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Abstract

Primary sclerosing cholangitis (PSC) is a rare
disease wherein altered bile acid metabolism
contributes to sustained liver injury. This pa-
per introduces REMEDI, a framework that
captures bile acid dynamics and the body’s
adaptive response during PSC progression that
can assist in exploring treatments. REMEDI
merges a differential equation (DE)-based
mechanistic model that describes bile acid
metabolism with reinforcement learning (RL)
to emulate the body’s adaptations to PSC con-
tinuously. An objective of adaptation is to
maintain homeostasis by regulating enzymes
involved in bile acid metabolism. These en-
zymes correspond to the parameters of the DEs.
REMEDI leverages RL to approximate adapta-
tions in PSC, treating homeostasis as a reward
signal and the adjustment of the DE param-
eters as the corresponding actions. On real-
world data, REMEDI generated bile acid dy-
namics and parameter adjustments consistent
with published findings. Also, our results sup-
port discussions in the literature that early ad-
ministration of drugs that suppress bile acid
synthesis may be effective in PSC treatment.

Keywords: Reinforcement learning, Disease
progression, Differential equation, Adaptation

1. Introduction

Primary sclerosing cholangitis (PSC) is a rare,
complex liver disease in which altered bile acid
metabolism contributes to liver injury (Bertolini
et al., 2022). There are no effective medications,
and liver transplantation is often necessary (Vester-
hus and Karlsen, 2020). A critical hurdle in exploring
therapeutics is the lack of a model capturing the rel-
evant disease dynamics, the body’s response to the
disease, and the effects of treatments. We aim to
develop a machine learning (ML) based PSC pro-
gression model with a focus on bile acid metabolism
dynamics and its bidirectional interactions with the
body over time. Such a model could facilitate treat-
ment evaluations and accelerate drug discovery or re-
purposing. Examples of computational models guid-
ing interventions already exist for prostate cancer
(Zhang et al., 2017) and HIV (Xiao et al., 2013).

There were three main challenges in developing the
proposed progression model: (1) the absence of a bile
acid metabolism model during PSC; (2) limited in-
sight into the body’s adaptive response to the disease;
and (3) the lack of data from affected organs and a
dearth of longitudinal data. (1) While prior stud-
ies have proposed differential equation (DE)-based
bile acid metabolism models for healthy individu-
als (Sips et al., 2018), they do not capture bile duct
obstruction, the pathophysiological hallmark of PSC
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(Chapman et al., 2010), and its impact on bile acid
metabolism. (2) Over the course of the disease, the
body responds to changing bile acid levels by con-
tinually adapting and altering bile acid metabolism,
which plays a central role in keeping PSC patients
asymptomatic for many years (Jansen et al., 2017).
However, the specific adaptations during PSC pro-
gression are not well understood (Milkiewicz et al.,
2016), making them difficult to model. (3) Despite
the liver and the bile ducts being central to PSC, di-
rect bile acid measurements in these organs are infea-
sible. We are limited to bile acid data in the blood.
Moreover, these data are cross-sectional, i.e., taken
only at a single time point, further complicating the
modeling of longitudinal disease progression.

We introduce REMEDI to model PSC progres-
sion by extending existing bile acid metabolism DEs
with PSC pathophysiology and incorporating a re-
inforcement learning (RL) agent to approximate the
body’s adaptations. REMEDI addresses the above
challenges with the following key innovations:

(1) We developed a reduced-order bile acid
metabolism model to capture dynamics pertinent to
PSC, based on an existing DE model for healthy indi-
viduals. We extended the reduced model with clinical
domain knowledge to capture bile duct obstruction.

(2) We used RL to emulate the body’s adaptive re-
sponse to the disease. We assume the body is a smart
agent that, through evolution, has learned to adapt
itself to maintain homeostasis of critical metabolic
events (Giordano, 2013). In PSC, the body regulates
bile acid metabolism enzymes to maintain homeosta-
sis. These enzymes are naturally represented as pa-
rameters in the reduced-order bile acid DE model.
During disease progression, the RL agent constantly
updates these parameters to maximize a reward func-
tion that promotes homeostasis and the generation of
close-to-reality bile acid profiles.

(3) Because PSC patients can have a prolonged,
partially successful adaptation period (Jansen et al.,
2017), we assume the real-world cross-sectional data
were collected during this “stable” period, and we
encourage the RL agent to generate stabilized trajec-
tories that are close to the data.

The main assumption of REMEDI is that the goal
of homeostasis drives biological actions, achieved by
smart regulation of body enzymes (Savir et al., 2017;
Billman, 2020). Thus, we treat adaptation as a se-
quential optimization problem with “homeostasis” as
the objective function and the sequential regulation
of enzymes as the optimization arguments. These en-

zymes are represented as parameters in the DEs. RL
offers a framework to solve this sequential optimiza-
tion problem. In PSC, the bile acid DEs constitute
the environment, “homeostasis” is the reward func-
tion, and the modulation of DE parameters is the ac-
tions. Therefore, RL, in combination with the DEs,
approximates the body’s adaptation to disease and
enables dynamic modeling of PSC progression.

We validated REMEDI against findings from the
literature and real-world clinical data. REMEDI pro-
duced biologically realistic results. (1) The reduced-
order bile acid model captured the relevant dynam-
ics of a more detailed model from the literature
with drastically reduced computational cost. (2) In-
corporation of bile duct obstruction mimicked PSC
pathophysiology observed in clinical and animal stud-
ies (Jansen et al., 2017; Boyd et al., 1966; Popper
and Schaffner, 1970). (3) On real-world PSC data,
REMEDI generated bile acid dynamics and parame-
ter adaptations consistent with the literature (Jansen
et al., 2017). (4) We evaluated in silico the effects
of two PSC drugs in clinical trials (Vesterhus and
Karlsen, 2020) and found REMEDI has the potential
to explain the drugs’ biologically observed behaviors
(Boyer, 2007; Caballero-Camino et al., 2023).

Our contributions include: (1) developing the first
mathematical model of bile acid metabolism in PSC,
based on clinical domain knowledge, and (2) pro-
viding an in silico testbed to evaluate the effects of
bile acid modulating therapies. Our approach can be
leveraged to determine optimal interventions for PSC
in combination with comprehensive clinical data.

In principle, REMEDI’s approach of using RL to
estimate time-varying DE parameters can be ex-
tended to other diseases where DE-based models with
time-varying parameters have been proposed, such as
HIV (Liang et al., 2010). Moreover, the innovative
strategy of REMEDI that leverages RL to emulate
adaptive behaviors holds promise for modeling a va-
riety of homeostatic biological systems.

