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Abstract

Kidney tumors, affecting over 400,000 individ-
uals annually, require accurate segmentation
for effective treatment and surgical planning.
Yet, manual segmentation is time-consuming,
steering the medical community towards auto-
mated methods. While computer-aided diag-
nostic tools promise improvements, their tran-
sition into the real world mandates an under-
standing of their performance across diverse
population subgroups. Our study is the first to
investigate fairness concerning kidney and tu-
mor segmentation, particularly focusing on sen-
sitive attributes like sex and age. Our findings
show an existence of bias in performance across
both attributes. In particular, despite a male-
dominated training dataset, females showed su-
perior segmentation performance. Age groups
60-70 and above 70 also deviated significantly
from the average performance for all ages. To
address these biases, we comprehensively ex-
plore bias mitigation strategies - encompass-
ing pre-processing techniques (Resampling Al-
gorithm and Stratified Batch Sampling) and in-
processing methods (Fair Meta-learning and ar-
chitectural adjustments). Specifically, Atten-
tion U-Net was identified as the optimal model
for balancing fairness across both attributes
while maintaining high segmentation perfor-
mance. We present a crucial insight that the ar-
chitecture itself could be a source of inherent bi-
ases, and careful selection of the network design
can inherently reduce these biases. Our assess-
ment of UNet variants challenges the prevailing
paradigm of model selection predicated solely
on segmentation performance, especially con-
sidering the profound implications biases can
have in clinical outcomes.

Keywords: Fair AI, Segmentation, Kidney
Tumors, Bias Mitigation

1. Introduction

Kidney tumors constitute a significant health con-
cern with an annual incidence exceeding 400,000 cases
(Sung et al. (2021)). For formulating treatment strat-
egy and surgery planning (Taha et al. (2018); Kutikov
and Uzzo (2009)) for the patient, accurate segmenta-
tion of kidney and tumor using medical images is es-
sential. Since manual delineation remains a daunting
task that requires radiologists to annotate hundreds
of slices, the medical imaging community has focused
on developing automatic segmentation methods that
improve segmentation quality.

While the advantages of AI-aided diagnostic tools
seem evident, transitioning these methods from re-
search to real-world application demands careful con-
sideration. Typically, performance evaluation for
deep learning models is based on the general pop-
ulation without considering diverse subgroups. How-
ever, these models may exhibit inconsistent perfor-
mance across certain sensitive subgroups (e.g. sex
or race), leading to differential treatments among
these subgroups. Prior to deploying models in clin-
ical settings, it is crucial to minimize inherent bias.
The medical imaging community has increasingly fo-
cused on ensuring fairness in models across various
modalities (e.g., MRI Ribeiro et al. (2022), X-Ray
Seyyed-Kalantari et al. (2021)), anatomical regions
(e.g., brain Ioannou et al. (2022), chest Cherepanova
et al. (2021), heart Puyol-Antón et al. (2021)), and
considers sensitive attributes (e.g., sex Petersen et al.
(2022), age Brown et al. (2022), race Zhang et al.
(2018)).

Previous research has indicated a higher preva-
lence of kidney cancer in males (Rampersaud et al.
(2014)), and this gender disparity in renal cell carci-
noma (RCC) incidence decreases with increasing age
(Korn and Shariat (2017)). Given the observed in-
fluence of sex and age on kidney cancer, a significant
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question arises regarding the fairness of segmentation
tasks related to these sensitive attributes.
Surprisingly, despite kidney and tumor segmenta-

tion being a well-recognized challenge (Heller et al.
(2019)) in the medical imaging community, no previ-
ous study has explored the fairness aspect of kidney
and tumor segmentation. To bridge this gap, we in-
vestigate whether the segmentation methods, trained
on the publicly available kidney tumor dataset, ex-
hibit fairness across different subgroups defined by
sensitive attributes: sex and age. In our study, we
employ the nnU-Net network, recognized for its suc-
cess in winning the Kidney and Kidney Tumor Seg-
mentation 2019 (KiTS19) challenge, and train it us-
ing the KiTS19 dataset (Heller et al. (2019)). Our
approach is one of the initial endeavors in the rel-
atively unexplored area of fairness in medical seg-
mentation (Ioannou et al. (2022); Puyol-Antón et al.
(2022); Salahuddin et al. (2023)).
Our results reveal a pronounced bias in perfor-

mance based on sex and age. Notably, despite the
training data being predominantly male, the female
subgroup exhibits significantly better performance.
In terms of age, the model significantly deviates from
the average score for groups between 60 to 70 and
those above 70, performing worst for the former and
best for the latter.
To mitigate these biases, we comprehensively ex-

periment with four mitigation approaches: two
pre-processing methods (Resampling Algorithm and
Stratified Batch Sampling) and two in-processing
techniques (Fair Meta-learning and altering architec-
tural design). While all four methods reduced bias
to varying degrees, choosing the appropriate network
architecture was the most effective way to debias.
Specifically, in terms of fairness, Attention U-Net per-
forms the best in the sex attribute whereas U-Net per-
forms the best in the age attribute. To balance out
fairness across both attributes while maintaining seg-
mentation performance comparable to nnUNet, we
identify Attention U-Net as the most suitable model.
To summarize, our key contributions in this work

are:

