
Proceedings of Machine Learning Research 222, 2023 ACML 2023

FusionU-Net: U-Net with Enhanced Skip Connection for
Pathology Image Segmentation

Zongyi Li zongyi_li@zju.edu.cn
Hongbing Lyu∗ lhb@zju.edu.cn
Zhejiang University,

Jun Wang∗ wjcy19870122@163.com
Hangzhou City University

Editors: Berrin Yanıkoğlu and Wray Buntine

Abstract
In recent years, U-Net and its variants have been widely used in pathology image seg-
mentation tasks. One of the key designs of U-Net is the use of skip connections between
the encoder and decoder, which helps to recover detailed information after upsampling.
While most variations of U-Net adopt the original skip connection design, there is seman-
tic gap between the encoder and decoder that can negatively impact model performance.
Therefore, it is important to reduce this semantic gap before conducting skip connection.
To address this issue, we propose a new segmentation network called FusionU-Net, which
is based on U-Net structure and incorporates a fusion module to exchange information
between different skip connections to reduce semantic gaps. Unlike the other fusion mod-
ules in existing networks, ours is based on a two-round fusion design that fully considers
the local relevance between adjacent encoder layer outputs and the need for bi-directional
information exchange across multiple layers. We conducted extensive experiments on mul-
tiple pathology image datasets to evaluate our model and found that FusionU-Net achieves
better performance compared to other competing methods. We argue our fusion module
is more effective than the designs of existing networks, and it could be easily embedded
into other networks to further enhance the model performance. Our code is available at:
https://github.com/Zongyi-Lee/FusionU-Net
Keywords: Feature Fusion, Pathology Image Segmentation, Skip Connection, U-Net

1. Introduction
Medical imaging segmentation is a crucial area of AI research with great application value
in areas such as computer aided diagnosis You et al. (2023) and image-guided surgery
Anwar et al. (2018) One of main chanllenges in this field is the lack of training data due to
the fact that labeling medical images requires professional skills and also time-consuming.
Pathology images, in particular, with many small and densely distributed target areas,
present additional difficulties to segmentation tasks. As is pointed out by many researches,
right inductive bias could help the model to generalize well on restricted training dataset
Goyal and Bengio (2022)Geirhos et al. (2018). While the inductive biases of Convolutional
Neural Networks(CNNs) are locality and weights sharing, which are consistent with fact
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that for pathology images many features worth noticing are strongly locally related. In
fact, CNNs do become dominant in such areas, and U-Net Ronneberger et al. (2015) is
a specially successful one among numerous CNNs. U-Net is a typical encoder-decoder
structure network, the shallow layers in the encoder part mainly work on capturing low-
level features and the spatial semantic information grows richer as the layer progresses
deeper. In the decoder part, upsampling is applied to restore the image to its full size,
while skip connections are employed to combine coarse-grained features from deep layers
with fine-grained features from shallow layers to aid in object details recovery. This design
has led to U-Net’s great success on numerous segmentation tasks and has also inspired many
researches. However, most of these studies have only focused on improving the encoders or
decoders but not altering the original skip connection design.

Recently, researchers have noticed the semantic gap between the encoder and decoder
Ibtehaz and Rahman (2020), and Wang et al. (2022) carefully examined the contribution of
different skip connections in U-Net and found that simple skip connections may not always
be helpful and sometimes could even harm model performance. Based on this finding, they
proposed a CCT module to fuse different feature maps of skip connections. Their fusion
method mainly focuses on channel-wise information but disregards the spatial relevance
between adjacent layer outputs. Tracing back to the forward process of U-Net, it is evi-
dent that convolutions are the dominant computing operations, while the characteristic of
convolutions guarantees the feature maps before and after convolutions are strongly locally
relevant. With above analysis, it is natural to deduce that one of the keys to bride the
semantic gap among different layer outputs is to accurately capture the local relevance. To
this end, we propose a new network called FusionU-Net, which uses U-Net as base structure
and adopts a fusion module to apply feature fusion on skip connections.

