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Abstract

Explainability is a longstanding challenge in
deep learning, especially in high-stakes domains
like healthcare. Common explainability meth-
ods highlight image regions that drive an AI
model’s decision. Humans, however, heavily
rely on language to convey explanations of not
only “where” but “what”. Additionally, most
explainability approaches focus on explaining
individual AI predictions, rather than describ-
ing the features used by an AI model in gen-
eral. The latter would be especially useful for
model and dataset auditing, and potentially
even knowledge generation as AI is increasingly
being used in novel tasks. Here, we present
an explainability strategy that uses a vision-
language model to identify language-based de-
scriptors of a visual classification task. By
leveraging a pre-trained joint embedding space
between images and text, our approach esti-
mates a new classification task as a linear com-
bination of words, resulting in a weight for
each word that indicates its alignment with the
vision-based classifier. We assess our approach
using two medical imaging classification tasks,
where we find that the resulting descriptors
largely align with clinical knowledge despite a
lack of domain-specific language training. How-
ever, our approach also identifies the potential
for ‘shortcut connections’ in the public datasets
used. Towards a functional measure of explain-
ability, we perform a pilot reader study where
we find that the AI-identified words can en-
able non-expert humans to perform a special-
ized medical task at a non-trivial level. Alto-
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gether, our results emphasize the potential of
using multimodal foundational models to de-
liver intuitive, language-based explanations of
visual tasks.

Keywords: Explainability, vision-language
models, HCI, dataset auditing

1. Introduction

The ‘black box’ nature of standard deep learning ap-
proaches is a long referenced challenge, where the
need for explainability is especially emphasized in
high-stakes domains like healthcare (van der Velden
et al., 2022; Gao et al., 2022). For computer vision-
based applications, a common approach to explain-
ability is the generation of ‘saliency maps’ that are
designed to highlight the image regions that drive
a model’s decision. However, the utility and trust-
worthiness of saliency-based approaches have been
questioned (Arun et al., 2021; Adebayo et al., 2018).
Additionally, saliency maps and similar localization-
based techniques only address “where” and not
“what”. While localization is a critical step in many
applications, the lack of a more intuitive description
of the features used by AI models can limit clinician
trust and overall clinical integration.

Another understudied direction is the notion of
task-level explainability. Instead of explaining the
prediction for a single instance, a task-level (i.e.,
global) explanation would convey the general features
used to make such predictions (Kim et al., 2018a;
Ghorbani et al., 2019). For example, an instance-level
explanation would indicate why a particular lesion is
classified as malignant, whereas a task-level explana-

© 2023 S. Agarwal, Y.R. Semenov & W. Lotter.



Visual Classification as Linear Combination of Words

tion would convey differences between malignant and
benign lesions in general. Both levels of explanations
have utility, but a task-level approach would be espe-
cially useful for purposes such as auditing and knowl-
edge discovery. From an auditing perspective, meth-
ods are needed to efficiently identify spurious ‘short-
cut connections’ in AI datasets and the propensity of
AI models to use these shortcuts (Yan et al., 2023b;
Kim et al., 2023a; Nauta et al., 2023; Wu, Shirley
and Yuksekgonul, Mert and Zhang, Linjun and Zou,
James, 2023; Zhao et al., 2020; De Grave et al., 2023).
Relatedly, there’s a need for understanding if AI mod-
els are generally using similar features as clinicians or
have identified new predictive features, especially as
AI is increasingly applied to novel tasks.

Here, we present a strategy for more intuitive ex-
plainability that uses a vision-language model (VLM)
to identify language-based descriptors of a visual clas-
sification task. Our approach is motivated by how
humans heavily rely on language to describe differ-
ences between two visual categories, and can do so
even for a new task without being explicitly told the
features that distinguish the task. Specifically, using
a joint embedding space between images and text,
our approach estimates a vision-based classifier as a
linear combination of word embeddings, resulting in a
weight for each word that indicates its alignment with
the visual task. We specifically use CLIP (Radford
et al., 2021) as the embedding space, a model that was
trained in a contrastive fashion on publicly available
image-caption data. We assess feasibility in an ex-
treme setting of identifying descriptive words for two
medical imaging classification tasks without relying
on domain-specific language training. While domain-
specific models can also be used, paired image-text
data can be infeasible to collect for many medical
tasks, and importantly, heavy supervision via human
generated text may mask the use of shortcut connec-
tions or other predictive features not used by humans.