2. REMEDI Framework

Our approach has three parts (Figure 1): (1) a
reduced-order bile acid metabolism model for healthy
individuals (Section 2.1), (2) a domain knowledge-
based extension to depict the pathophysiology of PSC
(Section 2.2), and (3) RL that captures the body’s
adaptation to the pathophysiology (Section 2.3).
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Figure 1: Overview of the reinforcement learning formulation of bile acid metabolism adaptation in PSC.

2.1. Model of healthy bile acid metabolism

Several species of bile acids circulate in multiple or-
gans of the human body in a process called entero-
hepatic circulation (Hofmann, 2009). In the liver (li),
cholesterol is metabolized into the unconjugated pri-
mary bile acids cholic acid and chenodeoxycholic acid
(uCA and uCDCA), which are transformed into con-
jugated forms (cCA and cCDCA) and secreted into
the bile ducts and gallbladder (bd). These bile acids
are then released into the intestines, where bacteria
in the ileum (il) and colon (co) convert them into sec-
ondary bile acids (SBA). Active and passive uptake
reabsorb intestinal bile acids back to the liver, with
a small portion escaping into plasma (pl). Unreab-
sorbed bile acids are excreted with feces (fe).

We adopt Sips et al. (2018)’s approach and model
bile acid metabolism with a series of DEs. Based on
their relevance to PSC, we merge several bile acid
species and do not distinguish among certain organ
segments (see Appendix A), resulting in a reduced-
order model of bile acid BA ∈ {cCA, cCDCA, cSBA,
uCA, uCDCA, uSBA} in organ OG ∈ {li, bd, il, co,
pl, fe}. For each BA in each OG, we (1) model its in-
fluxes/outfluxes from relevant biochemical and phys-
ical processes and (2) combine the fluxes into one DE
to describe how the BA level in OG varies with time.
See Appendix A for all processes being modeled and
Appendix B for all corresponding DEs.
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Figure 2: Fluxes affecting liver cCA level.

As an example, Figure 2 shows the fluxes that af-
fect the liver cCA level: (1) rcCA

syn is de novo synthe-

sis in liver cells; (2) rcCA
li from gut is active and passive

uptake from the gut; (3) rcCA
li from pl is influx from sys-

temic blood circulation; and (4) rcCA
li to bd is outflux to

the gallbladder and bile ducts. Hence, liver cCA level
xcCA
li varies with time (µmol/min) according to:

dxcCA
li

dt
= rcCA

syn + rcCA
li from gut+ rcCA

li from pl− rcCA
li to bd (1)

rcCA
syn = p[synthesis] · p[syn frac CA] (2)

rcCA
li to bd = p[li to bd freq] · xcCA

li (3)

We model all fluxes with zero- or first-order dy-
namics. For example, we model the cCA synthesis
flux rcCA

syn as the product of two constant parame-

ters, making rcCA
syn also a constant (zero-order). Here,
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p[synthesis] denotes the total bile acid synthesis rate,
and p[syn frac CA] describes the fraction of cholic
acid among the newly synthesized bile acids. The
liver-to-bile duct transit rate of cCA, rcCA

li to bd, ex-
emplifies first-order dynamics. xcCA

li represents the
current liver cCA level, and the constant parameter
p[li to bd freq] characterizes the first-order dynamics.

2.2. Introducing PSC pathophysiology

Drawing on clinical domain knowledge, we extend the
reduced-order bile acid metabolism model with PSC
pathophysiology (Figure 3) by (1) implementing an
obstruction of bile flow in the bile ducts and (2) in-
troducing bile acid backflow to the liver following ex-
cessive bile acid buildup in the bile ducts.

Obstructed bile flow in the bile ducts: In PSC,
chronic inflammation causes scarring and narrowing
of the bile ducts (Karlsen et al., 2017), impeding
the normal bile flow into the small intestine (Fig-
ure 3(b)). The extent of the obstruction determines
the reduction of bile flow. We introduce a parame-
ter p[bd max flow] to denote the maximum amount
of bile acids allowed to flow through, in propor-
tion to the degree of obstruction. Consequently, if
rbd to il calculated from its first-order dynamics ex-
ceeds p[bd max flow], we cap it at p[bd max flow]:

rbd to il = min(rbd to il, p[bd max flow]) (4)

Bile acid backflow to the liver: The bile ducts
(and gallbladder) have a limited storage capacity for
bile acids. In PSC, bile duct obstruction can result in
bile acid buildup exceeding the duct’s capacity, lead-
ing to regurgitation and backflow of excessive bile
acids to the liver (Popper and Schaffner, 1970), as
depicted in Figure 3(c). To represent this, we intro-
duce a parameter p[bd max ba] denoting the bile acid
holding capacity of the bile duct, and define rbd to li

as the excessive bile acids backflowing from the bile
duct to the liver:

rbd to li = max(xbd + rbd from li − rbd to il

− p[bd max ba], 0)
(5)

xbd is the current bile acid level in the bile duct,
rbd from li is the influx from the liver, and rbd to il is
the outflux to the ileum. See Appendix B for details.

2.3. Model adaptation in PSC

We model adaptation as a series of enzymatic regula-
tions to optimally maintain homeostasis, i.e., preserve

physiological functions without deviating too much
from the enzyme levels under healthy conditions. We
model this adaptation process using RL (Figure 1).

State: We assume the body self-regulates based
on its current status, captured by the state vec-
tor = {xbile acids,padapt} in our context of bile acid
metabolism. xbile acids denotes bile acid levels across
species and organs (30 variables, see Appendix C).
padapt denotes parameter values corresponding to
regulatable enzymes (five variables, see Action).

Action: We assume the body adapts through
continual enzyme regulations, which translates to
the modulation of the subset of DE parameters
representing enzyme levels regulated by the body.
Our DEs contain five such regulatable parameters,
i.e., padapt = {p[synthesis] , p[syn frac CA] ,
p[hep ratio conj tri] , p[hep ratio conj di] ,
p[max asbt rate]}. At every RL step, for each
parameter in padapt, any of three actions can be
taken: up-regulation or down-regulation (with a
prespecified fold change or absolute difference), or re-
maining unchanged. p[synthesis] and p[syn frac CA]
were introduced in Section 2.1. p[hep ratio conj tri]
denotes the fraction of reabsorbed bile acid extracted
by the liver (in contrast to going into systemic blood)
for cCA, and p[hep ratio conj di] for cCDCA and
cSBA. p[max asbt rate] is the rate parameter in the
first-order dynamics of active uptake.