Unlike the design of previous works, we carefully considered the relevance of adjacent
skip connections and implemented a different approach for the feature fusion. Our fusion
design is based on the following considerations: 1) The feature maps produced by the deep
and shallow layers of the encoder are inherently different while adjacent layer outputs have
stronger relevance. Therefore, we only perform feature fusion between adjacent layers. 2)
Our model should enable the information to be exchanged between any two encoder layer
outputs. To achieve this we propose two-round fusion design. In the first round, we operate
feature fusion between each pair of adjacent feature maps from shallow to deep encoder
layers. In the second round, we operate in reverse order. This allows information to still
be exchanged between feature maps with multiple layers in between, even though they are
not explicitly fused. Additionaly the two-round design also enables the information to be
switched bi-directionally. 3) The feature map of adjacent encoder layers are locally relevant,
and the locality is also important characteristic of pathology images, thus we design a new
method to fuse adjacent two feature maps together with fully considerations about keeping
the feature map local adjacency, the details of which will be discussed in later section.

Our model has a clear and simple structure and requires significantly fewer training
parameters compared with other state-of-the-art methods. To test our model, we conduct
extensive experiments on three datasets and results strongly supports the superiority of our
model. We argue that our fusion design represents a more effective and reasonable way
and our fusion module could be easily embedded into other networks to further boost the
performance of segmentation.
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2. Related Works
2.1. U-Net based Networks
As various studies and application results having proved the effectiveness of U-Net design,
many networks base on U-Net have been proposed. H-DenseUNet Li et al. (2018) is a typical
U-Net variation that learns from DenseNet Huang et al. (2017), it incorporates a hybrid
feature fusion(HFF) layer to fuse 2D and 3D features and achieves impressing results on
liver segmentation task. Alom et al. (2018) designs R2U-Net, it employs U-Net as the base
structure and applies recurrent residual block in decoder part for performance improvement.
AttentionU-Net Oktay et al. (2018) aims at suppressing irreverent regions by utilizing a
attention gate module, the attention gate could effectively highlight specific local features
while introducing acceptable extra costs. ResU-Net Zhang et al. (2018) uses residual units
to make it easier to train deeper networks. Based on ResU-Net, Jha et al. (2019) adopted
some new technologies such as squeeze and excitation blocks Hu et al. (2018), Atrous Spatial
Pyramidal Pooling(ASPP) Chen et al. (2017) and came up with a new model called ResU-
Net++. Recently, with the great success of Vision Transformer(ViT) Dosovitskiy et al.
(2020) and Swin-Transformer Liu et al. (2021), people have started to recognize the potential
of Transformer on computer vision tasks. TransUNet proposed by Chen et al. (2021) is the
first model applying Transformer on U-Net structure for medical segmentation task, and
they also use CNNs to extract low-resolution features since they believe the Transformer lay
too much attention on global texture and tends to lack detailed localization information.
Later proposed Swin-UNet Cao et al. (2023) is a pure Transformer-based U-Net like network
and it keeps the skip connections between the encoder and decoder.

2.2. Modification on skip connections
The aforementioned works primarily focus on the modifying encoder or decoder modules of
U-Net in order to enhance the ability of feature extraction. However, they ignore the fact
that as a key part of U-Net design, better processed skip connections could also greatly assist
the model performance. Ibtehaz and Rahman (2020) noticed the semantic gap between
the encoder and decoder, and they chose to use ResPath to enhance skip connection to
alleviate the gap. But their ResPath is operated for each skip connection individually, not
considering exchanging information between layers. Despite the design deficiencies, their
work pointed out that the original skip connection is not a perfect solution, and there
is still much room for further improvement. UNet++ Zhou et al. (2019) also considers
reorganizing skip connections. They apply a series of nested dense convolutions as skip
pathways to communicate between encoder and decoder sub-networks. However, they did
not realize the importance of fully exchange information between skip connections, and in
their network the information could only passed from deep layers up to shallow layers and
the information exchange is in single direction. Wang et al. (2022) thoroughly studied the
effect of each skip connection of U-Net and found that not every skip connection benefits
the model performance. With these findings, they came up with UCTransNet, which is
a U-Net shaped network embedded with a fusion module. The fusion module helps to
exchange information among all feature maps produced by the encoder before conducting
skip connection. In their CCT fusion module, the different feature maps produced by
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Figure 1: An overview of FusionU-Net structure