• We are the first to investigate fairness in kidney
and tumor segmentation. Our analysis reveals
notable biases in performance across sensitive at-
tributes, namely sex and age.

• Through evaluating four bias mitigation ap-
proaches, we find that pre-processing techniques,
such as Resampling Algorithm and Stratified

Batch Sampling, outperform explicit fairness
training methods like Fair Meta-learning.

• Unlike other fairness studies in medical imaging
that center on mitigation strategies within a sin-
gle architecture, our research explores the notion
that the architecture itself could be the root of
inherent biases. Our findings suggest that ju-
dicious architecture selection could serve as an
intrinsic de-biasing mechanism.

• Our analysis reveals a trade-off between fairness
and segmentation performance, highlighting the
risk of prioritizing performance without address-
ing algorithmic bias in clinical contexts.

2. Related Work

A limited number of studies have explored fair-
ness in medical image segmentation. Ioannou et al.
(2022) addressed demographic bias in CNN-based
brain agnetic Resonance(MR) segmentation, shed-
ding light on the influence of demographic vari-
ables on segmentation outcomes. Puyol-Antón et al.
(2021, 2022) examined potential biases in cardiac
magnetic resonance imaging, particularly focusing on
sex and racial discrepancies influenced by data im-
balances. In a more expansive scope, Salahuddin
et al. (2023) presented an end-to-end framework for
head and neck tumor Positron Emission Tomogra-
phy(PET)/Computed Tomography(CT) imaging, in-
corporating fairness alongside uncertainty and multi-
modal radiomics considerations. Previous works on
kidney and tumor segmentation have solely focused
on segmentation task or integrating clinical charac-
teristics Lund and van der Velden (2021) to improve
segmentation performance. However, fairness in kid-
ney and tumor segmentation remains unexplored in
existing literature, an oversight we address in this
study.

Regarding mitigation strategies, previous research
has identified interventions at three phases: pre-
processing, in-processing, and post-processing tech-
niques. Pre-processing methods adjust data us-
ing techniques like data resampling (Puyol-Antón
et al. (2021); Brown et al. (2022)), GAN-based
sample synthesis (Pakzad et al. (2022); Joshi and
Burlina (2021)), and data aggregation from various
sources (Seyyed-Kalantari et al. (2020); Zhou et al.
(2021)). However, these methods can face chal-
lenges due to limited data or potential data skew-
ing (Maluleke et al. (2022)). In-processing methods
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focus on altering the model’s architecture. Strategies
such as adversarial learning reduce the impact of sen-
sitive data on feature vectors (Adeli et al. (2021)),
while disentanglement learning divides feature vec-
tors (Deng et al. (2023)). Other methods, like the
one proposed by Du et al. (Du et al. (2022)), adjust
feature vector distances. Their effectiveness can vary,
especially when sensitive attributes are closely linked
to target tasks. Post-processing methods, though less
prevalent, refine the outputs of models. They employ
calibration for specific subgroup thresholds (Pleiss
et al. (2017)) and pruning to eliminate certain neu-
rons (Marcinkevics et al. (2022); Wu et al. (2022)),
making the most of pre-trained models with minimal
alterations. Beyond examining these mitigations, our
study is the first to explore how network architecture
itself might influence biases in medical imaging.

3. Methods

In the segmentation of kidneys and tumors, the model
is required to output segmentations for both the
kidney and the tumor using the input CT image
X ∈ RH×W×C . We consider sex and age groups as
sensitive attributes, s, aiming to achieve optimal seg-
mentation performance that is unaffected by s.

