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Abstract
It is essential for models to gradually adapt to the world’s increasing complexity, and we
can use models more effectively if they keep up with the times. However, the technique of
continuous learning (CL) has an issue with catastrophic forgetting, and effective continuous
learning methods can only be attained by effectively limiting forgetting and learning new
tasks. In this study, we offer the Classifier Expander(CE) method, which combines the
regularization-based and replay-based approaches. By undergoing two stages of training,
it fulfills the aforementioned standards. The training content for the new task is limited
to the portion of the network relevant to that task in the first stage, which uses the re-
play approach to reduce the forgetting problem. This strategy minimizes disruption to
the old task while facilitating efficient learning of the new one. Utilizing all of the data
available, the second stage retrains the network and sufficiently trains the classifier to
balance the learning performance of the old and new tasks. Our method regularly out-
performs previous CL methods on the CIFAR-100 and CUB-200 datasets, obtaining an
average improvement of 2.94% on the class-incremental learning and 1.16% on the task-
incremental learning compared to the best method currently available. Our code is available
at https://github.com/EmbraceTomorrow/CE.
Keywords: catastrophic forgetting; continuous learning; classifier expander

1. Introduction

AlexNet Krizhevsky et al. (2017) greatly beat SVM Hearst et al. (1998) in picture classi-
fication, which has led to an explosion in deep neural network research. ResNet He et al.
(2016) was able to beat average human accuracy in the field of picture categorization for
the first time in 2015. It seems that the learning ability of deep neural networks in the
field of image classification is no doubt. However, if you look closely at the datasets used in
their experiments or competitions, you will find that the training dataset and test dataset
are independently and identically distributed. Deep neural networks are capable of working
well under this presumption; otherwise, performance will drastically decline. The indepen-
dently identically distribution is simple to violate because the actual application scenario is
frequently subject to change. The user experience will be subpar if the model is unable to
implement sensible changes.
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Continuous learning is a paradigm that involves acquiring new knowledge while main-
taining existing competence. A deep neural network-based application must be able to keep
learning in order to be useful. For instance, if a recognition robot can only recognize items
that it was trained to recognize before it left the factory, a large number of things might not
be recognized in the dynamic world of today, providing users with a bad experience.

Humans are easily able to build on their prior knowledge and solve new problems. Para-
metric models such as deep neural networks can get into trouble in continuous learning.
The performance of the model on the old tasks may significantly deteriorate if the model
parameters are updated to adapt to the new task when learning a new task, a phenomenon
known as catastrophic forgetting McCloskey and Cohen (1989). However, in order to ensure
the performance of the old tasks, we can only limit the updating range of model parameters,
which will cause the network model cannot learn the features of the new task. This is the
stability-plasticity dilemma in continuous learning Mermillod et al. (2013).

We initially establish the boundaries of our continuous learning task before proposing
a solution. Because if there were no restrictions, we could obtain all the training data
required for joint training, the model could align its features jointly and perform well on
each target class, and the stability-plasticity paradox would not exist. In reality, experiences
(we refer to each learning task as an experience Lomonaco et al. (2021) to help us distinguish
the meaning of the term "task" in task incremental learning) typically arrive in sequential
order, and we might not be able to save all the data (possibly due to storage issues) or
perform joint training even if we do(possibly due to computational requirements issues). As
a result, our algorithm design needs to satisfy the following properties Rebuffi et al. (2017):

1) It can be trained in a sequential flow of experience to get a good classifier.
2) At the end of any experience training in the experience stream, competitive classifiers

are provided for categories of current and past experience.
3) Its computing requirements and memory footprint should remain limited, or at least

grow very slowly relative to the number of classes that have been seen.
The current regularization-based method is unable to produce a strong classification

result in continuous learning tasks Lesort (2020), and the dynamic architecture method
has high computational and memory requirements, which violates the third property. Data
must be added to memory during training for the replay-based approach, but this rise in
computational and memory needs is acceptable when compared to the dynamic architecture
approach. Our approach combines regularization-based and replay-based methods, which
can fully utilize memory to enhance model performance under low computational demand
and memory constraints.