encoder layers are combined together and then channel-wise attention is applied to exchange
information between the combined map and each single feature map. We argue this design
has two main shortcomings: Firstly, combining all feature maps together forms a giant
feature map and it brings much greater computation cost to fusing operations; Secondly, the
feature maps from very deep layers and from very shallow layers are intrinsically different,
and we may not expect to gain much by fusing them.

Though the designs of fusion module from previous works are defective, they inspired us
for the direction to further improve fusion design. And based on that we propose FusionU-
Net, which contains the fusion module better handles the problems we’ve discussed above.

3. Model Description
In this section, we describe our proposed FusionU-Net in detail. Figure 1 illustrates the
overview of our model. In essence, our model is a U-Net-shaped network that incorporates
a fusion module to strengthen the skip connections. The whole structure can be divided
into three parts: the encoder part, the fusion module part and the decoder part. In the
following sections, we will thorough illustrate the details of these parts.

3.1. Encoder and Decoder
To ensure fairness and facilitate future comparison with other baseline models, as well as
to evaluate the effectiveness of our fusion module, we have adopted a similar encoder and
decoder design to UNet and it is consistent with UCTransNet Wang et al. (2022).

The encoder is composed of 1 stem convolution block and 4 DownBlocks. Each Down-
Block contains two convolution layer and a MaxPooling layer. For each DownBlock, the
height and width of the feature map will shrink to half of its original size while the number
of channels is doubled. The 4 outputs T1, T2, T3, T4 which are from the stem convolution
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Figure 2: The structure of Fuse Block and DownFuse Block. The left part is Fuse Block
structure while the right part represents the details of DownFuse Block

block and the following three DownBlocks will be passed into the Feature Fusion module
for further process.

The decoder recovers the feature map from the encoder to the original size with the
help of 4 UpBlocks. The UpBlock will use bilinear interpolation for upsampling and then
apply CCA module proposed by UCTransNet to compute channel attention together with
feature map from skip connection. After that the two feature maps will be concatenated
and passed to a convolution layer. At the final phase, a 1×1 convolution is used to transfer
the channel number into the number of classes as the final segmentation results.

3.2. Feature Fusion Module
As previously discussed, the semantic information of feature maps from shallow layers and
deep layers are vastly different. Therefore we choose to conduct feature fusion for each two
feature maps from adjacent encoder outputs. Our fusion module is composed by stacking
FuseBlocks, each FuseBlock consists of DownFuse blocks and UpFuse blocks as is shown in
Figure 2. Noticed that the structures of UpFuse block and DownFuse block are similar thus
we only represent the DownFuse block structure here. Both DownFuse and UpFuse blocks
handle two adjacent skip connection feature maps and fuse them together. The entire fusion
process is divided into two rounds, feature fusion is only conducted between two adjacent
feature maps in one direction within each round. This can be either from top encoder layers
to bottom encoder layers or the inverse way. More specifically, we firstly operate downward
feature fusion on (T1, T2), (T2, T3) and finally (T3, T4), then in the opposite direction, we
operate upward feature fusion on (T4, T3), (T3, T2) and (T2, T1) respectively. When doing
feature fusion between T3 and T4, T3 has already exchanged information with T2 which has
also combined features from T1, thus information from T1 could be indirectly passed to T4.
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The second round of feature fusion aims to enable information to be transferred back into
the shallow layers such that the changes of T4 could be perceived by T1 and this helps to
achieve a bi-directional information transfer.