The remainder of the paper is structured as fol-
lows. We first provide an overview of related work,
followed by a description of our approach and anal-
ysis methods. We then present results across the
two medical imaging datasets, including a human
reader study to assess whether the AI-identified pre-
dictive words can guide non-experts to perform the
tasks. We additionally explore the specific use case
of dataset auditing to identify confounders. Code for
our approach is available at: https://github.com/

lotterlab/task_word_explainability.

2. Related Work

2.1. Local vs. Global Explainability

Explainability is a heavily studied topic in AI lit-
erature, with many different proposed approaches
(van der Velden et al., 2022; Gao et al., 2022). Ar-
guably, the most commonly applied approaches use
local explanations, such as techniques like Grad-CAM
(Selvaraju et al., 2017) that generate saliency maps to
explain a model’s prediction for a given instance. An
important line of work has also focused on global ex-
planations that identify higher-level concepts across
the dataset/model (Ghorbani et al., 2019). For in-
stance, Kim et al. (2018a) introduced Concept Ac-
tivation Vectors (CAVs) that are constructed from
human-provided examples to represent concepts in a
model’s representation space, where a model’s sen-
sitivity to these concepts is then assessed using di-
rectional derivatives. Recently, Yan et al. (2023b)
presented a CAV-based approach to identify clini-
cal and confounding concepts in dermoscopic images.
Efforts have also been made to combine local and
global explanations (Schrouff et al., 2021; Achtibat
et al., 2022), and to also use human-interpretable
concepts to understand the features represented by
individual neurons (Bau et al., 2017; Dani et al., 2023;
Schwettmann et al., 2023; Goh et al., 2021; Bills et al.,
2023; Hernandez et al., 2022). A common challenge
across these methods is the heavy reliance on human
supervision, such as by using human-selected exam-
ples to define concepts a-priori or by post-hoc human
annotation of examples.

2.2. Natural Language Explanations

Beyond saliency-based local explainability methods,
recent efforts have aimed at generating natural lan-
guage explanations for visual tasks (Kayser et al.,
2021; Marasović et al., 2020; Wu and Mooney, 2019;
Park et al., 2018; Kim et al., 2018b; Hendricks et al.,
2016). These approaches often involve a separate ‘ex-
planation model’ to generate language-based expla-
nations of the original prediction model, where this
separation between the prediction and explanation
models creates risks of unfaithful explanations. The
recent approach by Sammani et al. (2022) instead
jointly formulates the task prediction and explana-
tion as a text generation problem, where the model
is trained using human-provided language explana-
tions in a local explainability setting.
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Figure 1: Modeling approach. Our approach uses a vision-language model with a joint embedding space
between images and text (i.e., CLIP (Radford et al., 2021)) to represent a new visual classification
task as a linear combination of words. The approach proceeds in two steps: 1) Fitting a linear
classification model using image embeddings and classification labels, 2) Estimating the classifier as
a linear combination of word embeddings, resulting in weights for each word that signify alignment
with the visual task.

2.3. Descriptor-based Visual Classification

Along with the use of concepts and language for
explainability, recent works have explicitly used
language-based descriptors as a means to perform vi-
sual recognition tasks (Pratt et al., 2022; Yan et al.,
2023a; Maniparambil et al., 2023; Lewis et al., 2023;
Liu et al., 2023; Koh et al., 2020; Yuksekgonul et al.,
2023). For instance, Menon and Vondrick (2023) used
GPT-3 (Brown et al., 2020) to generate text descrip-
tors for each class in a dataset, e.g., ImageNet, and
then used these descriptors as an alternative to the
traditional zero-shot classification setting for CLIP
where only class names are used for prompting (Rad-
ford et al., 2021). While descriptor-based visual clas-
sification is promising for robustness and improved
instance-based interpretability, pre-defining descrip-
tors for each class limits the identification of other
predictive features or spurious correlations.

3. Methods

3.1. Modeling Approach

We sought to develop an approach for task-level,
language-based explainability that does not require

extensive human supervision or domain-specific lan-
guage training. Our approach leverages a pre-trained,
multimodal model with a joint embedding space for
images and text. In this work, we specifically use
CLIP with a ViT image encoder (Dosovitskiy et al.,
2021) and a Transformer text encoder (Vaswani et al.,
2017). CLIP was trained on a large amount of image-
caption data to learn an aligned representation be-
tween images and their corresponding text captions
(Radford et al., 2021). The learned feature space has
been shown to be useful for downstream tasks, includ-
ing relatively high linear-probe performance on sev-
eral medical imaging datasets (Radford et al., 2021).

