇nat

Sk,t
L ▷ obtain the gradient on the tangent space

M−
k,t ← ΓSk,t−1→Sk,t

(Mk,t) ▷ vector transport

Mk,t+1 ← β1M
−
k,t + (1− β1)ξSk,t

▷ update biased first moment estimate

vk,t+1 ← β2vk,t + (1− β2)||ξSk,t
||2F ▷ update biased second raw moment estimate

M̂k,t+1 ←Mk,t+1/(1− βt
1) ▷ biased-corrected first moment estimate

v̂k,t+1 ← vk,t+1/(1− βt
2) ▷ biased-corrected second raw moment estimate

Sk,t+1 ← RSk,t
(αS,tM̂k,t+1/(

√
v̂k,t+1 + ϵ)) ▷ retraction update

end

end

4. Simulation study

The simulated data is generated from a ground true GMM model,
∑K

k=1wkN (·;µk,Σk),
where the dimension of data d, the number of components K, mean µk and covariance Σk

are set according to the simulation study and we fix wk = 1/K. In the following experiments,
we simulated 4096 data points from this ground true GMM when the dimension d ≤ 100,
while 8192 data points for larger dimension cases.

It is well known that the performance of EM depends on the degree of separation of
the mixture components (Xu and Jordan, 1996; Ma et al., 2000). To assess the impact of
separation, we generate data of different degrees of separation with the following strategy
(Verbeek et al., 2003): the distributions are sampled so that their means satisfy the inequal-
ity: ||µi − µj || ≥ cmaxi,j{tr(Σi) − tr(Σj)}, ∀i ̸=j , where c models the degree of separation.
We evaluate three levels of separation c = 0.2 (low), c = 1 (medium), and c = 5 (high).

The proposed algorithms are implemented with the Pytorch package (Paszke et al.,
2017). The default decreasing learning rate strategy for covariance matrice is g1(·; 0.5, 10),
while the learning rate for weights is fixed as 10−2. For the momentum coefficients in
RAdam algorithm, the default values are β1 = 1e−3 and β2 = 0.9. The default batch size is
512 for data with dimension (d ≤ 100) and 2048 for larger dimensions (d = 200, 300). An ad-
ditional study on the selection of hyperparameters, including the learning rate, momentum
coefficients, and batch size, can be found in the Appendix. In all experiments, we initialize
the mixture parameters using both k-means and random initialization. We start all the
methods by using the same initialization for a fair comparison. We terminate all methods
with the same criteria: they stop either when the difference of average log-likelihood falls

Ji Fu He

below 10−6, or when the number of epochs exceeds 50. We use the average log-likelihood
as the metric for performance evaluation. For all experiments, we run the algorithms 10
times and report the mean and standard deviation of the average log-likelihood.

We first demonstrate the convergence of the proposed RSGD and RAdam compared with
EM and stochastic EM. To compare the efficiency of reparameterization, we also implement
the RSGD and RAdam algorithms for optimizing covariance matrices of a GMM without
parameterization, denoted by ‘RSGD w.o. Rep’ and ‘RAdam w.o. Rep’). Notice that to
optimize the mean of this GMM, we use traditional SGD in Euclidean space. We take both
low- and medium-level separation datasets of 50 dimensions as examples and report the log-
likelihood with respect to epochs. As predicted by theory (Xu and Jordan, 1996; Ma et al.,
2000), the EM converges slowly in the case of a low level of separation. As shown in Figure 1,
the RSGD/RAdam with reparameterized GMM is superior to the RSGD/RAdam without
reparameterization for both a better convergence rate and a higher final log-likelihood,
which confirms the effectiveness of the reparameterization strategy. Compared to RSGD,
RAdam has a favorable convergence rate, although in random initialization cases (Figure
1(b)subfigure and 1(d)subfigure), it takes some time to adjust the gradients to get better
convergence. Moreover, the Radam algorithm always obtains a higher final log-likelihood
value than the RSGD.