Environment: The RL environment simulates bile
acid dynamics following the introduction of PSC
pathophysiology to healthy conditions. We use the
reduced-order DEs extended with bile duct obstruc-
tion as the simulator. At every RL step, the RL agent
modifies padapt in the DEs and updates the state vec-
tor. The environment takes a step forward via nu-
merical integration of the DEs for a fixed duration.
The resultant bile acid levels update xbile acids in the
state vector. A reward is computed in the environ-
ment step and sent to the RL agent to determine the
next action. The simulation terminates when a pre-
specified time period is reached or when any state
variable exceeds physiological ranges.

Reward: We formulate our reward function in con-
sultation with domain experts to guide the RL agent
towards meaningful adaptations. The reward com-
prises several terms that (1) address the dual roles
of bile acids, namely their contributions to liver tox-
icity (minimizing toxicity) and their physiolog-
ical functions (facilitating digestion and main-
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Figure 3: Idealized modeling of PSC pathophysiology.

taining cholesterol elimination), and (2) ensure
the generated trajectories are empirically reasonable
for PSC (resembling real-world patient data and
conforming with values from the literature).

Minimizing toxicity. One of the main goals of
adaptation is to limit liver exposure (LE) to toxic
bile acids (Boyer, 2007). We set a negative reward for
excessive bile acid exposure in the liver to minimize
liver toxicity. We calculate LE as the cumulative liver
bile acid level over one day. If current LE exceeds LE
under healthy conditions, we set the negative reward
to be the normalized excessive exposure.

−max

(
current LE − healthy LE

maximum possible LE
, 0

)
(6)

Facilitating digestion. Adaptation requires pre-
serving digestive functions under disease conditions
(Tappenden, 2014). Because bile acids in the ileum
are necessary for fat digestion, we promote ileum ac-
cess (IA) to bile acids with a reward term defined as
the ratio of current IA to IA under healthy condi-
tions. IA is calculated as the cumulative ileum bile
acid level over one day. The reward is capped at 1,
offering no additional benefit beyond healthy levels.

min

(
current IA

healthy IA
, 1

)
(7)

Maintaining cholesterol elimination. Synthe-
sizing bile acids from cholesterol is one of the main
pathways for eliminating cholesterol from the body
(Wang et al., 2018). Insufficient elimination of choles-
terol increases the risks of multiple diseases. We re-
ward sufficient cholesterol elimination, represented by
the ratio of the current bile acid synthesis (BAS) rate
to the BAS rate under healthy conditions. The re-
ward is capped at 1, offering no additional benefit
from excessive cholesterol elimination.

min

(
current BAS rate

healthy BAS rate
, 1

)
(8)

Resembling real-world patient data. The way
to adapt and sustain physiological functions might
not be unique. To obtain an RL agent that mirrors
adaptation in humans, we set a reward term to pro-
mote RL solutions that resemble real-world plasma
data from PSC patients. We select a representative
patient from our cohort (see Section 3) and penal-
ize the difference between the patient’s data BAdata

and the respective RL states BARL. This difference
is divided by the corresponding bile acid’s standard
deviation. The negative sum of the squared weighted
difference is multiplied by a coefficient λ ∈ [0, 1] to
match other reward terms’ range.

−λmin

(
ΣBA

(
BARL −BAdata

std BAdata

)2

,CAP

)
(9)

Conforming with values from the literature:
We design additional reward terms to ensure the RL
agent generates physiologically plausible bile acid lev-
els while keeping the regulatable parameters close
to their values under healthy conditions. See Ap-
pendix C for further details.

2.4. Implementation of REMEDI

Degree of pathophysiology: To determine the
extent of bile duct obstruction, we ran a grid search
for the parameter p[bd max flow] across values of 1,
2, 3, 5, 10, 20, and 40 µmol/min, simulating scenar-
ios from near-complete to partial obstruction. Corre-
sponding RL agents were trained independently.

RL timeframes: At each step, the RL agent mod-
ified padapt to simulate the next 24 hours. Consider-
ing adaptation unfolds over days to weeks, this daily
cycle offered sufficient opportunities for meaningful
modulations. We restricted the simulation to a maxi-
mum of 240 days to adequately encapsulate the initial
adaptation phase (Georgiev et al., 2008).
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Adaptation amplitudes: We chose relatively
large parameter adaptation amplitudes to match the
day-long RL steps. For parameters describing rates,
i.e., p[synthesis] and p[max asbt rate], we simulated
up- or down-regulation with a 25% higher or lower
fold change; for parameters describing fractions,
i.e., p[syn frac CA], p[hep extract ratio conj tri], and
p[hep extract ratio conj di]), we applied a 10% addi-
tion or subtraction. We also prespecified physiolog-
ically plausible ranges for each parameter, and up-
or down-regulated values exceeding the ranges were
clipped. The RL agent generated stochastic actions
during training and evaluation.

Real-world patient data: Our dataset includes
222 PSC patients selected from the PSC Scientific
Community Resource (Ali et al., 2021). Plasma
bile acid profiling was performed at the Mayo Clinic
(Mousa et al., 2021). We selected five representative
patients whose measurements minimized the sum of
the distances to all patients. We referred to the pa-
tient with the smallest sum of the distances to all
patients as Patient 1. Patient-specific models were
trained using their respective data, resulting in five
models for the five patients. Since PSC is chronic, we
assume patient data were collected during the stabi-
lized adaptation phase. Hence, the sum of squared
errors to encourage resemblance to patient data was
only introduced after the initial four weeks.

RL training: We trained the RL agent for
4,000,000 environment steps using the model-free
Proximal Policy Optimization (PPO) algorithm im-
plemented in the Python package Stable Baselines3.
See Appendix C for more details on our RL setup.

2.5. Code Availability

Our code, example data, and a comprehensive
README file are publicly available at https://

github.com/chang-hu/REMEDI.

3. Results

3.1. Healthy bile acid dynamics

We derived the DE parameters and initial bile acid
values from the well-calibrated model by Sips et al.
(2018). We simulated our DEs over 60 days, reaching
a steady state at which bile acid dynamics repeated
every 24 hours. The Runge-Kutta 45 numerical solver
was used to integrate the DEs in our experiments.