With the pre-trained CLIP model, our approach
proceeds in two steps (Figure 1). First, we train a lin-
ear classifier on top of the frozen embedding space us-
ing an image dataset with classification labels. Next
we approximate the weights vector of the classifier as
a linear combination of word embeddings. Doing so
requires choosing a dictionary of words to be used.
While a number of strategies could be used to select
words (or even phrases), our goal here was to create
a list of common words that could be used to de-
scribe visual classification tasks generally. As many
words can have similar meanings, we also sought a
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sparse list of words to improve interpretability. We
created such a list through a structured approach us-
ing ChatGPT (GPT 3.5 (Brown et al., 2020)). We
first prompted ChatGPT for a list of general-purpose
visual properties using the following prompt: “visual
properties used to describe an object”. We then used
the following prompt to generate adjectives for each
of these properties: “a list of positive and negative
adjectives for each of the properties listed above”.
From this output, we selected representative words
to result in the list in Table 1.

Table 1: List of general-purpose adjectives used.

Property Adjective 1 Adjective 2
Color light dark
Shape round pointed
Size small large
Texture smooth coarse
Transparency transparent opaque
Symmetry symmetric asymmetric
Contrast low contrast high contrast

Details of the two linear models trained in our ap-
proach are as follows. For the visual classification
model, we use a logistic regression with a regulariza-
tion parameter of 1 and no intercept. For the word
embedding model, we use a simple linear regression
without an intercept to estimate the classification
weight vector using the word embeddings as input
features. This second regression results in a weight
for each word in approximating the visual classifier.
When trained with a binary label of 1 = “malignant”
and 0 = “benign”, a positive weight for a word indi-
cates alignment with a malignant prediction.

3.2. Datasets

We performed experiments using two datasets: 1)
CBIS-DDSM (Lee et al., 2017), a collection of regions
of interest (ROIs) of lesions identified on mammo-
grams, and 2) the 2020 SIIM-ISIC Melanoma Classi-
fication Challenge dataset (Rotemberg et al., 2021), a
collection of dermoscopic images. For CBIS-DDSM,
we consider a task of predicting whether a mass lesion
is benign or malignant. For SIIM-ISIC, we consider
a task of predicting whether a lesion is benign or ma-
lignant for melanoma. These tasks and datasets are
detailed below.

CBIS-DDSM (Curated Breast Imaging Subset of
DDSM) consists of scanned film mammograms with

accompanying expert-drawn ROIs around lesions.
Here, we specifically use the subset of ROIs corre-
sponding to masses, which is the largest lesion subset
in the dataset. We use the default training and test-
ing splits in the dataset, which results in 1226 ROIs
for training (617 malignant, 609 benign) and 365 for
testing (145 malignant, 220 benign).

The SIIM-ISIC dataset served as the basis for the
2020 SIIM-ISIC Melanoma Classification Challenge
and consists of dermoscopic images of histopatho-
logically confirmed melanomas and benign melanoma
mimickers. As only the training set is publicly avail-
able for this dataset, we split this set into 80/20%
training/testing at the patient-level (i.e., no overlap
in patients between training and testing). We ad-
ditionally subsample the benign images to achieve a
more balanced 2:1 benign:malignant ratio, resulting
in 1467 images for training (489 malignant, 978 be-
nign) and 285 images for testing (95 malignant, 190
benign).

3.3. Analysis Methods

3.3.1. Prototypical examples and shortcut
analysis

Prototypical example images were retrieved for the
highest weighted words for each task. As each image
may be correlated with several words, we specifically
defined prototypes as examples that have a higher
correlation with a particular word than what would
be predicted from the other words alone. In more de-
tail, the dot product was first computed between each
image in the training set and each word in the dic-
tionary to measure the similarity between each pair.
A linear regression was then fit for each word to pre-
dict the dot product for that word for a given image
based on the dot products of the remaining words.
The residual between the observed dot product and
predicted dot product was then used as the prototype
score, where a higher residual represents a higher pro-
totype score. A similar approach was taken to obtain
prototypes for potential shortcut connections, where
a word representing a potential shortcut was added
to the original dictionary to obtain a weight for this
word and also obtain prototypical examples. Code
for computing the prototype scores is included in the
Github repository.
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3.3.2. Pilot Reader Study