(a) initialized with k-means (b) initialized randomly

(c) initialized with k-means (d) initialized randomly

Figure 1: Comparison of convergence rate GMM fitting on a 50-dimensional dataset: (a),(b)
low level of separation; (c) (d) medium level of separation.

We further evaluate the proposed method under different levels of separation (low,
medium, high) and different dimensions d = [5, 10, 40, 50, 100, 200, 300], with the number
of components K = 10. Table 2 shows the average log-likelihood obtained by the RAdam,
RSGD, and EM algorithms with both random and k-means initialization. For k-means
initialization, the RAdam significantly outperforms EM when the level of separation is low

Adaptive SGD and reparameterization for GMM fitting

and medium, which is known to be challenging for EM. RSGD is inferior to RAdam in these
two cases but still superior to EM. When the level of separation is high, which is known as
an easy case for GMM fitting, the RAdam/RSGD obtains similar results with EM. For ran-
dom initialization, both RAdam and RSGD outperform EM at all levels of separation. Due
to the intrinsic stochastic optimization property, both RAdam and RSGD are less sensitive
to local optima and more robust against random initialization. Moreover, this experiment
confirms that our proposed methods are scalable to high-dimensional problems.

We here provide additional experiments to compare the computation complexity, the
computation time, and the final obtained averaged log-likelihood (ALL). The algorithms
for comparison are EM, RCG: Riemannian conjugate gradient (Hosseini and Sra, 2015),
RLBFGS: Riemannian LBFGS (Hosseini and Sra, 2015), VTF-RLBFGS: Vector Transport
Free Riemannian LBFGS (Godaz et al., 2021), our proposed RSGD and RAdam. As shown
in Table 1, the proposed methods RSGD and RAdam both have favorable performance in
computation time compared with RCG and VTF-RLBFGS. Meanwhile, our methods tend
to obtain superior ALL for low and mid separation cases.

EM RCG RLBFGS VTF-RLBFGS RSGD RAdam

Low

Epoches 78 122 125 113 95 89
Time(s) 10.186 23.595 105.586 39.660 39.880 61.390
Time(s)/Epoch 0.131 0.193 0.845 0.351 0.420 0.690
ALL -17.568 -17.696 -17.639 -17.668 -17.175 -17.012

Mid

Epoches 32 61 123 43 45 49
Time(s) 7.814 21.588 101.586 19.519 19.230 41.223
Time(s)/Epoch 0.244 0.354 0.826 0.454 0.427 0.841
ALL -19.299 -19.219 -19.218 -19.217 -19.218 -19.197

High

Epoches 11 26 56 31 49 61
Time(s) 2.797 20.875 80.611 30.211 23.340 42.730
Time(s)/Epoch 0.254 0.803 1.439 0.975 0.476 0.700
ALL -14.511 -14.511 -14.511 -14.511 -14.512 -14.511

Table 1: Speed and log-likelihood comparisons for dimensions d = 50, number of compo-
nents K = 10 and N = 4096 observations; results are reported on average of 10 run.

5. Conclusion

This work addresses the Riemannian SGD type algorithm for GMM fitting. The reparam-
eterization strategy enables us to focus on the optimization of covariance matrices. We
obtain the natural gradient updates by treating the reparameterized GMM on a statisti-
cal manifold. We propose the RAdam and RSGD algorithms, which allow us to optimize
the augmented covariance matrices on a SPD matrix manifold. Extensive simulations are
provided to verify that the RAdam and RSGD scale well to high-dimensional datasets and
outperform the EM algorithm, particularly for difficult scenarios of GMM fitting.

Ji Fu He

T
ab

le
2:

C
om

p
ar
is
on

of
av
er
ag

e
lo
g-
li
ke
li
h
o
o
d
fo
r
d
at
as
et
s
w
it
h
d
iff
er
en
t
le
v
el
s
of

se
p
ar
at
io
n
an

d
d
im

en
si
o
n
s.