3.2.1. DownFuse Block

The DownFuse block takes the feature map from two adjacent encoder output feature maps,
then fuse them and produce a feature map with the same size as the one with higher channel
number. For example, we use Ti and Ti+1 to represent the feature maps of two adjacent
encoder output, and their shapes are (Ci,Hi,Wi) and (2Ci,Hi/2,Wi/2). To fuse them
together, we first transfer Ti into the same shape as Ti+1, then combine the two featue
maps into one and apply several computing modules to further fuse the features. The
complete working process can be described as follows:

1 We conduct feature map reorganization to transfer Ti into (4Ci, Hi/2, Wi/2): The
original feature map could be viewed as multiple 2-dimensional feature map stacked
in channel-wise, and for each 2-D feature map, we sample the pixels with an interval
of distance 1 horizontally and vertically, thus it is divided into 4 sub-graphs with half
of original height and width. After that we stack these 4 sub-graphs at the channel
dimmension, then we transfer a feature map from shape (1, Hi, Wi) into (4, Hi/2,
Wi/2). For each channel of Ti, we apply above operations and then we get Ti with
shape (4Ci,Hi/2,Wi/2). The key of this design is that, unlike Pooling operations, we
changed the feature map size without information loss. Furthermore, we also reserve
the locality of previous feature map: the originally spatial neighboring 4 pixels now
is still adjacent in channel-wise, in other words, we transfer the spatial adjacency into
channel adjacency.

2 We apply group convolution with number of output channels set to 2Ci and number of
groups set to Ci to transfer Ti into shape (2Ci,Hi/2,Wi/2) which is exactly the shape
of Ti+1. Notice that the kernel size of convolution for each group will be 2×4×kh×kw,
thus the channel-wise pixels involved in the convolution are exactly the previously four
adjacent pixels, and through this way locality of feature map is still well reserved and
the computation cost also decreased vastly compared with normal convolution.

3 After making the two feature map to have same shape, we fuse them into one by a
weighted sum.

4 The combined feature map from stage 3 is process by a convolution layer and an ECA
layer Wang et al. (2020) to better fuse and learn spatial and channel information.

3.2.2. UpFuse Block

The UpFuse block is pretty similar with the DownFuse block, we also firstly transfer the
two feature maps into same shape and combine them together by weighted summation, then
feeding the feature map into a convolution layer and an ECA layer. The only difference
is that for UpFuse, we transfer the feature map with smaller spatial size into larger size
by doing the inverse operation as the re-organize operation in DownFuse, and the rest
procedure is basically the same.
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Models Params Flops MoNuSeg GlaS
(M) (G) Dice(%) IoU(%) Dice(%) IoU(%)

U-Net 14.75 25.18 76.51 ± 2.54 63.13 ± 3.15 86.42 ± 1.54 76.92 ± 1.47
U-Net++ 9.16 26.72 77.83 ± 2.16 63.72 ± 2.92 88.02 ± 1.95 81.30 ± 1.50
SwinU-Net 27.14 5.91 77.85 ± 2.20 64.00 ± 1.95 84.84 ± 1.70 75.43 ± 2.15
TransU-Net 93.23 24.67 76.91 ± 1.95 62.33 ± 2.49 90.29 ± 0.92 82.97 ± 1.39
UCTransNet 66.24 32.98 79.17 ± 2.34 65.91 ± 2.85 89.70 ± 1.41 82.04 ± 2.12
ours 25.80 55.95 80.04 ± 1.38 66.38 ± 2.52 91.05 ± 1.65 83.23 ± 2.03

Table 1: The comparison with other models on MoNuSeg and GlaS datasets. For MoNuSeg
and GlaS datasets we report three times of five fold cross validation results with
form ’mean ± std’. The params and flops are calculated with input shape 1× 3×
224× 224

Models Neoplastic Inflammatory Connective Dead Non-Neopla Average
UNet 73.09 56.73 57.12 19.49 56.78 52.64
UNet++ 73.25 57.02 60.58 20.75 63.79 55.07
SwinUNet 71.57 54.62 56.41 19.86 56.48 51.79
TransUNet 76.98 57.77 61.44 24.24 68.62 57.81
UCTransNet 74.59 56.51 61.81 22.72 67.67 56.66
ours 75.37 58.29 60.71 24.32 67.78 57.29

Table 2: Comparison of different models on PanNuke dataset.