We validated our reduced-order DEs against the
original DEs proposed by (Sips et al., 2018) (see Ap-
pendix A for details). The reduced-order DEs com-
pleted a 60-day simulation in 2.99s, over ten times
faster than the 32.5s of the original DEs, while re-
taining similar bile acid trends (Appendix A Fig-
ure 7). The steady-state (day 60) bile acid levels of
the reduced-order DEs were also consistent with real-
world plasma data of 302 healthy individuals from
Mayo Clinic (Appendix A Figure 8 and Figure 9).

3.2. PSC bile acid dynamics without RL

For this analysis, we employed the reduced-order DEs
extended with PSC pathophysiology, excluding RL
adaptation. The parameter representing the degree
of bile duct obstruction, p[bd max flow], was set to
3 µmol/min (in contrast to 75 µmol/min when un-
obstructed). Other DE parameters and bile acid lev-
els were initialized with their steady-state values un-
der healthy conditions. We ran the simulation for 60
days, which, as shown by animal models, was enough
time to establish adaptation (Georgiev et al., 2008).

Figure 4(a) shows the 60-day cCDCA bile acid dy-
namics following the introduction of PSC pathophys-
iology (see Appendix D for dynamics of other bile
acids). We observed a 230% surge in bile duct bile
acid levels, a direct result of impaired bile flow to the
ileum and the subsequent accumulation in the bile
ducts. A corresponding decrease in ileum bile acids
was also observed. Around day five, bile duct bile
acids reached a saturation point, causing excess bile
acids to flow back into the liver. These observations
align with the biologically expected changes (Boyd
et al., 1966; Popper and Schaffner, 1970).

However, once bile backflow starts, it continues at a
near-constant rate throughout the remaining simula-
tion, generating unrealistically high liver bile acid lev-
els. The cCDCA level rose to 27,148 µmol by day 60,
in stark contrast to the 45 µmol under healthy condi-
tions. The simulation also indicated decreased conju-
gated bile acid levels in the plasma, conflicting with
data showing elevated levels in PSC patients. These
discrepancies arise from the flawed assumption that
bile acid metabolism parameters remain unchanged,
neglecting the dynamic adaptation occurring in PSC.

3.3. PSC bile acid dynamics with REMEDI

We tested REMEDI upon introducing PSC patho-
physiology to healthy conditions. We evaluated a
range of p[bd max flow] values and chose the case
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Figure 4: Simulated 60-day (panels (a)–(b)) and 240-day ((c)–(e)) bile acid dynamics after introduction of
PSC pathophysiology (p[bd max flow]=3 µmol/min) to healthy conditions at day 0. (a) Without
adaptation; (b)–(c) with adaptive DE parameters obtained from a trained RL agent; (d) with
complete reduction of active uptake; (e) with 50% reduction of active uptake. Results shown here
were derived from the model trained with Patient 1’s data. Only cCDCA values at 8 AM of
each day are plotted. The blue dotted line represents the bile acid levels for healthy individuals,
specifically, the steady-state (day 60) bile acid levels of the reduced-order DEs (see Section 3.1
and Appendix A). The red dotted line represents the plasma bile acid measurement of Patient 1.
See Appendix D and Appendix E for the complete dynamics from all patients.

with p[bd max flow]=3 µmol/min for further anal-
ysis, as it yielded plasma bile acid levels closest to
real data and therefore was more likely to reflect the
real-world disease conditions (see Appendix C).

Upon introducing PSC pathophysiology in Patient
1’s model, we observed an initial surge of bile acid
levels in the bile ducts and a decrease in the down-
stream intestines (Figure 4(b)), as observed in animal
studies of PSC (Boyd et al., 1966). Around day five,
liver bile acids started to accumulate following satu-
ration in the bile ducts. Importantly, REMEDI was
able to adjust and stabilize the liver bile acid levels
by week four, avoiding the unrealistic continuous rise
seen without RL adaptation (Figure 4(a)). Further-
more, REMEDI showed an increase in conjugated bile
acids in the plasma and a decrease in unconjugated
forms (Appendix D Figure 13), better aligning with
the real-world PSC patient data than without RL
adaptation (Figure 4(c)). Similar results were seen
for models trained on Patient 2–5 (Appendix E).

To quantitatively assess the improvement from RL,
we compared Patient 1’s measurements with bile
acid predictions from models trained on data from
four other patients. The average error with RL was
smaller than the error without RL (Table 1). We
adopted this approach for validation as we only had
one cross-sectional measurement for each patient.

Overall, REMEDI with RL-based adaptation cap-
tured key disease dynamics and generated a more
faithful representation of real-world data.

3.4. Trajectories of adaptive parameters

Analyzing parameter adjustments by REMEDI
and linking them to the underlying enzymes can shed
light on possible adaptive mechanisms driving bile
acid metabolism in PSC. Notably, bile acid synthesis
went through a sharp decline following the bile duct
obstruction and remained low throughout the simula-
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Table 1: Error between the model and PSC Patient 1’s data (µmol, day 50 – 60 averaged).

Model/Plasma cCA cCDCA cSBA uCA uCDCA uSBA

REMEDI without RL -12.01 -10.37 -2.21 -0.08 -0.18 -0.35
(-97.74%) (-91.66%) (-95.91%) (-48.18%) (-65.19%) (-79.23%)

REMEDI -9.91 -6.68 0.25 0.08 0.10 0.14
(-80.63%) (-59.07%) (11.09%) (51.69%) (34.88%) (31.45%)

To make comparison across bile acid species more meaningful, we also calculate the errors as proportions
of the observed values (in the parenthesis): Model Prediction−Patient 1’s Measurement

Patient 1’s Measurement
× 100%.

Figure 5: DE parameter adaptations by REMEDI
following the introduction of PSC patho-
physiology. synthesis (blue): bile acid syn-
thesis rate; syn frac CA (orange): fraction
of CA (vs. CDCA) in newly synthesized
bile acid; hep ratio conj tri (green): frac-
tion of bile acid uptake entering the liver
(vs. plasma) for cCA; hep ratio conj di
(red): fraction of bile acid uptake en-
tering the liver for cCDCA and cSBA;
max asbt rate (purple): efficiency of bile
acid active uptake.

tion period (Figure 5), in line with the known down-
regulation of the bile acid synthesis enzyme CYP7A1
in cholestasis (a condition in which the bile flow from
the liver stops or slows) (Jansen et al., 2017).