S
ep

a
ra
ti
o
n

M
et
h
o
d

d
=

5
d
=

1
0

d
=

4
0

d
=

5
0

d
=

1
0
0

d
=

2
0
0

d
=

3
0
0

H
ig
h

E
M
(r
a
n
d
o
m
)

-4
.0
1
±
0
.0
4

-5
.3
2
±
0
.0
8

-1
4
.2
6
±
0
.2
3

-1
6
.9
3
±
0
.0
9

-2
9
.7
6
±
1
.2
9

-4
9
.6
1
±
0
.0
2

-4
9
.8
7
±
0
.0
2

E
M
(k
m
ea
n
s)

-3
.6
5
±
0
.0
2

-5
.0
9
±
0
.0
6

-1
2
.2
7
±
0
.0
0

-1
4
.5
1
±
0
.0
0

-1
1
.4
0
±
0
.0
0

-1
8
.1
5
±
0
.0
0

-9
.7
2
±
0
.0
0

R
S
G
D
(r
a
n
d
o
m
)

-3
.8
4
±
0
.0
9

-5
.4
8
±
0
.1
3

-1
3
.0
8
±
0
.1
1

-1
5
.5
4
±
0
.0
9

-1
3
.4
8
±
0
.7
5

-2
7
.6
8
±
0
.6
1

-2
4
.5
0
±
4
.3
9

R
S
G
D
(k
m
ea
n
s)

-3
.6
3
±
0
.0
0

-5
.0
3
±
0
.0
0

-1
2
.2
8
±
0
.0
0

-1
4
.5
9
±
0
.0
0

-1
1
.4
1
±
0
.0
0

-1
8
.1
5
±
0
.0
0

-9
.7
3
±
0
.0
0

R
A
d
a
m
(r
a
n
d
o
m
)

-3
.9
4
±
0
.1
1

-5
.4
1
±
0
.1
1

-1
2
.7
3
±
0
.0
9

-1
5
.3
7
±
0
.0
6

-1
6
.0
5
±
0
.1
2

-2
7
.1
0
±
1
.7
5

-2
4
.5
5
±
1
.1
9

R
A
d
a
m
(k
m
ea
n
s)

-3
.6
3
±
0
.0
0

-5
.0
3
±
0
.0
0

-1
2
.2
7
±
0
.0
0

-1
4
.5
1
±
0
.0
0

-1
1
.4
0
±
0
.0
0

-1
8
.1

6
±
0
.0
1

-9
.7
7
±
0
.0
1

M
ed

iu
m

E
M
(r
a
n
d
o
m
)

-3
.3
4
±
0
.0
0

-6
.5
2
±
0
.0
0

-1
6
.7
9
±
0
.0
3

-2
0
.1
6
±
0
.0
7

-2
2
.6
5
±
0
.0
7

-4
0
.8
3
±
0
.0
1

-4
5
.2
8
±
0
.0
4

E
M
(k
m
ea
n
s)

-3
.2
3
±
0
.0
0

-6
.0
7
±
0
.0
0

-1
6
.3
0
±
0
.0
3

-1
9
.3
3
±
0
.0
4

-1
5
.8
0
±
0
.0
6

-2
7
.4
6
±
0
.1
4

-2
4
.0
5
±
0
.1
0

R
S
G
D
(r
a
n
d
o
m
)

-3
.2
3
±
0
.0
0

-6
.0
8
±
0
.0
1

-1
6
.4
5
±
0
.0
5

-1
9
.4
8
±
0
.0
4

-1
7
.7
6
±
0
.7
9

-3
3
.3
1
±
0
.7
4

-3
8
.7
6
±
2
.2
3

R
S
G
D
(k
m
ea
n
s)

-3
.2
3
±
0
.0
0

-6
.0
7
±
0
.0
0

-1
6
.2
6
±
0
.0
1

-1
9
.2
3
±
0
.0
2

-1
5
.7
3
±
0
.0
0

-2
7
.1
0
±
0
.0
2

-2
3
.8
5
±
0
.0
0

R
A
d
a
m
(r
a
n
d
o
m
)