4. Experiments
4.1. Datasets
We apply MoNuSeg Kumar et al. (2017), GlaS Sirinukunwattana et al. (2017) and PanNuke
Gamper et al. (2020) datasets to evaluate our model. The MoNuSeg datasets consits of 44
images, 30 for training and 14 for testing. The GlaS dataset has 85 images for training and
80 for testing. Compared with MoNuSeg and GlaS, PanNuke is a much more challenging
task: PanNuke consists of exhaustible labels from 19 different tissues, and the 7904 images
are randomly sampled from more than 20K whole slide images at different magnifications
from multiple data sources.

4.2. Implementation Details
We train and test our model with PyTorch on a Nvidia 3090 GPU with 24 GB memory.
For MoNuSeg and GlaS datasets we follow the setting in Wang et al. (2022) and set the
batch size as 4, and for PanNuke dataset the batch size is set to 16. Notice that images are
all resized into 224×224 before feeding into the network. We also use simple image flip and
rotation for data augmentation. As for loss functions, we employ cross entropy loss and dice
loss on MoNuSeg and GlaS datasets, and for PanNuke, focal loss is applied to alleviate the
adverse impact of imbalanced distribution of different labels. The learning rate scheduler of
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Figure 3: Segmentation results on MoNuSeg and GlaS datasets

cosine annealing warm-up restart is employed to avoid getting stucked in local optimal too
early. For MoNuSeg and GlaS, due to the limited number of training materials, we apply
three times 5-fold cross-validation and average 15 results of all folds as the final value to
make the results more convincing. For PanNuke dataset, we split the whole dataset into
training set, validation set and test set with ratio 7:1:2. The model with best performance
on validation set is chosen for final testing. For all models we do not use any pretrained-
weights and directly initialize the weights before training the model. Dice coefficients and
IoU are reported on MoNuSeg and GlaS as evaluation metrics, and for PanNuke we report
the mean dice and dice coefficents of all 5 labels.

4.3. Comparison with other state-of-the-arts
To fully evaluate model performance, we compare our model with other state-of-the-art
methods: UNet++ Zhou et al. (2019), UCTransNet Wang et al. (2022), TransUNet Chen
et al. (2021) and SwinUNet Cao et al. (2023). For fairness, the code and settings of other
models are kept consistent with those from publicly realeased resources. Table 1 reports
the performance of all models on MoNuSeg and GlaS datasets, the results strongly prove
that our model outperforms the others. Table 2 shows the results on PanNuke datasets,
from which a similar conclusion could also be drawn. It is evident that our model achieves
better predicting accuracies with relatively less training parameters. This success can be
attributed to the better handling of skip connection. As discussed earlier, previous works
like TransUNet and SwinUNet place too much emphasis on enhancing the encoder/decoder,
these designs do help to improve the accuracy but the limits of naive skip connections
constrain for further performance improvement. Other works like UNet++ try to enhance
the skip connections part, they cannot achieve fully information exchange between skip
connections because of the information flow is in single-direction. UCTransNet applies
attention mechanism on each single and the combined feature maps to address that issue, but



FusionU-Net

Figure 4: Segmentation results on PanNuke dataset

it introduces large number of extra training parameters and loses the local relevance. These
problems are effectively dealt with by our fusion module, as evidenced by the experiment
results. People may notice from the table that our model has relatively higher FLOPs,
but this does not necessarily mean the model runs slower. We have conducted tests on the
inference speed and found that our model reaches 48.24 fps, which is faster than UCTransNet
with 41.60 fps. The increased FLOPs are primarily attributable to the dense convolution
employed for fusing feature maps from deep layers, and it is our future work to address this
unintended consequence with improved handling.