The model also predicted fluctuations in the
CA:CDCA ratio among newly synthesized bile acids
(p[syn frac CA]). CA:CDCA ratio depends on the
activities of the classical and alternative bile acid syn-
thesis pathways, which are regulated by enzymes such
as CYP8B1 (Li and Chiang, 2012). How the activities
of these enzymes change in PSC is unclear, but our
real-world PSC patient data also showed an altered

plasma CA:CDCA ratio, warranting further study of
potential enzymatic shifts.

We observed reduced liver extraction of reabsorbed
intestinal bile acids, with more bile acids enter-
ing systemic blood (p[hep extract ratio conj tri] and
p[hep extract ratio conj di]), potentially explaining
the elevated plasma bile acid levels commonly seen
in PSC patients. This trend aligns with cholestasis-
related down-regulation of NTCP, a key enzyme in
liver bile acid extraction (Donner et al., 2007).

Finally, there was a temporary drop in the ileum
bile acid active uptake efficiency in the initial adap-
tation phase (p[max asbt rate]), corroborating the
down-regulation of the bile acid uptake mediating en-
zyme ASBT in animal studies (Hruz et al., 2006).

Trends in Patient 2–5 were similar (Appendix E).

3.5. In silico evaluation of bile acid therapies

Using the trained REMEDI model, we assessed two
types of experimental therapies targeting bile acid
metabolism in silico (Boyer, 2007): (1) suppression of
bile acid synthesis, which we studied through analyz-
ing bile acid synthesis rate (p[synthesis]) adjustments
during adaptation, and (2) reduction of bile acid ac-
tive uptake, which we simulated by decreasing effi-
ciency of intestinal active uptake (p[max asbt rate]).
Our analysis suggested partial reduction of bile acid
active uptake might protect the liver, highlighting the
value of REMEDI in evaluating therapies in silico.

Suppressing synthesis: Drugs suppressing bile
acid synthesis enzyme CYP7A1 are in clinical tri-
als for PSC and other cholestatic conditions (Chiang
and Ferrell, 2020). Interestingly, REMEDI suggested
the liver may naturally inhibit bile acid synthesis
(p[synthesis]) as an adaptive response (Figure 4(c)),
implying the therapeutic window for such drugs may
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be limited to the early stages of the disease, before
endogenous adaptations establish.

Reducing active uptake: ASBT, a central en-
zyme in ileum bile acid active uptake, has been
the target of multiple drugs (Vesterhus and Karlsen,
2020). We simulated two strategies targeting this
mechanism by adjusting p[max asbt rate]: (1) com-
plete reduction, down-regulating p[max asbt rate]
until it reaches its physiological lower bound, and (2)
50% reduction, down-regulating p[max asbt rate] un-
til it reaches or falls below half of the lower bound.

Complete reduction: REMEDI predicted that
full inhibition of active uptake would result in phys-
iologically implausible spikes in plasma and intestine
bile acids (Figure 4(d)), which led to premature ter-
mination of the simulation, implying complete reduc-
tion is likely an unrealistic strategy.

50% reduction: Partial reduction limited the oc-
currence of liver bile acid spikes (Figure 4(e)), po-
tentially protecting the liver from excessive bile acid
accumulation, in line with animal studies showing
a liver-protection effect from an ASBT inhibitor
(Caballero-Camino et al., 2023). In contrast to com-
plete reduction, 50% reduction yielded plasma and
intestine bile acid levels within realistic ranges, mak-
ing partial reduction a more viable strategy.

4. Related Works

Several studies have proposed DE-based mechanis-
tic models of bile acid metabolism (Hofmann et al.,
1983; Molino et al., 1986; Sips et al., 2018; Baier et al.,
2019; Voronova et al., 2020), albeit for healthy or non-
PSC conditions. Moreover, the adaptive responses
of the body in pathological conditions were usually
not considered. A notable exception is Voronova
et al. (2020), which explicitly modeled the FXR-
FGF19 bile acid self-regulation pathway (Eloranta
and Kullak-Ublick, 2008). Our approach is unique
for using RL to simultaneously consider multiple reg-
ulation pathways without explicitly modeling their
mechanisms. A previous study combined DEs with
RL to model Alzheimer’s disease progression (Saboo
et al., 2021). They used RL to estimate DE variable
values that maximize cognition and minimize ener-
getic cost, whereas we estimate DE parameters rep-
resenting enzyme levels that promote homeostasis.

5. Limitations

First, we made several assumptions due to the current
limited understanding of PSC, including focusing on
bile acid metabolism, modeling bile duct obstruction
as a sudden blockage, and in setting adaptation goals.
Refining these assumptions as new insights of PSC
emerge will lead to a more realistic model. One possi-
ble future extension is to include the bile acid-gut mi-
crobiota crosstalk (Wahlström et al., 2016). Second,
our bile acid trajectory prediction was only compared
to a single time point because we only had access to
cross-sectional data. However, plasma bile acid data
is being collected annually at the Mayo Clinic begin-
ning in 2020. To further validate REMEDI, when
the longitudinal data becomes available, we plan to
use the first year’s data for training and the subse-
quent years for validation. This will be achieved by
modifying the reward function term that encourages
resemblance to real-world patient data.

6. Conclusion

We developed REMEDI, a novel model of PSC pro-
gression by combining bile acid metabolism DEs with
an RL agent that captures the body’s adaptation.
REMEDI captures key bile acid trends in disease pro-
gression consistent with the literature and predicted
therapy responses in silico.

While this work focuses on PSC, our model can
be readily adapted to other bile acid-related diseases,
such as primary biliary cirrhosis and benign recurrent
intrahepatic cholestasis. Additionally, REMEDI’s
adaptive approach to disease progression modeling
can be extended to a wide range of diseases, includ-
ing type 2 diabetes (glucose metabolism) and hor-
mone receptor positive cancers like breast, ovarian,
or prostate cancers (sex hormone metabolism).
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Appendix A. Reduced-Order Bile
Acid Metabolism Model
Under Healthy
Conditions

A.1. Bile Acids Enterohepatic Circulation

plasma

cPBA
cSBA
uPBA
uSBA

synthesis

feces

portal vein

synthesis
transit
deconjugation
biotransformation
active uptake
passive uptake
reabsorption
excretion
meal-dependent

Bile Acids
Enterohepatic Circulation

Figure 6: Overview of the biochemical and physical
processes modeled in the bile acids entero-
hepatic circulation. We use primary bile
acids (PBA) to represent both cholic acid
(CA) and chenodeoxycholic acid (CDCA)
because they share the same processes.