Our approach is a two-stage method. In the first stage, we train the network with the
old task data stored in memory and the data for the new task to preserve the performance of
the previous task and learn the new task. We confine the classifier to learning solely within
the new task at this part of new task learning. The classifier’s learnable range is expanded
to include all previous tasks in the second stage during which we train the network using the
in-memory data, which increases the overall prediction accuracy. Therefore, we refer to this
technique as Classifier Expander(CE), which extends the training range for linear classifier.

The properties specified in three aspects are fully supported by the method(CE) proposed
in this work. It stores a set number of images (much fewer than the whole amount of
training data), does not alter the network structure (other than the necessary modification
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of the numbers of classifier classes), and outputs a reliable classifier at the conclusion of any
training. It makes use of knowledge distillation to its full potential, reduces the problem of
catastrophic forgetting, and shows strong classification performance.

In Section 2, we will introduce the related works and contrast our viewpoints. I’ll go
into more detail regarding our method and the rationale behind its creation in Section 3.
In Section 4, we evaluate the CIFAR-10, CIFAR-100, and CUB-200 datasets to show the
efficacy of CE in continuous learning. Finally, the remaining limitations and future work
are discussed in section 5.

2. Related work

Methods for continual learning generally are divided into three categories: regularization
methods, dynamic network architectures methods, and replay-based methods De Lange
et al. (2021); Hadsell et al. (2020); Parisi et al. (2019). The CE method is an attempt to
combine regularization-based methods and replay-based methods. In this section, we will
first briefly introduce these three categories of continual learning methods, then introduce the
relevant techniques used in our method, and finally provide a detailed comparison between
our approach and the methods that are similar to ours.

2.1. Continuous Learning Methods

2.1.1. Regularization-based Methods

The regularization-based methods alleviate catastrophic forgetting from the perspective of
the parameter. When the model learns a new task, the performance of the previous task
decreases sharply due to the greatly updated parameter. The regularization-based methods
try to prevent large parameter modifications to reduce the forgetting effect. Regularization-
based methods can be divided into data-focused methods such as Li and Hoiem (2017);
Jung et al. (2016); Zhang et al. (2020) and prior-focused methods such as Kirkpatrick et al.
(2017); Zenke et al. (2017). The most classical Lwf Li and Hoiem (2017) added knowledge
distillation loss to limit the update of model parameters, slow down model forgetting, and
realize state-of-the-art at that time. Kirkpatrick et al. (2017); Zenke et al. (2017) determined
the importance of the parameters of the model by using the diagonal elements of the Fisher
information matrix and the sensitivity of the loss function to the parameters respectively.
Subsequently, they imposed penalties on the modification of important parameters to limit
the updating of parameters and reduce the forgetting of the model.

2.1.2. dynamic architecture methods

Dynamic network architecture methods modify the structure of the network model, such as
PNN Rusu et al. (2016), DEN Yoon et al. (2017). PNN does not change the parameters of
the network model corresponding to the old task, but adds a new network structure directly
for the new task, freezes all the parameters related to the old task during training, and
only trains the network structure related to the new task. DEN selectively retrains the old
network, expanding its capacity as necessary, thereby dynamically determining its optimal
capacity as it continues to operate. This type of approach is often able to achieve state-
of-the-art in terms of accuracy, but this approach, where the computational demand and
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memory consumption grow linearly with the number of tasks, is undesirable in the long-term
continuous learning process.

2.1.3. replay-based methods

Retraining the data of old tasks can also alleviate model forgetting, which is referred to
as playback methods Bagus and Gepperth (2021). replay-based methods are generally di-
vided into two categories: retaining-based methods such as iCaRL Rebuffi et al. (2017),
DER Buzzega et al. (2020) and generating-based methods such as DGR Shin et al. (2017).
Retaining-based methods fix the capacity of the network to store old data. As the number
of old tasks increases, the number of retained samples corresponding to each old task will
decrease. Generating-based methods train a generator, then the model is trained with the
data generated by the generator and the new task data together. This method can alleviate
the forgetting problem and may achieve better task results. Nevertheless, both methods
require either sufficient storage or additional training of the generator.