3.1. Dataset

We utilized the KiTS 2019 dataset (Heller et al.
(2019)) from the Kidney Tumor Segmentation Chal-
lenge. This dataset comprises volumetric CT scans of
210 patients who underwent either partial or radical
nephrectomy at the University of Minnesota Medi-
cal Center between 2010 and 2018. These preop-
erative abdominal CT images, captured during the
late-arterial phase, provide a distinct representation
of kidney tumor voxels in the ground truth. The
dataset, presented in the anonymized Neuroimaging
Informatics Technology Initiative (NIFTI) format, in-
cludes imaging data alongside corresponding ground
truth labels. Accompanying each scan is metadata
detailing patient age, sex, and other pertinent clinical
details. For our study, following Wang et al. (2020),
the data was randomly divided into training and test
sets of 160 and 50 samples. Figure 1 provides an
overview of the distribution of gender and age groups
within the KiTS19 dataset’s training and test sets.
Notably, similar patterns are observed across both
data splits with slight variations, ensuring a consis-
tent foundation for our subsequent analyses.

Figure 1: Distribution of gender and age groups
within the KiTS19 dataset’s training and
test sets.

3.2. Preprocessing and Data Augmentations

3.2.1. Preprocessing

The KiTS dataset, like most large CT datasets, ex-
hibits non-uniform voxel spacings, particularly in the
voxel dimensions. Such variability can hinder the
efficacy of 3D convolutions, often leading to perfor-
mance akin to 2D models. Since CNN based archi-
tectures like nnUNet inherently struggle with incon-
sistent voxel spacings, preprocessing becomes crucial.

Following the recommended practices from
nnUnet Isensee et al. (2021), we resampled all
samples to a consistent voxel spacing. It is worth
noting that the choice of voxel spacing plays a
pivotal role in determining the amount of contextual
information a 3D CNN can capture, as well as the
overall voxel count of the image. However, a larger
voxel spacing can compromise image detail. To
strike a balance, we standardized all cases to a voxel
spacing of 3.22×1.62×1.62 mm for training samples.

CT images inherently offer quantitative consis-
tency, meaning an organ should exhibit uniform in-
tensity values across scans, even from varied scan-
ners. Leveraging this property, we set intensity levels
within an organ-specific range. In line with Isensee
and Maier-Hein (2019), we constrained each case’s
intensity to the range [−79, 304]. These values were
then normalized by subtracting 101 and dividing
by 76.9, preparing them for processing within the
nnUNet architecture.
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3.2.2. Data Augmentations

To enhance our model’s robustness and adaptabil-
ity, we incorporated a myriad of data augmentation
techniques during training using the MONAI frame-
work (Cardoso et al. (2022)). We adjusted the spatial
dimensions of both images and labels to match a spec-
ified patch size through spatial padding. We applied
random cropping to regions based on positive and
negative labels, ensuring a balance between the two.
The images underwent random zooming between 0.9
to 1.2 times their original size with a 15% likelihood.
Additionally, Gaussian noise, with a standard devi-
ation of 0.01, and Gaussian smoothing–with varying
sigma values across the x, y, and z dimensions–were
introduced at a 15% chance. The intensity of the im-
ages was randomly scaled by a factor of 0.3 with a
15% probability. We also incorporated random flip-
ping of images and labels across each of the three
spatial axes, each with a 50% probability.

3.3. Model and Training

We adopted the nnU-Net architecture Isensee et al.
(2021), renowned for its achievements in several
medical segmentation challenges Ma (2021), includ-
ing the Kidney Tumor Segmentation Challenge 2019
(KiTS19). In our study, this model served as the
baseline for segmentation comparisons, trained with-
out referencing protected attributes like race and gen-
der.
Given GPU memory limitations, our approach

aligned with conventional practices for 3D segmen-
tation in CT data, training the model with patches
of size 160 × 160 × 80 voxels. Utilizing the stochas-
tic gradient descent (SGD) optimizer, the model was
trained for 2000 epochs to ensure convergence, with
a learning rate set at 1e−3 and momentum at 0.9,
with a batch size of 4. The training process incor-
porated both multi-class Dice loss and cross-entropy
loss. In the specific instance of the Fair Meta-learning
bias mitigation approach, we employed a hybrid of
segmentation and classification loss as described in
Equation 1. Our experiments demonstrate the im-
pact of varying the parameters α and β on segmenta-
tion and fairness performance. Notably, deep super-
vision was employed, computing losses at every de-
coder stage, which inherently facilitates gradients to
flow deeper into the network. All our methods were
implemented using Pytorch (Paszke et al. (2019)) and
MONAI framework (Cardoso et al. (2022)) on a sin-
gle NVIDIA Tesla V100 GPU.

3.4. Metrics

We employed the Dice Similarity Score (DSC) as our
segmentation metric, gauging the overlap between
predicted and actual segmentations. We report DSC
on kidney, kidney overlap, and their aggregated av-
erage.