Several species of bile acids circulate in multi-
ple organs of the human body in a process called
enterohepatic circulation. In the liver (li), choles-
terol is metabolized into primary bile acids uncon-
jugated cholic acid (uCA), and unconjugated chen-
odeoxycholic acid (uCDCA), which are then conju-
gated with either glycine or taurine into conjugated
cholic acid (cCA) and conjugated chenodeoxycholic
acid (cCDCA). Conjugated primary bile acids are
then secreted into the bile duct and gallbladder (bd),
which store and secrete the bile acids into the in-
testine, mostly after meals. Bacteria in the ileum
(il) and the colon (co) deconjugate some of these bile
acids and colon bacteria dehydroxylate primary bile
acids to form secondary bile acids (SBA). Through
active and passive uptake, bile acids are reabsorbed
into the portal vein and then back to the liver. Active
uptake happens in the ileum, while passive uptake
happens in both the ileum and the colon, but only
for unconjugated bile acids. Liver cells extract the
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reabsorbed bile acids efficiently, with a small portion
of various bile acid species escaping into the systemic
circulation (plasma, pl). Bile acids that are not reab-
sorbed in the intestines are excreted with feces (fe).

A.2. Model Reduction from Sips et al.
(2018)

Sips et al. (2018) presents a detailed bile acid model
that is calibrated with a comprehensive dataset com-
piled from 99 studies. For each bile acid (BA) in
each organ (OG), Sips et al. (2018) (1) models its in-
fluxes/outfluxes from relevant biochemical and phys-
ical processes and (2) joins the fluxes into one dif-
ferential equation to describe how the level of BA in
OG varies with time. We adopt Sips et al. (2018)’s
approach and model bile acid circulation with a se-
ries of ordinary differential equations (ODEs). Based
on relevance to PSC, we reduce Sips et al. (2018)’s
model by merging several bile acid species and not
distinguishing certain organ segments. Specifically,
Sips et al. (2018) divided the intestines into 15 con-
secutive segments for a detailed description of post-
prandial dynamics, which we deem irrelevant for PSC
and combine the segments the ileum and the colon;
Sips et al. (2018) modeled 8 different cSBA species
separately, while we combine them together because
SBA as a whole is hypothesized to play a role in
PSC (Vaughn et al. (2019)). Our reduction results
in the modeling of bile acid BA ∈ {cCA, cCDCA,
cSBA, uCA, uCDCA, uSBA} in organ OG ∈ {li, bd,
il, co, pl, fe}. Figure 6 summarizes the biochemical
and physical processes in the enterohepatic circula-
tion that constitute the ODEs.

A.3. Meal-related Dynamics

In addition to the zero and first-order dynamics dis-
cussed in the main text, our ODEs also contain
time-varying parameters that capture the nuances of
meal-related dynamics. When we eat, the gallblad-
der contracts and releases bile acids, and the bow-
els also move faster. As a result, bile acids move
through these compartments at an increased pace im-
mediately after eating, gradually slowing down over
time. To model these meal-dependent dynamics,
we assume the parameters governing the first-order
dynamics of the transit rates along these compart-
ments are functions of the time passed since the
last meal, parametrized by normalized Rayleigh func-
tions. Specifically, meal-dependent dynamics affect
transit from the gallbladder and bile duct to the

ileum, from the ileum to the colon, and from the colon
to feces. As an example,

rcCA
co to fe = p[co to fe freq] · p[co transit coef] · xcCA

co

(10)

p[co transit coef] =

1 + p[peak co] ·
(
tmeal

√
e

p[loc co]
exp

(
− tmeal

2 · p[loc co]2

))
(11)

tmeal represents the time that has passed since the
subject’s most recent meal. As a result of the nor-
malized Rayleigh function, p[co transit coef] starts to
rise from 1 immediately after a meal, reaching its
postprandial peak of 1+ p[peak co] at time p[loc co].
Subsequently, it gradually returns to 1.

A.4. Estimates of Model Parameters and
Fasting Bile Acid Levels

We utilize the model fitting and simulation results in
Sips et al. (2018) to derive the parameters and fast-
ing bile acid levels for a healthy individual for our
model. For example, since p[synthesis] has the same
definition in Sips et al. (2018) as in our model, we
directly take its value from Sips et al. (2018). How-
ever, there is no equivalent variable in Sips et al.
(2018) for xcCA

co , which represents the level of con-
jugated cholic acid in the colon. Instead, Sips et al.
(2018) separates conjugated cholic acid into taurine-
conjugated cholic acid and glycine-conjugated cholic
acid and models their levels in 5 consecutive parts
of the colon. Therefore, we derive our fasting xcCA

co

by summing up taurine-conjugated cholic acid and
glycine-conjugated cholic acid in the 5 parts of the
colon using the fasting time simulation results of Sips
et al. (2018). Similarly, we estimate fasting rcCA

co to fe by
summing up the fluxes of taurine-conjugated cholic
acid and glycine-conjugated cholic acid that tran-
sit from the last part of the colon to feces. Be-
cause p[co transit coef] is assumed to be close to 1 at
fasting, we derive p[co to fe freq] by dividing fasting
rco to fe by fasting xco and taking the average across
bile acid species. Other parameters and bile acid lev-
els are similarly estimated.
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A.5. Specification of Bile Acid Dynamics
Simulation under Healthy Conditions

After obtaining the estimations for all parameters
and fasting bile acid levels, we run the system of
ODEs using the Runge-Kutta 45 (RK45) numerical
solver. To mimic the meal-dependent characteristics
of bile acid metabolism, we introduce three simulated
meals at 0, 6, and 12 hours every 24 hours, corre-
sponding to breakfast, lunch, and dinner (8 AM, 2
PM, and 8 PM). We simulate the ODE system for
a duration of 60 days, surpassing the 55-day dura-
tion in Sips et al. (2018). We verify that a steady
state has been reached by day 60, where the bile acids
dynamics approximately repeat themselves every 24
hours. Specifically, the largest relative change in a
single bile acid is below 0.01% between two consecu-
tive days and remains below 0.1% after a year (360
days). We then take the steady-state fasting bile acid
levels as the fasting bile acid levels representative of
healthy individuals.