2.2. Comparative Analysis

The most relevant works to our method are DER Buzzega et al. (2020) and TwF Boschini
et al. (2022). In reproducing these two works, we found that the performance improvement
of DER for task increment is very significant, therefor our work continues to follow the dark
experience replay-based approach. The dark experience replay method refers to that when
learning a new task, the saved data of the old task is put into the training data set, and the
knowledge distillation method is used to maintain the old task performance. As mentioned
earlier, our work is a two-stage approach, with the first stage using a variant of the dark
experience replay-based approach and the second stage leveraging the old task data stored
in memory to improve the performance of class-Incremental tasks. Our first-stage approach
is a variation on DER, and we also adopt TwF’s approach of using pre-trained model weights
for training.

In addition, LwF Li and Hoiem (2017) is also a two-stage method, its first stage is warm-
up training, and the second stage starts the overall training, and it does not use memory to
store old information. In contrast, Our method trains the whole network in the first stage
and then trains the classifier in the second stage. In the experiment section, we will add
LwF and LwF with memory(LwF.M) as comparison methods.

3. Method

By the definition of continuous learning, we have a series of tasks to learn. To distin-
guish them from tasks in task-incremental learning, we refer to avalanche Lomonaco et al.
(2021) using the term "experience", and we denote these continuous experiences as E =
{E1, E2, . . . , ET }, T is the total number of continuous learning experiences. And for the
image classification network fθ, we usually divide it simply into a feature extractor g and a
linear classifier h, fθ = g ◦ h. The objective function of learning is:

argmin
θ

T∑
i=1

Li = argmin
θ

T∑
i=1

E(x,y)∈Ei
[ℓ (y, fθ (x))] (1)
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Figure 1: Inner-task classification and Cross-task classification.

Where ℓ is the loss function. If we have all the experiences data, we can do joint training
and directly optimize the above loss function by setting the hyperparameters to get the best
results.

However, as we mentioned in the related work when defining the task, we acknowledged
that we cannot obtain all the data. During training, we only have access to data for the
current experience and a limited amount of past data stored in memory. Therefore we can
only approximate the minimization of the loss function.

3.1. Definition of terms

To facilitate the detail of our approach next, we define two terms. Assuming that the tth

task has arrived and the previous t − 1 tasks have already been trained, each experience
is divided into c classes. When inputting an image, the output of the current network is a
vector of dimension t ∗ c, and the subscripts of the t ∗ c floating-point numbers contained
in this vector are denoted by 0 to t ∗ c− 1. The output is represented in a Python-like list
format: O[0 : t ∗ c]. Define two terms below:
Inner-task classification: The training goal is to classify correctly in O[(t− 1) ∗ c : t ∗ c].
Cross-task classification: The training goal is to classify correctly in O[0 : t ∗ c].
Fig. 1 depicts the two terms. As show in the figure, the result of Inner-task classification is
the dog, while the prediction of Cross-task classification is the cat.

3.2. Classifier: Primary Cause of Forgetting

Based on the DER Buzzega et al. (2020) method, we did some experiments to demon-
strate that the linear classifier forgot much more than the feature extractor after using the
knowledge distillation method. We save the model at the end of training for each task in
continuous learning.
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(a) (b)

Figure 2: (a) depicts the performance of the model on the test dataset with a different
linear classifier using a fixed feature extractor. Where the ith experience curve
indicates the prediction accuracy of the ith feature extractor and different linear
classifiers on the test dataset of the ith experience with a sharp drop. (b) depicts
the performance of the model on the test dataset with a fixed linear classifier
with different feature extractors. Where the ith classifier curve represents the
prediction accuracy of the ith linear classifier and different feature extractors on
the ith experience test dataset with a flat decline.