In alignment with established fairness re-
search (Puyol-Antón et al. (2021); Wang and
Deng (2020)), we adopted the Standard Deviation
(SD) and Skewed Error Rates (SER) as our fairness
metrics. The SD quantifies the dispersion in mean
DSC values across different sensitive groups. The
SER is determined by the ratio of the maximum to
the minimum error rate among these groups. It is
mathematically represented as:

SER =
maxg(1−DSCg)

ming(1−DSCg)

where g denotes the protected groups.
The fairness metrics SD and SER were initially for-

mulated for classification tasks as outlined in Wang
and Deng (2020). Their applicability, however, ex-
tends beyond classification, having been effectively
utilized in fairness evaluations for medical imaging
segmentation, as evidenced in Puyol-Antón et al.
(2021).

3.5. Fairness Evaluation

Our objective was to assess whether the baseline
model performed consistently, without favoring one
sex or age group over the other. To this end, we be-
gan by training the network on the entire training
set without accounting for any attribute labels. Fol-
lowing this initial training, we delved into the model’s
predictions on protected group subsets within the test
set, aiming to identify any performance disparities.

For sex-based fairness, we scrutinized the model’s
outcomes for both male and female subsets in the
test set. For age, we segmented the test set into dis-
tinct age brackets, as delineated by Salahuddin et al.
(2023): [0, 50), [50, 60), [60, 70) and > 70. This gran-
ular approach facilitated an in-depth analysis of the
model’s consistency across various age groups.

3.6. Bias Mitigation Techniques

We implement bias mitigation approaches for our seg-
mentation task and evaluate fairness by examining
the performance across various subgroups, defined by
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sensitive attributes. Note that we compare the re-
sults of these mitigation methods with our baseline
nnU-Net model which is blinded to the sensitive at-
tributes (sex and age). In particular, we conduct a
comprehensive comparison of the baseline framework
(nnU-Net) against four mitigation strategies: two
pre-processing methods: Resampling and Stratified
Batch Sampling, and two in-processing techniques:
Fair Meta-learning and changes in architectural de-
sign.

3.6.1. Fair Meta-learning

This mitigation strategy is designed to address inher-
ent biases in model predictions by making the net-
work aware of the sensitive attributes like sex. This
is achieved by integrating an additional classifica-
tion branch dedicated to identifying the sensitive at-
tribute alongside the primary segmentation network.
Drawing from insights in prior research ( Xu et al.
(2020); Puyol-Antón et al. (2021)), the core intuition
is to reduce spurious correlations between sensitive
attributes and the representations learned for the seg-
mentation task.
For this attribute classification, we employ a

DenseNet network (Huang et al. (2017)) that pro-
cesses the original CT image. The setup is treated
as a multi-task learning problem, jointly optimizing
both segmentation and classification networks. The
combined loss function is defined as:

Ltotal = αLsegmentation + βLclassification (1)

where α and β are used to balance the contributions
of the segmentation and classification losses, respec-
tively. In this context, Lsegmentation is a combination
of dice and cross-entropy Loss, while Lclassification is
the standard cross-entropy loss computed from clas-
sification labels.

3.6.2. Resampling Algorithm (RESM)

The Resampling Algorithm (RESM) (Du et al.
(2022); Kamiran and Calders (2012)) is a pre-
processing strategy that balances the dataset by ad-
justing sample counts based on sensitive attribute
groups. Specifically, it oversamples from underrep-
resented groups and undersamples from overrepre-
sented ones to achieve a balanced dataset. This
approach encourages the model to treat all groups
equitably. In our experiments, we employed equal
sampling weights, ensuring each group is represented
equally in training.

3.6.3. Stratified Batch Sampling

Stratified Batch Sampling, a pre-processing tech-
nique, aims to eradicate biases at the batch sampling
phase of training. By categorizing data according to
sensitive attributes within each training batch, this
approach ensures that every sensitive group is equally
represented. By doing so, the model is consistently
exposed to a diverse set of data, reducing the risk of
bias towards any particular subgroup. Such stratifi-
cation has been previously employed to bolster fair-
ness in both classification and segmentation (Kami-
ran and Calders (2012); Puyol-Antón et al. (2022)).

3.6.4. Altering Architectural Design

While traditional methods for de-biasing in medical
imaging rely on a consistent neural network architec-
ture, we probe deeper to question if inherent model
biases might originate from the architecture itself. To
this end, we delved into the exploration of various U-
Net variants, a prevalent architecture widely used in
medical imaging tasks.

Owing to its exceptional performance, as our base-
line, we employed nnU-Net, a network that was em-
ployed to win the Kidney and Kidney Tumor Segmen-
tation Challenge 2019. This baseline was evaluated
against other prominent architectures: the classic U-
Net, V-Net, and the Attention U-Net.