A.6. 24-hour Bile Acid Dynamics

Figure 7 displays the 24-hour bile acid dynamics with
three simulated meals at 8 AM, 2 PM, and 8 PM.
The simulated results show that different bile acid
species in different compartments all exhibit three-
peak patterns that are associated with the three sim-
ulated meals. However, as expected, the peaking
patterns and peaking amplitudes differ across bile
acid species and compartments, validating the impor-
tance of modeling them separately. In general, conju-
gated bile acids in the same compartment follow sim-
ilar trends, as do unconjugated bile acids, except for
uSBA in the colon. Consistent with experimental ob-
servations, our results show that the gallbladder and
bile duct contains the highest amount of conjugated
bile acids among all compartments; uSBA is primar-
ily concentrated in the colon; and plasma bile acid
levels are generally low for all bile acid species due to
the liver’s effective hepatic clearance under healthy
conditions. Our simulation results also show good
correspondence with the well-calibrated Sips et al.
(2018) while reducing the computation time by more
than 10X.

A.7. Validation with A Real-world Dataset

We validate the accuracy of our model by comparing
the model simulation results with a real-world dataset
from our partnering hospital. The dataset collected

fasting plasma bile acid levels from 302 healthy indi-
viduals. Measurements below the detectable thresh-
old were imputed with half of the smallest non-zero
value. We take the model plasma bile acid levels at
8 AM, 12 hours after the previous simulated meal, as
the corresponding fasting levels for comparison. Both
the model simulated results and the real-world data
were log 10 transformed. Figure 8 shows that the sim-
ulated fasting bile acid levels are located within high
likelihood regions of real-world data for all bile acids
species, indicating that our model is capable of gener-
ating realistic bile acid levels. To further evaluate the
representativeness of our simulation results beyond
univariate comparison, we estimated the joint distri-
bution of pairs of bile acids from the healthy control
data and plotted the simulated data on the same plot
in Figure 9. We see the simulated fasting profile is
still located within high-likelihood regions when pairs
of bile acids are considered simultaneously. These
validation results provide confidence in the model’s
ability to simulate bile acid dynamics under healthy
conditions and encourage its usage as a base model
for studying study bile acid-related diseases.

Appendix B. Reduced-Order Bile
Acid Metabolism ODEs
for PSC (Mathematical
Descriptions)

B.1. Abbreviations

• cCA: conjugated cholic acid

• cCDCA: conjugated chenodeoxycholic acid

• cSBA: conjugated secondary bile acid

• uCA: unconjugated cholic acid

• uCDCA: unconjugated chenodeoxycholic acid

• uSBA: unconjugated secondary bile acid

• li: liver

• bd: bild duct

• il: ileum

• co: colon

• pl: plasma

• fe: feces
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Figure 7: Simulated 24-hour bile acid dynamics with meals at 8 AM, 2 PM, and 8 PM. Orange curve:
dynamics from our reduced-order ODEs; blue curve: dynamics from Sips et al. (2018).

Figure 8: log10 fasting plasma bile acid level (red
vertical line) from the reduced-order ODEs
compared to real-world data histograms.

• syn: synthesis

• deconj: deconjugation

• biotr: primary to secondary bile acids bio-
transformation

• au: active uptake

• pu: passive uptake

B.2. Definition of independent parameters

• p[synthesis]: µmol/min. Total bile acid (BA)
synthesis (cCA, cCDCA) rate in li.

• p[syn frac CA] ∈ [0, 1], unitless. Fraction of CA
among the newly synthesized BA.

• p[li to bd freq]: 1/min. Parameter for BA secre-
tion from li to bd.

• p[bd to il freq]: 1/min. Parameter for BA tran-
sit from bd to il.

• p[il to co freq]: 1/min. Parameter for BA transit
from il to co.

• p[co to fe freq]: 1/min. Parameter for BA excre-
tion from co to fe.
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Figure 9: log10 fasting plasma level of bile acid pairs
(red dot) from the reduced-order ODEs
compared to real-world data bile acid pairs
joint distribution.

• p[pl volume]: L. Total volume of pl in the body.

• p[pl flow thru li]: L/min. Rate of pl flowing
through li.

• p[hep ratio conj tri] ∈ [0, 1], unitless. For conju-
gated trihydroxylated BA (cCA) extracted from
the gut via passive uptake and active uptake, the
proportion that goes to li; for conjugated trihy-
droxylated BA (cCA) flowing through li from pl,
the proportion that goes to li.

• p[hep ratio conj di] ∈ [0, 1], unitless. Same
as p[hep ratio conj tri], but for conjugated di-
hydroxylated BA (primary BA CDCA, sec-
ondary BA ursodeoxycholic acid and deoxy-
cholic acid). For simplicity, we assume the
other secondary BA, mono-hydroxylated BA
lithocholic acid, also belongs to this category.
Hence, p[hep ratio conj di] applies to cCDCA
and cSBA.

• p[hep ratio unconj to conj] ∈ [0, 1], unitless.
Unconjugated BAs have lower hepatic extrac-
tion ratios than conjugated BAs. This parameter

quantifies the fraction p[hep ratio unconj tri/di]
p[hep ratio conj tri/di] .

• p[gut deconj freq co]: 1/min. Parameter for BA
deconjugation in co (by bacteria).

• p[gut deconj freq il to co] ∈ [0, 1], unitless. De-
conjugation happens more in co than in
il. This parameter quantifies the fraction
p[gut deconj freq il]
p[gut deconj freq co] .

• p[gut biotr freq CA]: 1/min. Parameter for
uCA to uSBA biotransformation in co (by bac-
teria).

• p[gut biotr freq CDCA to CA] ∈ [0, 1], unit-
less. Biotransformation to secondary BA
happens (slightly) faster for CA than for
CDCA. This parameter quantifies the fraction
p[gut biotr freq CDCA]
p[gut biotr freq CA] .

• p[max asbt rate]: 1/min. Parameter for BA ac-
tive uptake in il (via enzyme ASBT).

• p[gut pu freq co]: 1/min. Parameter for uBA
passive uptake in co.

• p[gut pu freq il to co] ∈ [0, 1], unitless. Passive
uptake is more efficient in co than in il because of
the larger diameter of co. This parameter quan-

tifies the fraction p[gut pu freq il]
p[gut pu freq co] .
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• p[meal reflex loc bd]: min. Parameter charac-
terizing the normalized Rayleigh function that
describes the meal-dependent BA transit dynam-
ics from bd to il. BA transit efficiency from bd
to il peaks at p[meal reflex loc bd] min after the
most recent meal, while baseline efficiency hap-
pens immediately after a meal or after an in-
finitely extended period.