As shown in Fig. 2(a)subfigure. Fixing the feature extractor parameters and comparing
different linear classifier parameters for the same experience learning shows a significant
decrease in accuracy on the same task.

As shown in Fig. 2(b)subfigure. We again fixed the linear classifier parameters and
compared different feature extractor parameters for the same experience learning and found
a flat decrease in accuracy on the same task.

Thus we reasonably suspect that the linear classifier is more forgetful during continuous
learning and we need to pay extra attention to the learning of the linear classifier parameters
during training. In the Wu et al. (2019) there was also mentioned the existence of bias in
the fully connected layer, it was done by adding Bias Correction Layer, but our approach
does not add additional network structure.

3.3. Classifier Expander(CE) Method

The model structure of the network is shown in Fig. 3. We divide the model into two parts:
feature extractor and linear classifier. The parameters of feature extraction are the task-
sharing parameters represented by θs, the parameters of the old task linear classifier are
represented by θo, and the parameters of the new task linear classifier are represented by θn.

As mentioned in the Introduction, our approach is a two-stage method. The CE model
training process is shown in Fig. 4. In the first stage, our training process was divided into
two parts. In the first part, we employ a knowledge distillation approach which utilizes
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Figure 3: Classifier Expander(CE) Model Architecture.

data retained in memory for the training of the network parameters(θs, θo) to preserve the
performance of previously learned tasks. In the second part, the model train the network
parameters(θs, θn) to learn the new task by using the dataset of the new task. At this point,
the new task is trained using the Inner-task classification approach. After training, we add
the new task dataset to memory and adjust the amount of data from the old task to keep
the total amount of storage in memory constant. In the second stage, we use the data in
updated memory to train the network(θo, θn) to improve the overall prediction accuracy. At
this point, the new task is trained using the Cross-task classification method. So we are
referred to this linear classifier training range expansion method as Classifier Expander(CE).

The algorithm flow is as follows Algo. 1. As the algorithm demonstrates: we now train
the tth task called new task Et which data is Dt, and the data of 1∼ t-1 tasks will be saved
in the memoryM. The size of the memory is K, and the number of data of each task stored
in memory is consistent j = K/t. We use two forms(data perspective and task perspective)
to represent M to facilitate the understanding of the algorithm. ℓ is the cross-entropy loss
function, and ℓ′ is the MSE loss function. λα, λβ , and λftc are hyperparameters, which are
set in the experimental section of Section 4.

4. Experiment

4.1. Evaluation Method

Some continuous learning metrics are proposed in Lopez-Paz and Ranzato (2017); Chaudhry
et al. (2018). We choose Final Average Accuracy(FAA) and Final Forgetting(FF) Boschini
et al. (2022) as the metrics of our experiments.
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Algorithm 1 Classifier Expander(CE)
Input: The index of the current task: t.

The dataset of the current task: Dt =
{(

xt
n, y

t
n

)
|1 ≤ n ≤ r

}
(data perspective).

// r represents the total amount of data.

The memory size: K.

The t-1 task model: F t−1 = (θt−1
s , θt−1

o ).

The dataset of the memory: M =
{
M1,M2, . . . ,Mt−1

}
(task perspective),

Mi =
{(

xi
1, y

i
1

)
,
(
xi
2, y

i
2

)
, . . . ,

(
xi
j , y

i
j

)}
, 1 ≤ i ≤ t − 1, j = K/ (t− 1)(data perspec-

tive),

M = {(xm, ym) |1 ≤ m ≤ K}(data perspective).

Output: The trained model F t∗.

1: F t ← (F t−1, θtn);

// First stage

2: (θts
∗
, θto

∗
, θtn

∗
)← argmin

θts,θ
t
o,θ

t
n

(
ℓ
(
F t

(
xt
n

)
, ytn

)
+ λα · ℓ

(
F t (xm) , ym

)
+ λβ · ℓ′

(
F t (xm) , F t−1 (xm)

) )
;

3: j′ ← K/t;

4: for i = 1→ i = t− 1 do

5: Mi′ ← RANDOM
(
Mi

)
[: j′]; // Shuffle and select the first j′ items.