4. Results

In this section, we examine the results concerning
the prevalence of bias in relation to the sensitive at-
tributes of sex and age, while also evaluating the ef-
fectiveness of various mitigation strategies deployed
to address these biases. Specifically, Section 4.1 pro-
vides an evaluation of model fairness for sex and age
attributes. Section 4.2 investigates a variety of bias
mitigation techniques designed to enhance model fair-
ness. We also examine the trade-off between achiev-
ing optimal segmentation performance and uphold-
ing fairness criteria, synthesizing the insights gained
to identify the most effective approach across all at-
tributes and mitigation strategies.

4.1. Fairness Evaluation

Table 1 provides an overview of our assessment of
sex and age bias for the state-of-the-art approach for
kidney and kidney tumor segmentation. Across both
protected attributes, we observe that the baseline
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Table 1: Performance and Fairness Evaluation of Kidney Tumor Segmentation Across Sensitive Groups on
our baseline method. The table shows Dice Similarity Coefficient (DSC) values for Kidney and
Tumor segmentations and their mean, across the entire dataset and further divided by gender and
age groups. For Fairness Evaluation, we use Standard Deviation - SD (lower is better) and Skewed
Error Rate - SER (1 is optimal) metrics. The high values of SD and SER (boldfaced) signify high
bias. The average and standard deviation scores with three random seeds are reported.

Attributes Group
DSC Fairness

Kidney ↑ (%) Tumor ↑ (%) Mean ↑ (%) SD ↓ SER ↓
All - 94.9 ± 0.05 78.0 ± 0.90 86.5 ± 0.65 - -

Gender
male 95.1 ± 0.05 73.4 ± 0.40 84.2 ± 0.20 2.32 ± 0.38 1.42 ± 0.09
female 94.7 ± 0.10 83.0 ± 1.45 88.9 ± 1.25

Age

0 - 50 95.1 ± 0.05 79.8 ± 0.20 87.4 ± 0.05 3.22 ± 0.49 2.08 ± 0.13
50 - 60 95.0 ± 0.01 77.0 ± 0.30 86.0 ± 0.25
60 - 70 95.1 ± 0.25 70.5 ± 2.25 82.8 ± 1.15
> 70 94.4 ± 0.30 89.6 ± 0.40 91.8 ± 0.10

nnUnet-based model exhibits biases, with the fine-
grained analysis presented next.

4.1.1. Fairness Assessment for Sex

We observe a notable disparity in performance (mean
DSC) between females and males, with females ex-
hibiting significantly higher performance. Further-
more, a high standard deviation (SD) and Skewed
Error Rate (SER) clearly indicates the existence of
bias among the sensitive group (Table 1). This re-
sult is particularly surprising considering the compo-
sition of the training set, which was predominantly
male (61%) as opposed to female (39%). Lifestyle
disparities, particularly in smoking and alcohol us-
age, as noted in our dataset, might correlate with
various health conditions and complicate medical di-
agnosis. Higher incidence of smoking and alcohol us-
age among males could partially explain why a model
trained on this dataset might underperform on the
male subgroup despite their majority presence. The
male subgroup exhibits lifestyle habits that correlate
with health risks, potentially leading to a broader
range of medical presentations and outcomes that a
model would need to generalize across.

4.1.2. Fairness Assessment for Age

There exists a significant variation in segmentation
performance across different age groups. Specifically,
the mean DSC scores for the age groups 60-70 and

above 70 exhibits a noticeable deviation from the av-
erage DSC score computed across all age demograph-
ics (Table 1). This variation is supported by a high
SD and SER, confirming the presence of bias in the
age attribute. These results suggest that our baseline
method exhibits biases across different age groups,
with a tendency to yield better segmentation results
for patients who are either below 50 or above 70. This
finding is particularly important as it highlights the
necessity to address age-related biases in the model to
ensure equitable performance across all age groups.

To reduce sex and age bias in the baseline segmen-
tation model, we experiment with various bias miti-
gation techniques next (Section 4.2).

4.2. Bias Mitigation Approaches

Tables 2 and 3 provide overviews of the comparisons
between the baseline approach and four bias mitiga-
tion methods, focusing on the attributes of sex and
age, respectively. We will discuss the specifics in the
following sections.