We performed a reader study to more functionally
assess the interpretability of our approach. As ar-
gued in other works, human user studies can help
go beyond qualitative metrics to assess human utility
of explainability methods (Poursabzi-Sangdeh et al.,
2021; Shen and Huang, 2020; Arora et al., 2022; Colin
et al., 2022; Kim et al., 2022, 2023b; Doshi-Velez and
Kim, 2017). In our study, non-experts were asked
to classify a set of images twice: first without the
aid of the AI-identified words, and then again with
the aid of the AI-identified words. In the second ses-
sion, the words were presented at the task-level as
part of the instructions. For instance, for the mass
classification task, the following language was used:
“You will now be given words generated using an AI
model to help describe general differences in the ap-
pearance of Benign vs. Malignant masses,” followed
by the listing of the top three scoring words for be-
nign and malignant. This level of instruction was
minimal by design in order to assess whether the AI-
identified words alone could help “teach” non-experts
to perform the task above chance levels. The par-
ticipants were not given any other form of domain-
specific training. Participants were recruited who
did not have a medical background and who were
not affiliated with the project. Out of the 12 total
participants, 4 had post-graduate degrees (in non-
medical domains), 2 had bachelor-level degrees, and
6 are currently still in training and do not currently
have a college-level degree. The study was performed
for both the breast and skin tasks, with 11 and 12
participants completing the tasks respectively. For
each task, 50 images (25 benign, 25 malignant) were
sampled from their respective test sets. Images were
sampled randomly in a stratified manner such that
the accuracy of the AI classifier on the 50 images ap-
proximately matched the accuracy across the entire
test set. This stratification was performed to obtain
a representative sample in terms of task difficulty.

3.3.3. Statistical Analysis

Confidence intervals for area under the receiver oper-
ating characteristic curve (AUROC) were computed
using the Delong method (DeLong et al., 1988).
Confidence intervals for accuracy were computed us-
ing the adjusted Wald method (Agresti and Coull,
1998). Statistical comparison of human reader accu-
racy across sessions was performed using a one-sided

paired t-test. For assessing AI model accuracy, a de-
fault threshold of 0.5 was used to binarize scores.

4. Results

Our approach outlined in Figure 1 consists of train-
ing two linear models on top of a joint embedding
space between images and text (i.e., CLIP (Radford
et al., 2021)). The first model consists of a visual
classifier trained to predict classification labels from
image embeddings. The second model estimates the
visual classifier as a linear combination of text embed-
dings. We performed experiments using two tasks: 1)
benign vs. malignant classification of breast masses
using the CBIS-DDSM dataset (Lee et al., 2017), and
2) benign vs. malignant classification of skin lesions
using the SIIM-ISIC Melanoma Classification Chal-
lenge dataset (Rotemberg et al., 2021).

Consistent with prior linear-probe experiments us-
ing CLIP, we find that the linear visual classifiers
perform relatively well on both the CBIS-DDSM and
SIIM-ISIC datasets. On CBIS-DDSM, the model ex-
hibits an area under the receiver operating character-
istic curve (AUROC) of 0.715 (95% CI: 0.661, 0.770)
and accuracy of 64.4% (95% CI: 59.3%, 69.1%), which
is similar to other reported performances (Tu et al.,
2023). On SIIM-ISIC, the performance is 0.831 AU-
ROC (95% CI: 0.784, 0.879) with an accuracy of
76.5% (95% CI: 71.2%, 81.1%), also in the realm of
other performances considering no data augmenta-
tion or ensembling was used (Adepu et al., 2023).
Thus, even though CLIP was not specifically trained
for medical imaging, the features it learned can facil-
itate both of these tasks, providing a basis for iden-
tifying words that reflect the classification tasks.

Figure 2 contains the weights for each word in es-
timating the visual classifiers. As described in the
Methods, the list of words was created in a struc-
tured way to represent general-purpose visual prop-
erties. We find that the weights generally align with
clinical intuition. For instance, for the breast mass
task, the top weighted words for malignant are ‘asym-
metric’ and ‘large’, and the top words for benign are
‘round’ and ‘symmetric’. Round masses are indeed
often benign and may represent a cyst or fibroade-
noma, whereas malignant masses are often irregularly
shaped (Ikeda and Miyake, 2016). The top weighted
words for the skin lesion task are ‘low contrast’ and
‘coarse’ for malignant and ‘smooth’ and ‘round’ for
benign. Coarse versus smooth and round generally
aligns with aspects of the ABCD criteria for skin le-
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sions (Friedman et al., 1985), where malignant lesions
tend to have irregular borders and uneven coloriza-
tion. However, the mapping to ‘low contrast’ is less
clear.