On PanNuke dataset our model also achieves favorable results, though the average dice
seems to be slightly inferior to TransUNet, this is mainly due to the difference of the
encoder. Our FusionU-Net primarily focus on fusing features across skip connections, and
we utilize a relative simple encoder. In contrast, TransUNet places great emphasis on the
encoder design and apply dense Transformer blocks to extract information on the final
encoder layer, resulting in the network to be a nearly 4 times the size of our FusionU-Net.
For complex tasks like PanNuke, the encoder has become the bottleneck and constrained
the performance of our model. From a different perspective, our model’s ability to achieve
equivalent performance with a basic encoder and limited parameters proves the effectiveness
of our fusion module, and this could be further supported by the comparison with other
models like UCTransNet and UNet++.

4.4. Analytical Study
We have also conducted ablation studies to test the effectiveness of our module design and
evaluate the model under various settings. These studies includes: 1) the contribution
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Method MoNuSeg GlaS PanNuke
Dice IoU Dice IoU (mean Dice)

No Fusion 76.51 63.31 86.42 77.08 53.82
Only Downward 76.95 63.27 86.96 78.23 54.54
Only Upward Fuse 77.87 64.51 88.42 79.12 55.75
DownFuse + UpFuse 78.12 64.73 89.73 80.53 57.29

Table 3: Ablation study about the effectiveness of DownFuse block and UpFuse block

Method MoNuSeg GlaS PanNuke
Dice IoU Dice IoU (mean Dice)

Pooling+Conv 77.49 63.81 88.95 80.02 56.89
Reorganize+Group-Conv 78.12 64.73 89.73 80.53 57.29

Table 4: Ablation study about the effectiveness of reorganize + group convolution

of DownFuse and UpFuse blocks 2) the effectiveness of re-organize + group convolution
compared with Pooling + convolution;

Contribution of DownFuse and UpFuse: To prove the value of two-round fusion,
we change the originial FuseBlock into one round fusion with either DownFuse or UpFuse
and we also test for directly using the raw skip connection to show the necessity of doing
feature fusion(notice we still use CCA for decoder part feature fusion under these settings).
The experiment result is presented in table 3, and it demonstrates that the fusing operation
before the skip connections is a useful way to enhance model performance. And we could
observe that applying upward fusion helps more than downward fuse. This is because
the original U-Net encoder forward process can also be viewed as a similar progress with
our downward fusion, thus the upward feature fusion which assists in passing the message
from bottom back to top layers enable the model to better exchange information between
layers. And it is also worth pointing out that even though downward fuse helps little alone,
combining it with upward fuse will benefit a lot to the model just as the data shows.

Effectiveness of Reorganize and Group-conv: To keep the local adjacency and
avoid information loss during the downsampling and upsampling process, we propose a
better alternative by reorganizing pixels of the feature map and applying group convolution.
To show the advantage of this method, we substitute the reorganize and group convolution
with Pooling and a normal convolution and test the performance on three datasets. The
new model’s number of training parameters and flops grows into 34.98M and 97.15G, while
the segmentation performance dropped as in shown in table 4. Therefore, it is evident that
our design is superior to the traditional way.

5. Conclusion
U-Net is a highly effective model for pathology image segmentation and has inspired numer-
ous works. In this paper, we aim to explore a different perspective on improving segmen-
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tation accuracy by modifying the original skip connection design. Our proposed network,
FusionU-Net, is similar to U-Net but with an additional fusion module that applies fea-
ture fusion on skip connections. The fusion module is based on a two-round design to
better handles the relevance of adjacent encoder outputs and enables information to be
fully exchanged between any two skip connection feature maps. Additionally, we propose a
new way of upsampling and downsampling by reorganizing the feature map and applying a
group convolution. This approach can avoid information loss and preserve the pixel adja-
cency relationship effectively, which is particularly suitable for pathology images. Through
extensive experiments and in-depth analysis, we demonstrate that our model is highly ef-
fective and our fusion module represents a superior method for fusing feature maps from
skip connections.

Acknowledgments
This work was supported in part by the National Natural Science Foundation of China under
Grant 62101318, and the Key Research and Development Program of Jiangsu Province,
China under Grant BE2020762.