4.2.1. Fair Meta-learning

For the sex attribute, making the network cognizant
of this attribute by concurrently performing classifi-
cation of both sexes improves fairness, as indicated
by the reduced SD and SER compared to the base-
line (Table 2). Our findings corroborate previous
studies (Xu et al. (2020); Puyol-Antón et al. (2021))
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Table 2: Comparison of Bias Mitigation Techniques for Sex: Performance and Fairness Metrics Evaluation

Mitigation
DSC Fairness

Kidney ↑ (%) Tumor ↑(%) Mean ↑(%) SD ↓ SER ↓
Baseline 94.9 78.0 86.5 2.32 1.42

Fair Meta-learning 94.4 78.3 86.3 1.55 1.26
Stratified Batch Sampling 94.7 76.6 85.6 1.20 1.18
RESM Algorithm 94.3 76.3 85.3 0.75 1.11
Architecture: Attention U-Net 94.8 75.6 85.2 0.40 1.06

Table 3: Comparison of Bias Mitigation Techniques for Age: Performance and Fairness Metrics Evaluation

Mitigation
DSC Fairness

Kidney ↑ (%) Tumor ↑(%) Mean ↑(%) SD ↓ SER ↓
Baseline 94.9 78.0 86.5 3.22 2.08

Fair Meta-learning 94.6 79.4 87.0 3.24 2.02
Stratified Batch Sampling 94.2 75.1 84.6 3.33 1.80
RESM Algorithm 94.5 76.6 85.6 2.52 1.69
Architecture: U-Net Network 94.6 73.0 83.8 0.80 1.10

that have demonstrated that explicitly encoding sen-
sitive attribute information with a classification head
enhances network fairness.
Conversely, for the age attribute, the Fair Meta-

learning did not yield the expected improvement in
fairness. As detailed in Table 3, the increased SD
value for age groups indicates that explicitly encod-
ing sensitive attributes does not universally guarantee
improved network fairness. This observation high-
lights the complexity of the relationship between sen-
sitive attributes and network fairness. To explore var-
ious parameters for the loss function (Equation 1), we
conducted an ablation study, detailed in Appendix C,
to identify the optimal settings. Additionally, Ap-
pendix A contains Table 5, where the detailed results
are presented.

4.2.2. Stratified Batch Sampling

The Stratified Batch Sampling method ensures equal
selection of each sensitive attribute in every learning
batch. For the sex attribute, the method is successful
at reducing bias by providing a more balanced sample
of males and females, making the network less likely
to be skewed towards one sensitive attribute (Ta-
ble 2).
As for the age attribute, the Stratified Batch Sam-

pling method provided marginal improvements in

fairness by providing balanced samples of each age
group in every learning batch. Similar to Fair Meta-
learning, this method was not effective in mitigating
biases amongst age groups (cf. SD value in Table 3).
This suggests that simply offering a balanced batch
for learning during the pre-processing phase is insuf-
ficient. To effectively mitigate bias in age groups,
there’s a need for advanced methods that alter the
learning algorithm. Guided by this insight, we delved
into in-processing mitigation methods, as detailed in
Sections 4.2.1 and 4.2.4, which involve modifications
to the network architecture.

4.2.3. RESM Algorithm

The RESM approach notably improves fairness for
both sensitive attributes, as shown in Tables 2 and 3.
For a detailed breakdown, see Table 7 located in Ap-
pendix A. Unlike Stratified Batch Sampling, which
ensures each batch has an equal number of samples
from each subgroup, the RESM Algorithm samples
the training dataset to maintain an equal number
of samples for each sensitive subgroup in the entire
training set.

Compared to the baseline, we see a significant re-
duction in bias for the sex attribute (Table 3) and
a noticeable reduction for the age attribute (Table
4). In particular, achieving balanced representation
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Table 4: Fairness Evaluation for Bias Mitigation using Different Segmentation Architectures

Architecture
DSC Sex Age Group

Kidney (%) Tumor (%) Mean(%) SD SER SD SER

U-Net 94.6 73.0 83.8 0.80 1.10 0.88 1.16
V-Net 94.6 73.6 84.1 1.25 1.17 2.73 1.61
Attention U-Net 94.8 75.6 85.2 0.40 1.06 1.66 1.31
nnUNet 94.9 78.8 86.9 2.45 1.46 2.94 2.00

in the training dataset resulted in improved perfor-
mance and fairer outcomes for males. This con-
trasts with the baseline scenario where, despite their
over-representation, they faced under-diagnoses. The
improved fairness emphasizes the importance of as-
sembling datasets with comparable proportions of
sensitive attributes, a practice often overlooked in
many datasets. However, this improvement in fair-
ness might have come at the cost of relatively de-
creased performance for females, a phenomenon high-
lighted by Suriyakumar et al. (2022). In light of this
apparent trade-off, it is crucial to develop methods
that enhance overall fairness without significantly re-
ducing the performance of any particular group. Re-
fer to Table 7 in Appendix A for detailed results.