-3
.2
3
±
0
.0
0

-6
.0
8
±
0
.0
0

-1
6
.1
7
±
0
.0
4

-1
9
.4
0
±
0
.0
8

-1
6
.0
0
±
0
.1
5

-3
2
.2
8
±
0
.3
3

-2
9
.5
2
±
1
.5
1

R
A
d
a
m
(k
m
ea
n
s)

-3
.2
2
±
0
.0
0

-6
.0
7
±
0
.0
0

-1
6
.2
4
±
0
.0
0

-1
9
.2
0
±
0
.0
0

-1
5
.7
1
±
0
.0
0

-2
7
.0
5
±
0
.0
0

-2
3
.7
8
±
0
.0
1

L
ow

E
M
(r
a
n
d
o
m
)

-2
.5
2
±
0
.0
0

-4
.9
5
±
0
.0
0

-1
4
.5
1
±
0
.0
0

-1
7
.3
7
±
0
.0
1

-1
6
.4
7
±
0
.0
5

-3
2
.9
0
±
0
.0
2

-3
6
.2
5
±
0
.0
3

E
M
(k
m
ea
n
s)

-2
.4
9
±
0
.0
0

-4
.8
2
±
0
.0
0

-1
4
.6
4
±
0
.0
1

-1
7
.5
7
±
0
.0
1

-1
5
.9
3
±
0
.0
3

-2
7
.5
2
±
0
.0
6

-2
3
.8
4
±
0
.1
6

R
S
G
D
(r
a
n
d
o
m
)

-2
.4
9
±
0
.0
0

-4
.8
0
±
0
.0
1

-1
4
.3
7
±
0
.0
6

-1
7
.2
5
±
0
.1
3

-1
5
.9
3
±
0
.7
9

-3
0
.8
9
±
0
.6
7

-3
3
.8
3
±
0
.9
9

R
S
G
D
(k
m
ea
n
s)

-2
.4
9
±
0
.0
0

-4
.8
0
±
0
.0
0

-1
4
.3
6
±
0
.0
0

-1
7
.1
8
±
0
.0
1

-1
5
.1
3
±
0
.1
0

-2
7
.0
4
±
0
.0
8

-2
3
.9
0
±
0
.0
0

R
A
d
a
m
(r
a
n
d
o
m
)

-2
.4
9
±
0
.0
0

-4
.8
0
±
0
.0
0

-1
4
.3
3
±
0
.0
4

-1
7
.0
6
±
0
.0
9

-1
4
.5
9
±
0
.2
5

-3
0
.0
1
±
0
.6
3

-3
3
.4
1
±
0
.9
9

R
A
d
a
m
(k
m
ea
n
s)

-2
.4
8
±
0
.0
0

-4
.7
9
±
0
.0
0

-1
4
.2
6
±
0
.0
0

-1
7
.0
2
±
0
.0
1

-1
3
.9
1
±
0
.0
4

-2
7
.0
4
±
0
.0
2

-2
3
.8
0
±
0
.0
0

Adaptive SGD and reparameterization for GMM fitting

Acknowledgments

This work was supported by National Key R&D Program of China No. 2021YFB3802103.

References

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix
manifolds. Princeton University Press, 2009.

Shun-ichi Amari. Neural learning in structured parameter spaces-natural riemannian gra-
dient. Advances in neural information processing systems, pages 127–133, 1997.

Christian Beecks, Anca Maria Ivanescu, Steffen Kirchhoff, and Thomas Seidl. Modeling
image similarity by Gaussian mixture models and the signature quadratic form distance.
In ICCV, pages 1754–1761. IEEE, 2011.

Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions
on Automatic Control, 58(9):2217–2229, 2013.