Figure 2: Word weights for each classification task.

Breast Mass

Skin Lesion

To gain a better understanding of the features rep-
resented by the top weighted words, especially for
‘low contrast’ in the melanoma task, we calculated
prototypical examples for each word using the train-
ing datasets (see Methods). The top scoring pro-
totypes are contained in Figure 3. For words like
‘round’, ‘smooth’, and ‘coarse’, the prototypical ex-
amples generally align with the intuitive meaning
of these features. For ‘low contrast’, this may re-
flect a less well-defined border between the lesion
and the surrounding skin, which is also a concern-
ing feature used by clinicians in diagnosing melanoma
and aligns with the ABCD criteria (Friedman et al.,
1985). Thus, the prototypes are generally consistent
with clinical considerations. However, we note that

not all word weights align with clinical knowledge,
as ‘asymmetric’ has a moderately negative (benign)
weight for the melanoma task, whereas asymmetric
lesions are generally more likely to be malignant.
Additionally, there remains much room to identify
features that also correlate with the visual classifier,
as the cosine similarity between the actual classifier
weights and the estimated weights is 0.11 and 0.10
for the breast and melanoma tasks, respectively. One
potential source for additional predictive features is
shortcut connections, which we explore below.

4.1. Pilot Reader Study

Beyond qualitative assessment of the word weights,
we sought to more functionally assess explainability
through a human reader study. Our rationale was
as follows: if the top scoring words truly represent
informative, human-interpretable features, then con-
veying these words to a novice human may enable
them to perform the task above chance levels. We
sought to test this in a minimal setting where par-
ticipants are only provided explanations at the task-
level via the list of top scoring words. We employ a
two session design where the participants first per-
form the classification task without the AI-identified
words and without any feedback. In the second ses-
sion, the participants perform the same task again
but are provided the top three AI-identified words for
benign and malignant in the text instructions. Im-
portantly, the same instructions apply to each image
and the participants are not given any other form of
AI assistance.

Despite the highly-specialized nature of medical
image interpretation, we do find some evidence that
the AI-identified words can improve non-expert per-
formance, particularly for melanoma. Before being
provided the words for the melanoma task, the aver-
age accuracy of the 12 readers was 52.2% (95% CI:
48.2%, 56.1%), similar to the chance level of 50%.
After being provided the words, the average accu-
racy improved to 62.0% (95% CI: 58.1%, 65.8%) for
an increase of of 9.8% (p-value: 0.02; 95% CI: 0.6%,
19.1%). Figure 4 shows the change in performance for
each participant, where 9 out of 12 participants im-
proved and 3 participants had ≥70% accuracy in the
second session. Thus, while the non-expert perfor-
mance remained below expert and AI levels, simply
providing the top AI-identified words enabled per-
formance significantly above chance levels. For the
breast mass task, reader performance was at chance
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Figure 3: Prototypical examples for top weighted words for each task. Red border: malignant; green: benign.
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in both sessions (Session 1: 48.4% (95% CI: 44.2%,
52.5%); Session 2: 52.4% (48.2%, 56.6%). We sus-
pect that this may be due to the general difficulty of
the task (where AI performance was also lower) and
the lower quality of the images, which consist of ROIs
from scanned film mammograms.

Session 1 Session 2

0.4

0.5

0.6

0.7

0.8

Ac
cu
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cy

Melanoma Reader Study

Participants
Average

Figure 4: Reader study results for melanoma task.

While the pilot study provides a functional assess-
ment of explainability, there are several inherent lim-
itations. For one, the objective of our study – test-
ing if the AI-identified words can enable non-experts
to perform the task – necessitates a sequential study
design as the participants are no longer naive to the
words after they are presented. This presents a pos-
sible confounder of readers getting better over time
simply through experience, even if they are not pro-
vided with ground truth labels. To explore this possi-
bility, we computed the performance within each half
of each session. For session 1 in the melanoma task,
readers demonstrated an average accuracy of 52.7%
in the first half of the session compared to 51.7% in
the second half. For session 2, the average accuracy
was 60.7% in the first half of the session and 63.3% in
the second half. Thus, the performance within ses-
sions was much more similar than the performance
across sessions, suggesting that ‘unsupervised’ expe-
rience cannot solely explain the performance increase
observed after presenting the AI-identified words. We

additionally performed subgroup analysis by reader
education status to see if this factor can partially
explain the results. Participants without a college-
level degree (n=6) demonstrated an average accuracy
of 51.7% in session 1 and 61% in session 2 for the
melanoma task. Participants with a college-level de-
gree (n=6) demonstrated similar performance, with
accuracies of 52.7% and 63% in sessions 1 and 2, re-
spectively.