References
Md Zahangir Alom, Mahmudul Hasan, Chris Yakopcic, Tarek M Taha, and Vijayan K

Asari. Recurrent residual convolutional neural network based on u-net (r2u-net) for
medical image segmentation. arXiv preprint arXiv:1802.06955, 2018.

Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad Awais, Majdi
Alnowami, and Muhammad Khurram Khan. Medical image analysis using convolutional
neural networks: a review. Journal of medical systems, 42:1–13, 2018.

Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Man-
ning Wang. Swin-unet: Unet-like pure transformer for medical image segmentation. In
Computer Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part III, pages 205–218. Springer, 2023.

Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L
Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image
segmentation. arXiv preprint arXiv:2102.04306, 2021.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587,
2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.



Li Lyu Wang

Jevgenij Gamper, Navid Alemi Koohbanani, Ksenija Benes, Simon Graham, Mostafa Jahan-
ifar, Syed Ali Khurram, Ayesha Azam, Katherine Hewitt, and Nasir Rajpoot. Pannuke
dataset extension, insights and baselines. arXiv preprint arXiv:2003.10778, 2020.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape
bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cog-
nition. Proceedings of the Royal Society A, 478(2266):20210068, 2022.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

Nabil Ibtehaz and M Sohel Rahman. Multiresunet: Rethinking the u-net architecture for
multimodal biomedical image segmentation. Neural networks, 121:74–87, 2020.

Debesh Jha, Pia H Smedsrud, Michael A Riegler, Dag Johansen, Thomas De Lange, Pål
Halvorsen, and Håvard D Johansen. Resunet++: An advanced architecture for medical
image segmentation. In 2019 IEEE International Symposium on Multimedia (ISM), pages
225–2255. IEEE, 2019.

Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi Bhargava, Abhishek Vahadane,
and Amit Sethi. A dataset and a technique for generalized nuclear segmentation for
computational pathology. IEEE transactions on medical imaging, 36(7):1550–1560, 2017.

Xiaomeng Li, Hao Chen, Xiaojuan Qi, Qi Dou, Chi-Wing Fu, and Pheng-Ann Heng. H-
denseunet: hybrid densely connected unet for liver and tumor segmentation from ct
volumes. IEEE transactions on medical imaging, 37(12):2663–2674, 2018.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
In Proceedings of the IEEE/CVF international conference on computer vision, pages
10012–10022, 2021.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari
Misawa, Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. At-
tention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999,
2018.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.



FusionU-Net

Korsuk Sirinukunwattana, Josien PW Pluim, Hao Chen, Xiaojuan Qi, Pheng-Ann Heng,
Yun Bo Guo, Li Yang Wang, Bogdan J Matuszewski, Elia Bruni, Urko Sanchez, et al.
Gland segmentation in colon histology images: The glas challenge contest. Medical image
analysis, 35:489–502, 2017.

Haonan Wang, Peng Cao, Jiaqi Wang, and Osmar R Zaiane. Uctransnet: rethinking the skip
connections in u-net from a channel-wise perspective with transformer. In Proceedings of
the AAAI conference on artificial intelligence, volume 36, pages 2441–2449, 2022.

Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu. Eca-
net: Efficient channel attention for deep convolutional neural networks. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 11534–
11542, 2020.

Dan You, Pengcheng Xia, Qiuzhu Chen, Minghui Wu, Suncheng Xiang, and Jun Wang.
Autokary2022: A large-scale densely annotated dateset for chromosome instance seg-
mentation. arXiv preprint arXiv:2303.15839, 2023.

Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. Road extraction by deep residual u-net.
IEEE Geoscience and Remote Sensing Letters, 15(5):749–753, 2018.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.
Unet++: Redesigning skip connections to exploit multiscale features in image segmenta-
tion. IEEE transactions on medical imaging, 39(6):1856–1867, 2019.


	Introduction
	Related Works
	U-Net based Networks
	Modification on skip connections

	Model Description
	Encoder and Decoder
	Feature Fusion Module
	DownFuse Block
	UpFuse Block


	Experiments
	Datasets
	Implementation Details
	Comparison with other state-of-the-arts
	Analytical Study

	Conclusion