William M Campbell, Douglas E Sturim, and Douglas A Reynolds. Support vector machines
using GMM supervectors for speaker verification. IEEE signal processing letters, 13(5):
308–311, 2006.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the
EM - algorithm plus discussions on the paper. Journal of the royal statistical society.
Series B (methodological), page 1–38, 1997.

Reza Godaz, Benyamin Ghojogh, Reshad Hosseini, Reza Monsefi, Fakhri Karray, and Mark
Crowley. Vector transport free Riemannian LBFGS for optimization on symmetric posi-
tive definite matrix manifolds. In ACML, pages 1–16. PMLR, 2021.

J. Hershey and P. Olsen. Approximating the Kullback Leibler divergence between Gaussian
mixture models. ICASSP, 4:IV–317–IV–320, 2007.

Reshad Hosseini and Suvrit Sra. Matrix manifold optimization for gaussian mixtures. Ad-
vances in Neural Information Processing Systems, 28, 2015.

Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, M. Wainwright, and Michael I. Jordan.
Local maxima in the likelihood of Gaussian mixture models: Structural results and algo-
rithmic consequences. In NIPS, 2016.

Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic
gradient algorithms on matrix manifolds. In ICML, pages 3262–3271. PMLR, 2019.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint, arXiv:1412.698, 2014.

Wu Lin, Mohammad Emtiyaz Khan, and Mark Schmidt. Fast and simple natural-gradient
variational inference with mixture of exponential-family approximations. In ICML, pages
3992–4002. PMLR, 2019.

Ji Fu He

Wu Lin, Mark Schmidt, and Mohammad Emtiyaz Khan. Handling the positive-definite
constraint in the Bayesian learning rule. In ICML, pages 6116–6126. PMLR, 2020.

Jinwen Ma, Lei Xu, and Michael I Jordan. Asymptotic convergence rate of the em algorithm
for gaussian mixtures. Neural Computation, 12(12):2881–2907, 2000.

James Martens. New insights and perspectives on the natural gradient method. The Journal
of Machine Learning Research, 21(1):5776–5851, 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
Devito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017.

Daniel Povey, Lukśš Burget, Mohit Agarwal, Pinar Akyazi, Kai Feng, Arnab Ghoshal,
Ondřej Glembek, Nagendra Kumar Goel, Martin Karafiát, Ariya Rastrow, et al. Subspace
Gaussian mixture models for speech recognition. In ICASSP, pages 4330–4333, 2010.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In ICML, pages 1889–1897. PMLR, 2015.

Lena Sembach, Jan Pablo Burgard, and Volker Schulz. A Riemannian newton trust-region
method for fitting gaussian mixture models. Statistics and Computing, 32(1):8, 2022.

Minh-Ngoc Tran, Dang H Nguyen, and Duy Nguyen. Variational bayes on manifolds.
Statistics and Computing, 31(6):1–17, 2021.

Jakob J Verbeek, Nikos Vlassis, and Ben Kröse. Efficient greedy learning of gaussian mixture
models. Neural computation, 15(2):469–485, 2003.

Lei Xu and Michael I Jordan. On convergence properties of the em algorithm for gaussian
mixtures. Neural Computation, 8(1):129–151, 1996.

Appendix A. Derivation of the gradient for the reparameterized GMM

The reparameterized GMM is qϕ(y) =
∑K

k=1wkqN (y;Sk, where (wk, Sk) (also denoted by
ϕ) are the parameters to be optimized. Note that wk are constrained to sum up to 1,∑

k wk = 1. Taking this into account by introducing the Lagrange multiplier, the gradient
of L(ϕ) with respect to each wk (for k = 1, ...,K − 1) can be derived as follows:

∇wk
L =

∂

∂wk

 1

Ns

Ns∑
i=1

log

K∑
j=1

wjqN (yi;Sj) + λ(

K∑
j=1

wj − 1)


=

1

Ns

Ns∑
i=1

∂

∂wk

log K∑
j=1

wjqN (yi;Sj)