6: end for

7: Mt ← RANDOM
(
Dt

)
[: j′]; // Shuffle and select the first j′ items.

8: M′ ←
{
M1′,M2′, . . . ,Mt−1′,Mt

}
; //M′ = {(x′

m, y′m) |1 ≤ m ≤ K}.
// Second stage

9:
(
θto

∗∗
, θtn

∗∗)← argmin
θto

∗,θtn
∗

(
λftc · ℓ

(
F t (x′

m) , y′m
))

;

10: F t∗ ←
(
θts

∗
, θto

∗∗
, θtn

∗∗).
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Figure 4: Classifier Expander(CE) Model Training Process.

FAA =
1

T

T∑
i=1

ati (2)

FF =
1

T − 1

T−1∑
i=1

max
t∈1,2,...,T−1

ati − aT−1
i (3)

where ati denotes the accuracy for experience Ei after training on the tth experience.

4.2. Experimental Setting

4.2.1. Dataset

The dataset is described in Tab. 1.

Table 1: The number of training and test samples, the total number of classes, and the split
of the dataset.

Dataset Training/Test
Samples

Total
Classes

Num Of
Experiences

Classes Per
Experience Experiment Name

CIFAR-10 50, 000/10, 000 10 5 2 Split CIFAR-10
CIFAR-100 50, 000/10, 000 100 10 10 Split CIFAR-100
CUB-200 5, 994/5, 794 200 10 20 Split CUB-200
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4.2.2. Model And Parameters Setting

Details of the experiment are in Tab. 2. We introduce the backbone model and the weights
of the pre-trained model used for each experiment. We train ResNet-18 for CIFAR-10 and
CIFA-100 trials with a low number of classes and ResNet-50 for CUB-200 experiments with
a big number of classes. For the selection of the pre-trained model, we refer to Boschini
et al. (2022). We choose a dataset with much more classes than the current experiment for
pre-trained, and it is important to note that we use the checkpoint supplied in Boschini et al.
(2022). In the first stage, we use the number of batch size data from the new experience
dataset and memory. In the second stage, we only use the data in the updated memory, we
use the num of batch size data for training.

Table 2: The model used in the experiments, the corresponding pre-trained model, and the
experimental parameter settings under different buffer sizes.

Experiment Name Backbone Model Pre-trained Model Buffer Size lr/epoch/batchsize λα/λβ/λftc

Split CIFAR-10 ResNet18 CIFAR-100 500 0.05/50/32 0.4/2.5/0.1
5120 0.08/50/32 0.4/2/0.1

Split CIFAR-100 ResNet18 Tiny ImageNet 500 0.04/50/32 0.9/1/0.1
2000 0.05/50/32 1/1.2/0.1

Split CUB-200 ResNet50 ImageNet 400 0.02/50/32 5/2/1
1000 0.04/50/32 2/1/0.5

4.2.3. Compared Methods

We compare CE with the following scenarios:
1. Joint. Train the network using all the data at once, with the accuracy result as an

upper limit.
2. Finetune. Train the network using only new task data and a tiny learning rate at a

time without any restrictions.
3. oEWC Kirkpatrick et al. (2017), using online estimation of Fisher information matrix

to penalize modifications to important parameters.
4. LwF Li and Hoiem (2017), a distillation method using only new task data.
5. LwF.M , LwF method that uses memory to retain old task data.
6. ER Robins (1995), the method that mixes training with in-memory data sampling

and current task data.
7. CO2L Cha et al. (2021), a continuous learning method that introduces contrast

learning.
8. iCaRL Rebuffi et al. (2017), which uses episodic memory to prevent catastrophic

forgetting.
9. DER + + Buzzega et al. (2020), a method for training using self-distillation on

in-memory data.
10. ER_ACE Caccia et al. (2022), cross-entropy loss method for separating memory

and current task data.
11. TWF Boschini et al. (2022), a method to improve continuous learning performance

based on migrating knowledge from pre-trained networks
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4.3. Results

As shown in Table. 3, the FF of our method is the lowest on the Split CIFAR-10 experiment,
making full use of the data in memory to mitigate catastrophic forgetting. The FAA of our
method is second only to the TwF method and higher than the other CL methods. This
is because the advantage of classifier expansion is not obvious when the number of classes
is small. On the continuous learning task with a small number of classes, both TwF and
our method are close to the results of joint training, and the difference in our results is not
significant.