4.2.4. Altering Architectural Design

To assess the impact of architectural design on fair-
ness, we conducted experiments with several U-Net
variations. Our findings underscore that architec-
tural modifications markedly influence the model’s
fairness across both sensitive attributes, as evidenced
by Tables 2 and 3 (note that an SER value of 1 de-
notes optimal fairness).
Comprehensive findings related to architectural ad-

justments are detailed in Table 4 (alongside Table 8
in Appendix B). Among the tested architectures, the
Attention U-Net emerges as a favorable choice for
fairness concerning the sex attribute, while the classic
U-Net is better suited for age-related fairness. How-
ever, this age-related fairness in U-Net comes at the
expense of some segmentation performance.

4.2.5. Bias Mitigation: Outcomes and
Recommendations

Upon evaluation of various bias mitigation tech-
niques, clear patterns emerge in their effectiveness.
For the sex attribute, we observe that every miti-
gation strategy improves fairness as reflected by SD

and SER values compared to the baseline model (Ta-
ble 2). For the age attribute, all strategies effectively
mitigate the bias if we consider SER as the sole fair-
ness metric. However, if we take SD into account,
Fair Meta-learning and Stratified Batch Sampling fall
short in improving fairness.

Interestingly, a consistent pattern emerges re-
garding the efficacy of mitigation strategies across
both attributes. Specifically, Fair Meta-learning
demonstrates the most modest improvement in fair-
ness. This is followed by balanced representation
approaches, namely Stratified Batch Sampling and
RESM Algorithm. Modifying the architectural de-
sign stands out as the most effective technique.

The comparative success of techniques like Strat-
ified Batch Sampling and RESM Algorithm as op-
posed to Fair Meta-learning hints at an important
insight: sometimes, fairness might be more effectively
achieved at the data level rather than trying to force
the model to learn it. Pre-processing techniques,
which aim to balance the data before it even reaches
the model, may offer a more foundational approach
to fairness.

Our findings suggest that the prevailing trend of
selecting architectures based purely on segmentation
performance can adversely impact fairness. Our data
indicates that the selected architecture plays a pivotal
role in shaping the biases. Indeed, an appropriate
selection of architecture could serve as an intrinsic
de-biasing mechanism.

We show that although nnU-Net has achieved sig-
nificant recognition in medical segmentation chal-
lenges, it might not always be the optimal selection
when prioritizing fairness. To strike a balance, we
recommend Attention U-Net as the preferred choice,
as it outperforms nnUNet in fairness for both sex and
age attributes while maintaining comparable segmen-
tation performance (see Table 4). We hypothesize
that attention gates in Attention U-Net (Oktay et al.
(2018)) contribute to its notable fairness, as they in-
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herently learn to suppress irrelevant image regions
while emphasizing the salient features vital for kid-
ney and tumor identification and localization.

We conclude that selecting models based solely on
segmentation performance may compromise fairness.
Our exploration with variants of UNet based architec-
tures highlights the need for evaluation criteria that
balance performance and fairness. Leveraging Neu-
ral Architecture Search (NAS) specifically tailored for
fairness could be pivotal in this endeavor. As medi-
cal imaging advances, prioritizing architectures that
guarantee both performance and equity is essential,
especially considering the grave consequences of bias
in clinical decisions.

5. Conclusion

In this study, we are the first to investigate fairness in
the widely recognized Kidney and Kidney Tumor Seg-
mentation task focusing on the sensitive attributes of
sex and age. Our findings showed that while the cur-
rent models, such as nnU-Net, offer promising high
segmentation performance, they exhibit significant
biases across both sensitive attributes. In particular,
although the data is dominated by male subgroup, fe-
male subgroups exhibited superior performance. Fur-
thermore, age-based discrepancies in segmentation
performance were evident, particularly among the 60-
70 and above 70 age groups. To counter these biases,
we rigorously evaluated four mitigation techniques,
concluding that an informed choice of network ar-
chitecture emerges as the most potent bias mitiga-
tor. Notably, Attention U-Net excelled in balancing
fairness and segmentation performance. As we usher
these tools into clinical practice, our study empha-
sizes the critical need for awareness and mitigation of
potential biases.
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Appendix A. Bias Mitigation: Detailed Results

Tables 5, 6 and 7 report results for Fair Meta-learning, Stratified Batch Sampling and RESM Algorithm
approaches respectively across protected attributes of Sex and Age.