+ λ

=
1

Ns

Ns∑
i=1

qN (yi;Sk)
K∑

j′=1

wj′qN (yi;Sj′)

+ λ (13)

Adaptive SGD and reparameterization for GMM fitting

To get the value of λ, we add all ∇wk
L ∗wk (for k = 1, ...,K) together and the summation

is set to 0, then it is easy to obtain λ = −1. So, the gradient for wk is

∇wk
L =

1

Ns

Ns∑
i=1

qN (yi;Sk)

qϕ(yi)
− 1. (14)

To optimize the parameter Sk in each component of the mixture, the gradient of L(ϕ) with
respect to Sk (for k = 1, ...,K) is derived as follows,

∇Sk
L =

∂

∂Sk

 1

Ns

Ns∑
i=1

log
K∑
j=1

wjqN (yi;Sj)


=

1

Ns

Ns∑
i=1

 ∂

∂Sk
log

K∑
j=1

wjqN (yi;Sj)


=

1

Ns

Ns∑
i=1

wkqN (yi;Sk)
1

qN (yi;Sk)
∂

∂Sk
qN (yi;Sk)

K∑
j′=1

wj′qN (yi;Sj′)

=
1

Ns

Ns∑
i=1

wkqN (yi;Sk)

qϕ(yi)

∂

∂Sk
log qN (yi;Sk). (15)

To obtain the gradient of log qN (y;S) := log(2π exp(12)N (y;S)) w.r.t. S, we need the

following derivatives w.r.t. a symmetric positive definite matrix S, ∂ log |S|
∂S = S−1 and

∂trace(S−1yy⊤)
∂S = −2Syy⊤S−1. Therefore,

∂ log qN (y|S)
S

=
∂ log(2π exp(12)N (y;S))

∂
− ∂

∂S

1

2

(
d log |2π|+ log |S|+ y⊤S−1y)

)
= − ∂

∂S

1

2

(
log |S|+ trace(S−1yy⊤)

)
= −1

2

(
S−1 − S−1yy⊤S−1

)
(16)

Then, we can obtain the gradient of L(ϕ) with respect to Sk (for k = 1, ...,K)

∇Sk
L =

1

Ns

Ns∑
i=1

wkqN (yi;Sk)

qϕ(yi)

1

2

(
S−1yiy

⊤
i S

−1 − S−1
)

(17)

Appendix B. Derivation of the natural gradient for the reparameterized
GMM

To obtain the natural gradient, our aim is to minimize the loss function, meanwhile, subject
to keeping the KL divergence within a constant c. Formally, it can be written as

δϕ∗ = argmin
δϕ

L(ϕ+ δϕ) s.t. KL[qϕ||qϕ+δϕ] = c (18)

By a second-order Taylor relaxation, the KL divergence can be expressed as a function of
FIM and the delta change in parameters between the two distributions, KL[qϕ||qϕ+δϕ] ≈

Ji Fu He

1
2δϕ · Eq(·;ϕ)[∇ϕ log q(x;ϕ)(∇ϕ log q(x;ϕ))

T] · δϕ = 1
2δϕ · Fϕ · δϕ. Taking the Lagrangian

relaxation of Eq.(18) and using the first-order Taylor relaxation of L(ϕ+ δϕ), we obtain

δϕ = argmin
δϕ

[L(ϕ+ δϕ) + λ(KL[qϕ||qϕ+δϕ]− c)] (19)

≈ argmin
δϕ

[
L(ϕ) +∇L(ϕ)T · δϕ+

1

2
λ · δϕ · Fϕ · δϕ− λc

]
(20)

From now on, we use L and ∇L instead of L(ϕ) and∇L(ϕ) for short. To minimize the
function above, we set the derivative of Eq. (20) to zero that, ∇L + λ · Fϕ · δϕ = 0. By
solving it for δϕ, we get δϕ = − 1

λF
−1
ϕ ∇L. We can take the constant factor − 1

λ of relaxation
into the learning rate. Then we have the natural gradient as

∇nat
ϕ L = F−1∇ϕL (21)

Now, let us derive the natural gradient for the reparameterized GMM. Let ϕ = {wk, Sk}Kk=1

denote the parameters of this GMM, that qϕ(x) =
∑K

k=1wkqN (·|Sk) and w = [w1, ..., wk]
T .