Table 3: The results on the Split CIFAR-10 dataset, including both class incremental learn-
ing and task incremental learning for continuous learning, using Final Average
Accuracy(FAA) and Final Forgetting(FF) as metrics. The pre-trained experiment
is training on CIFAR-100.

FAA(FF) Split CIFAR-10 (pretr. CIFAR-100)
Method Class-IL Task-IL
Joint(UB) 92.89(-) 98.38(-)
Finetune 19.76(98.11) 81.84(19.50)
oEwc Kirkpatrick et al. (2017) 26.10(88.85) 81.84(19.50)
LwF Li and Hoiem (2017) 19.80(97.96) 86.41(14.35)
Buffer Size 500 5120 500 5120
LwF.M 26.08(90.03) 29.18(85.76) 92.46(7.10) 94.32(4.36)
ER Robins (1995) 67.24(38.24) 86.27(13.68) 96.27(2.23) 97.89(0.55)
CO2L Cha et al. (2021) 75.47(21.80) 87.59(9.61) 96.77(1.23) 97.82(0.53)
iCaRL Rebuffi et al. (2017) 76.73(14.70) 77.95(12.90) 97.25(0.74) 97.52(0.15)
DER++ Buzzega et al. (2020) 78.42(20.18) 87.88(8.02) 94.25(4.46) 96.42(1.99)
ER-ACE Caccia et al. (2022) 77.83(10.63) 86.20(5.58) 96.41(2.11) 97.60(0.66)
TwF Boschini et al. (2022) 83.65(11.59) 89.55(6.85) 97.49(0.86) 98.35(0.17)
CE(Ours) 83.61(9.89) 88.22(5.99) 97.81(0.31) 98.08(0.09)

As shown in Tab. 4 and Tab. 5, the advantages of our method come to the fore on
datasets with a high number of classification categories. In Split CIFAR-100 and Split
CUB-200 experiments, the FF and FAA of our method outperform other CL methods,
achieving an average improvement of 2.94% on the class increment task and 1.16% on the
task increment task compared to the current best method. The experiments demonstrate
that our method can alleviate forgetting of old tasks and can learn knowledge from new
tasks, thus effectively improving the accuracy of continuous learning tasks.

4.4. Ablation studies

We perform ablation studies to verify the validity of each part of our model. As shown in
Tab. 6, we denote the loss of distillation training in the first stage by LKD and the loss of the
CE of the second stage by LFTC . By comparing the first and second rows or the third and
fourth rows it can be seen that using the CE method can effectively improve the accuracy
of the model. By comparing the first and third rows or the third and fourth rows it can be
seen that the distillation method is the most influential factor in performance improvement.
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Table 4: The results on the Split CIFAR-100 dataset, including both class incremental learn-
ing and task incremental learning for continuous learning, using Final Average Ac-
curacy(FAA) and Final Forgetting(FF) as metrics. The pre-trained experiment is
training on Tiny ImageNet.