Table 5: Results for Fair Meta-learning with classification branches for sex and age

Attributes Group DSC Kidney (%) DSC Tumor (%) Mean DSC (%) SD SER

Gender
all 94.4 78.3 86.3 - -

male 95.0 74.7 84.8
1.55 1.26

female 93.9 81.9 87.9

Age Group

all 94.6 79.4 87.0 - -

0 - 50 95.1 80.9 88.0

3.24 2.02
50 - 60 95.0 78.0 86.5
60 - 70 94.0 70.4 82.2
> 70 94.2 88.2 91.2

Table 6: Fairness on Stratified Batching (equal number of samples in each batch)

Attributes Group DSC Kidney (%) DSC Tumor (%) Mean DSC (%) SD SER

Gender
all 94.7 76.6 85.6 - -

male 94.9 74.1 84.5
1.2 1.18

female 94.4 79.4 86.9

Age Group

all 94.2 75.1 84.6 - -

0 - 50 94.8 80.1 87.4

3.33 1.8
50 - 60 94.6 72.8 83.7
60 - 70 94.0 67.3 80.6
> 70 93.3 85.2 89.2

Table 7: Results for RESM Algorithm Across Sex and Age

Attributes Group DSC Kidney (%) DSC Tumor (%) Mean DSC (%) SD SER

Gender
all 94.3 76.3 85.3 - -

(63 samples)
male 94.9 74.3 84.6

0.75 1.11
female 93.6 78.6 86.1

Age Group

all 94.5 76.6 85.6 - -

(31 samples)

0 - 50 94.4 78.3 86.3

2.52 1.69
50 - 60 94.8 76.4 85.6
60 - 70 94.9 70.2 82.6
> 70 93.8 85.6 89.7
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Appendix B. Effect of Modifications to Architectural Design

Table 8 report results for various variants of U-Net architecture across protected attributes of Sex and Age.

Table 8: Detailed Fairness Evaluation for Sex and Age across Different Network Architectures

Architecture Characteristics Group DSC Kidney DSC Tumor Mean DSC SD SER

UNet

Total - 94.6 73.0 83.8 - -

Gender
all 94.6 73.0 83.8

0.80 1.10male 94.7 71.3 83.0
female 94.3 74.9 84.6

Age

all 94.6 73.0 83.8

0.88 1.16
0 - 50 94.7 73.9 84.3
50 - 60 94.6 72.7 83.7
60 - 70 95.5 70.0 82.7
> 70 92.7 77.5 85.1

VNet

Total - 94.6 73.6 84.1 - -

Gender
all - - -

1.25 1.17male 94.5 71.2 82.9
female 94.7 76.1 85.4

Age

all - - -

2.73 1.61
0 - 50 94.4 72.5 83.4
50 - 60 94.5 70.7 82.6
60 - 70 95.3 69.3 82.3
> 70 93.7 84.2 89.0

Attention Unet

Total - 94.8 75.6 85.2 - -

Gender
all - - 85.2

0.40 1.06male 95.0 76.2 85.6
female 94.5 75.1 84.8

Age

all - - 85.6

1.66 1.31
0 - 50 94.8 75.0 84.9
50 - 60 95.1 79.1 87.1
60 - 70 95.5 70.9 83.2
> 70 93.4 80.9 87.2
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Appendix C. Effect of Different Loss Parameters on Fair Meta-learning for
Bias Mitigation

Tables 9 and 10 show results for different loss parameters in Equation 1 for Fair Meta-learning mitigation
approach across protected attributes of sex and age. To achieve high-quality segmentation along with effective
bias mitigation, we selected the parameters α = 1.0 and β = 2.0 for the sex attribute, and α = 1.0 and
β = 1.5 for the age attribute.

Table 9: Comparison of Loss Parameters from Equation 1: Fair Meta-learning Approach for Sex Attribute

Loss Parameters DSC Fairness

α β Kidney ↑ (%) Tumor ↑(%) Mean ↑(%) SD ↓ SER ↓
1.0 2.0 94.4 78.3 86.3 1.55 1.26
1.5 1.0 94.3 77.2 85.8 1.15 1.18
1.0 1.0 94.0 76.6 85.3 1.40 1.21
1.0 1.5 94.2 77.4 85.8 1.60 1.25
2.0 1.0 94.1 78.4 86.2 1.65 1.27

Table 10: Comparison of Loss Parameters from Equation 1: Fair Meta-learning Approach for Age Attribute

Loss Parameters DSC Fairness

α β Kidney ↑ (%) Tumor ↑(%) Mean ↑(%) SD ↓ SER ↓
1.0 2.0 94.6 78.6 86.6 3.52 2.07
1.5 1.0 94.6 79.2 86.9 3.70 2.20
1.0 1.0 94.4 77.4 85.9 3.35 2.00
1.0 1.5 94.6 79.4 87.0 3.24 2.02
2.0 1.0 94.4 78.5 86.5 4.12 2.47
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