We approximateKL[qϕ||qϕ+δϕ] by its upper boundKL[w||w+δw]+
∑K

k=1wkKL[qSk
||qSk+δSk

].
As discussed above, the KL divergence between two continuous distributions can be approx-
imated by FIM and the delta of the parameters that 1

2δϕ ·Fϕ · δϕ. By a second-order Taylor
relaxation, the KL between two discrete variables KL[w||w+ δw] can also be expressed as

KL[w||w + δw] ≈ −
K∑
k=1

wk(
1

wk
δwk +

−1
2w2

k

· δwk · δwk) =
1

2

K∑
k=1

1

wk
· δwk · δwk (22)

where since
∑K

k=1wk = 1, we have
∑K

k=1 δwk = 0. By keeping this upper bound a constant
c, the Lagrangian relaxation of the problem becomes

δϕ = argmin
δϕ

[
L(ϕ+ δϕ) + λ

(
KL[w||w + δw] +

K∑
k=1

wkKL[qSk
||qSk+δSk

]− c

)]
(23)

≈ argmin
δϕ

[
L+∇LT · δϕ+

λ

2

K∑
k=1

1

wk
· δwk · δwk +

λ

2

K∑
k=1

wk · δSk · FSk
· δSk − λc

]
(24)

For the weight wk of each mixture components, the derivative of the above function with
respect to each wk is ∇L+ λ 1

wk
· δwk. By setting it to zero and solving for δwk, we get,

δwk = −wk

λ
∇L (25)

For Sk in each mixture component, the derivative of the above function with respect to
each Sk is ∇L+ λ · wk · FSk

· δSk. By setting it to zero and solving for δSk, we get,

δSk = − 1

λwk
F−1
Sk
∇L (26)

Taking the constant factor − 1
λ of relaxation into the learning rate, the natural gradients for

wk and Sk in each component of the reparameterized GMM are

∇nat
wk

= wk∇wk
L (27)

∇nat
Sk

=
1

wk
2Sk (∇Sk

L)Sk (28)

Adaptive SGD and reparameterization for GMM fitting

Appendix C. Operators on the SPD matrix manifold

Table 3: Operators on the SPD matrix manifold

Definition Expression for the SPD manifold

Metric between ξ,η at S ρS(ξ, η) = tr(S−1ξS−1η)

Gradient at S if Euclidean gradient is ∇Ef ∇f(S) = 1
2S
(
∇Ef(S) + [∇Ef(S)]

T
)
S

Exponential map at S in direction ξ ExpS(ξ) = S exp(S−1ξ)

Parallel transport of ξ from S1 to S2 ΓS1,S2(ξ) = EξET , E = (S2S
−1
1)1/2

Euclidean Retraction at S in direction ξ RetS(ξ) = S + ξ + 1
2ξS

−1ξ

Frobenius norm of S, ||S||F tr(STS)1/2

Appendix D. The Riemannian SGD algorithm for GMM fitting

Algorithm 2: RSGD algorithm for GMM fitting

Input: learning rate αw, a0, t0, momentum coefficients β1, β2, ϵ = 1e−6.
Output: estimate {wk, Sk}Kk=1 or {wk, µk,Σk}Kk=1.