FAA(FF) Split CIFAR-100 (pretr. Tiny ImageNet)
Method Class-IL Task-IL
Joint(UB) 75.20(-) 93.40(-)
Finetune 09.52(92.31) 73.50(20.53)
oEwc Kirkpatrick et al. (2017) 10.95(81.71) 65.56(21.33)
LwF Li and Hoiem (2017) 10.83(90.87) 86.17(4.77)
Buffer Size 500 2000 500 2000
LwF.M 13.23(88.21) 14.37(86.57) 76.52(18.03) 80.56(13.61)
ER Robins (1995) 31.30(65.40) 46.80(46.95) 85.95(6.14) 87.59(4.85)
CO2L Cha et al. (2021) 33.40(45.21) 50.95(31.20) 68.51(21.51) 82.96(8.53)
iCaRL Rebuffi et al. (2017) 56.00(19.27) 58.10(16.89) 89.99(2.32) 90.75(1.68)
DER++ Buzzega et al. (2020) 43.65(48.72) 58.05(29.65) 73.86(20.08) 86.63(6.86)
ER-ACE Caccia et al. (2022) 53.38(21.63) 57.73(17.12) 87.21(3.33) 88.46(2.46)
TwF Boschini et al. (2022) 56.83(23.89) 64.46(15.23) 89.82(3.06) 91.11(2.24)
CE(Ours) 59.88(15.91) 65.12(15.87) 91.13(1.48) 91.77(0.89)

Table 5: The results on the Split CUB-200 dataset, including both class incremental learning
and task incremental learning for continuous learning, using Final Average Accu-
racy(FAA) and Final Forgetting(FF) as metrics. The pre-trained experiment is
training on ImageNet.

FAA(FF) Split CUB-200 (pretr. ImageNet)
Method Class-IL Task-IL
Joint(UB) 78.54(-) 86.48(-)
Finetune 8.56(82.38) 36.84(50.95)
oEwc Kirkpatrick et al. (2017) 8.20(71.46) 33.94(40.36)
LwF Li and Hoiem (2017) 8.59(82.14) 22.17(67.08)
Buffer Size 400 1000 400 1000
LwF.M 11.50(72.72) 13.79(71.70) 67.29(11.35) 72.23(7.72)
ER Robins (1995) 45.82(40.76) 59.88(25.65) 75.26(9.82) 80.19(4.52)
CO2L Cha et al. (2021) 8.96(32.04) 16.53(20.99) 22.91(26.42) 35.79(16.61)
iCaRL Rebuffi et al. (2017) 46.55(12.48) 49.07(11.24) 68.90(3.14) 70.57(3.03)
DER++ Buzzega et al. (2020) 56.38(26.59) 67.35(13.47) 77.16(7.74) 82.00(3.25)
ER-ACE Caccia et al. (2022) 48.18(25.79) 58.19(16.56) 74.34(9.78) 78.27(6.09)
TwF Boschini et al. (2022) 57.78(18.32) 68.32(6.74) 79.35(5.77) 82.81(2.14)
CE(Ours) 63.62(13.36) 70.53(6.62) 80.85(1.77) 83.97(1.43)

5. Conclusion

We propose a CE method that effectively mitigates the problem of catastrophic forgetting
in continuous learning. Experiments show that our method outperforms other CL methods
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Table 6: The results of the ablation experiment, w/o/buf. indicates that Memory is not
used, !indicates that this loss is used, and %indicates that this loss is not used.
There are two data for each term, the result of the class-incremental learning and
the task-incremental learning are shown on the left/right.

LKD LFTC Split CIFAR-10 Split CIFAR-100 Split CUB-200
Buffer Size w/o/buf. 500 5120 w/o/buf. 500 2000 w/o/buf. 400 1000
! ! - 83.61/97.81 88.22/98.08 - 59.88/91.13 65.12/91.77 - 63.62/80.85 70.53/83.97
! % - 76.15/97.79 75.48/96.96 - 51.33/91.12 55.79/92.09 - 55.79/80.77 61.66/83.31
% ! - 59.35/93.65 73.54/96.19 - 37.69/79.24 44.38/81.82 - 34.04/60.55 39.53/65.95
% % 53.14/93.37 - - 25.33/76.64 - - 14.60/5.31 - -

in tasks with a large number of continuous learning classes. However, in tasks with a small
number of classes, the advantage of our CE method is no longer obvious. In Section 3.1, we
mentioned that linear classifiers are the key to forgetting, and we use retraining to overcome
forgetting, which can be subsequently considered using a new classifier network to consider
solving this problem. Lesort (2020)
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