4.2. Exploring Shortcut Connections

A purpose for which explainability is especially
needed is dataset auditing, where AI models have
been shown to learn ‘shortcut connections’ between
irrelevant confounders and task labels when such cor-
relations exist in the training dataset (Yan et al.,
2023b; Kim et al., 2023a; Nauta et al., 2023; Wu,
Shirley and Yuksekgonul, Mert and Zhang, Linjun
and Zou, James, 2023; Zhao et al., 2020; De Grave
et al., 2023). As there can be many possible con-
founders and manual assessment is infeasible in large
datasets, approaches are needed to efficiently investi-
gate such confounders. We explored the potential of
our approach in identifying shortcut connections by
adding additional words to the initial word list. For
the mass classification task, we included the word
‘clip’ as metal clips known as biopsy markers are
placed in the location of a biopsy for future refer-
ence. These clips have the potential to lead to short-
cut connections for an AI model, especially if there
is a correlation between the presence of clips and dis-
ease labels in the training dataset. For the melanoma
task, we use the word ‘marker’ as suspicious lesions
are often marked with an ink marker to aid in docu-
mentation and surgical planning.

Figure 5 contains examples of the top scoring pro-
totypes for the considered shortcut words. The ex-
amples indeed illustrate the presence of the potential
confounders, where, interestingly, the word ‘marker’
may not only identify ink markings but also the mark-
ings of a dermoscopic ruler used to measure the le-
sion. However, the existence of these features within
the datasets does not necessarily mean that their
presence is correlated with the classification labels
and/or an AI model would learn such correlations.
To assess this, we computed the probability of malig-
nancy amongst images that score high for the short-
cut word, as defined by scoring in the top 10% of
prototype scores. We additionally quantified the re-
gression weight for the shortcut words in our classi-
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Figure 5: Prototypical examples for potential
domain-specific shortcut connections.

fier estimation approach. For the word ‘clip’ in the
mammogram task, we find that the probability of ma-
lignancy is slightly higher in the top images for this
word compared to the remainder of the images, at
57% and 50% respectively. Consistent with this dif-
ference, the regression weight for this word is also
slightly positive with a magnitude of 0.06. For the
word ‘marker’ in the melanoma task, we find more
dramatic correlations at both the dataset and model
level. The probability of malignancy is 45% for the
top ‘marker’ images in the dataset, compared to 32%
for the remaining images. This difference is reflected
in a word weight of 0.11, which is of similar magni-
tude to the other top scoring words for malignancy.
Thus, without any data annotation, we find that our
approach can efficiently identify and quantify short-
cut connections, which can help guide strategies for
mitigation and clinical use.

5. Discussion and Conclusions

We presented a task-level, global explainability strat-
egy that leverages a vision-language embedding space
to identify descriptors of a visual classification task.
Through experiments using two medical imaging
datasets, we find that the resulting top scoring words
generally align with clinical knowledge and can be
used to guide non-experts to perform a skin lesion
task above a chance level. We additionally show that
our method can efficiently identify shortcut connec-
tions in the datasets used. Importantly, we do not
rely on extensive domain-specific language training
or human supervision, which enables application to a

variety of tasks and does not constrain the AI features
used.

There are several important future directions to
build upon our results. For one, the described ap-
proach relies on a pre-trained vision-language model
and thus cannot be straightforwardly adapted to
vision-only classifiers. Future work could learn a
mapping from a vision-only representation space to
a VLM embedding space to subsequently enable ap-
plication of our technique. Additionally, domain-
specific VLMs and descriptors can be used to go be-
yond our general-purpose approach, which has the
potential to more fully estimate the specialized classi-
fication tasks. Altogether, more human-like explain-
ability is a critical direction in AI research, where
our approach represents a promising step towards in-
tuitive, task-level explainability for visual tasks.
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