Initialize GMM parameter {wk,0, Sk,0}Kk=1, ensure
∑K

k=1wk,0 = 1, Sk,0 ≻ 0.
for t = 0 to T do

for k = 0 to K do
w−
k,t+1 ← wk,t + αw∇nat

wk,t
L ▷ update the weights

end
wt+1 ← w−

t+1/
∑

k(w
−
k,t+1) ▷ normalize the weights

αS,t ← g(t; a0, t0) ▷ update the learning rate
for k = 0 to K do

ξSk,t
← ∇nat

Sk,t
L ▷ obtain the gradient on the tangent space

Sk,t+1 ← RSk,t
(αS,tξSk,t

) ▷ retraction update

end

end

Appendix E. Analysis of computational complexity

We compare the computational complexity between the EM algorithm and the proposed
methods. For EM, the computational complexity of E-step and M-step are O(Knd2 +
Kn2d + Kd3) and O(Knd2) respectively. Thus the overall computational complexity is
O(2Knd2 + Kn2d + Kd3) (n is the number of samples, d is the dimension of data, K is
the number of mixture components); For the proposed RAdam/RSGD, when using entire
data in each iteration, the computation of natural gradient is actually a combination of
calculating the assignment probability and the gradient for each component (similar to the

Ji Fu He

computation of M-step, that O(2KnD2+Kn2D+KD3). The retraction and vector trans-
port of the manifold involve matrix inversion and matrix multiplication, the computational
complexity of manifold update is approximately O(D3), (D = d+1). So, the overall compu-
tational complexity of the proposed algorithm in each epoch is O(2KnD2+Kn2D+2KD3);
When using mini-batch data in each iteration, the computational complexity of the proposed
algorithm becomes O(2KnD2 +Kn2D/r+ 2rKD3), where r = n/batch-size. Through the
comparison, we find that the complexity of the proposed algorithm is larger than EM, but
not too much.

Appendix F. Study of the hyperparameter in the proposed algorithms

We evaluate the proposed algorithms against different hyperparameter settings: We com-
pare the different learning rate decreasing strategies, such as g1(·; 0.5, 10), g1(·; 0.1, 10),
g2(·; 0.5, 10), g2(·; 0.1, 10), g3(·; 0.5, 0.9), g3(·; 0.1, 0.9). The data are simulated with a medium
level of separation with K = 10 and d = 50; We compare the model performance when using
different batch sizes, Ns = [64, 128, 256, 512, 1024, 4096]. Figure 2(a) shows that the learn-
ing rate affects the performance of the algorithms. Generally, a larger initialization learning
rate is preferred. Accordingly, the decreasing strategy g1(·; 0.5, 10) is recommended. Figure
2(b) shows that the proposed method performs stably with different batch sizes. Note that
small batch data help the proposed algorithms with random initialization. According to
the comparison, a slightly large batch size, such as 512 is preferred.

We here also provide a study on the selection of momentum coefficients β1 and the initial
learning rate a0 in the decreasing strategy g1(·; a0, 10). We set β2 = 0.9, as by experiments
it has no significant effects on the performance of RAdam. Figure 2 (c) and (d) show the
performance of RAdam with different initial learning rates a0 and different values of β1. In
the case of k-means initialization, the value for a0 does not affect the performance much,
while a smaller value is preferred. However, in the case of random initialization, a larger
value of a0 is preferred. So to balance between different initialization, we recommend the
setting: a0 = 0.5 and β1 = 1e− 3, β2 = 0.9.

(a) Learning rate (b) Batch sizes

(c) RAdam with different a0 and
β1 (k-means initialization)

(d) RAdam with different a0 and
β1 (random initialization)

Figure 2: The study of hyperparametes.

	Introduction
	Related Works
	Proposed Methods
	Problem setup
	Reparameterization
	Natural Gradient Descent
	Gaussian Mixture updates
	Riemannian stochastic gradient descent
	The proposed algorithms

	Simulation study
	Conclusion
	Derivation of the gradient for the reparameterized GMM
	Derivation of the natural gradient for the reparameterized GMM
	Operators on the SPD matrix manifold
	The Riemannian SGD algorithm for GMM fitting
	Analysis of computational complexity
	Study of the hyperparameter in the proposed algorithms