• p[meal reflex loc il]: min. Same as
p[meal reflex loc bd], but for il to co tran-
sit.

• p[meal reflex loc co]: min. Same as
p[meal reflex loc bd], but for co to fe tran-
sit.

• p[meal reflex peak bd]: unitless. Parameter
characterizing the normalized Rayleigh function
that describes the meal-dependent BA transit
dynamics from bd to il. At its peak, BA transit
efficiency from bd to il is elevated by a factor of
1+p[meal reflex peak bd] compared to the base-
line.

• p[meal reflex peak il]: min. Same as
p[meal reflex peak bd], but for il to co transit.

• p[meal reflex peak co]: min. Same as
p[meal reflex peak bd], but for co to fe transit.

• p[co sulfate freq]: 1/min. Parameter for sulfa-
tion of secondary BA (LCA). For simplicity, we
account for sulfation by modeling its end out-
come: the additional excretion of SBA into fe,
which is again modeled with first-order dynam-
ics, governed by p[co sulfate freq].

• p[bd max ba]: µmol. BA holding capacity of bd.
Excessive BAs will backflow to li proportional to
their levels in bd.

• p[bd max flow]: µmol. Maximum amount of BA
allowed to pass through bd to il, in proportion
to the degree of bd obstruction.

B.3. ODE joining the bile acid fluxes

How the level of each bile acid BA ∈ {cCA, cCDCA,
cSBA, uCA, uCDCA, uSBA} in each organ OG ∈
{li, bd, il, co, pl, fe} varies with time is described
by differential equations summing the corresponding
influxes and subtracting the outfluxes. The fluxes
take unit µmol/min unless specified otherwise.

B.3.1. Liver

dxcCA
li

dt
= rcCA

syn + rcCA
li from gut + rcCA

li from pl

− rcCA
li to bd + rcCA

li from bd

dxcCDCA
li

dt
= rcCDCA

syn + rcCDCA
li from gut + rcCDCA

li from pl

− rcCDCA
li to bd + rcCDCA

li from bd

dxcSBA
li

dt
= rcSBA

li from gut + rcSBA
li from pl − rcSBA

li to bd

+ rcSBA
li from bd

dxuCA
li

dt
= 0

dxuCDCA
li

dt
= 0

dxuSBA
li

dt
= 0

B.3.2. Bile duct

dxcCA
bd

dt
= rcCA

bd from li − rcCA
bd to il − rcCA

bd to li

dxcCDCA
bd

dt
= rcCDCA

bd from li − rcCDCA
bd to il − rcCDCA

bd to li

dxcSBA
bd

dt
= rcSBA

bd from li − rcSBA
bd to il − rcSBA

bd to li

dxuCA
bd

dt
= 0

dxuCDCA
bd

dt
= 0

dxuSBA
bd

dt
= 0

B.3.3. Ileum

dxcCA
il

dt
= rcCA

il from bd − rcCA
il deconj − rcCA

il au − rcCA
il to co

dxcCDCA
il

dt
= rcCDCA

il from bd − rcCDCA
il deconj − rcCDCA

il au − rcCDCA
il to co

dxcSBA
il

dt
= rcSBA

il from bd − rcSBA
il deconj − rcSBA

il au − rcSBA
il to co

dxuCA
il

dt
= ruCA

il deconj − ruCA
il au − ruCA

il pu − ruCA
il to co

dxuCDCA
il

dt
= ruCDCA

il deconj − ruCDCA
il au − ruCDCA

il pu − ruCDCA
il to co

dxuSBA
il

dt
= ruSBA

il deconj − ruSBA
il au − ruSBA

il pu − ruSBA
il to co
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B.3.4. Colon

dxcCA
co

dt
= rcCA

co from il − rcCA
co deconj − rcCA

co to fe

dxcCDCA
co

dt
= rcCDCA

co from il − rcCDCA
co deconj − rcCDCA

co to fe

dxcSBA
co

dt
= rcSBA

co from il − rcSBA
co deconj − rcSBA

co to fe

− rcSBA
co sulfate

dxuCA
co

dt
= ruCA

co from il + ruCA
co deconj − ruCA

co biotr

− ruCA
co pu − ruCA

co to fe

dxuCDCA
co

dt
= ruCDCA

co from il + ruCDCA
co deconj − ruCDCA

co biotr

− ruCDCA
co pu − ruCDCA

co to fe

dxuSBA
co

dt
= ruSBA

co from il + ruSBA
co deconj + ruSBA

co biotr

− ruSBA
co pu − ruSBA

co to fe − ruSBA
co sulfate

B.3.5. Plasma

dxcCA
pl

dt
= rcCA

pl from gut − rcCA
pl to li

dxcCDCA
pl

dt
= rcCDCA

pl from gut − rcCDCA
pl to li

dxcSBA
pl

dt
= rcSBA

pl from gut − rcSBA
pl to li

dxuCA
pl

dt
= ruCA

pl from gut − ruCA
pl to li

dxuCDCA
pl

dt
= ruCDCA

pl from gut − ruCDCA
pl to li

dxuSBA
pl

dt
= ruSBA

pl from gut − ruSBA
pl to li

B.3.6. Feces

dxcCA
fe

dt
= rcCA

fe from co

dxcCDCA
fe

dt
= rcCDCA

fe from co

dxcSBA
fe

dt
= rcSBA

fe from co + rcSBA
fe sulfate

dxuCA
fe

dt
= ruCA

fe from co

dxuCDCA
fe

dt
= ruCDCA

fe from co

dxuSBA
fe

dt
= ruSBA

fe from co + ruSBA
fe sulfate

B.4. Helper functions and parameters

We define the following helper functions and param-
eters as functions of the estimated parameters:

B.4.1. Helpers for bile duct obstruction
and bile acid backflow

xbd = xcCA
bd + xcCDCA

bd + xcSBA
bd

rbd from li = rcCA
bd from li + rcCDCA

bd from li

+ rcSBA
bd from li

rbd to il = rcCA
bd to il + rcCDCA

bd to il + rcSBA
bd to il

p[bdl discount] =

min

(
p[bd max flow]

p[bd to il freq] · p[bd transit coef] · xbd
, 1

)

p[bd backflow coef] =

max

(
xbd + rbd from li − rbd to il − p[bd max ba]

xbd
, 0

)

174



REMEDI

B.4.2. Helpers for parameters defined by
ratios

p[hep ratio unconj tri] =

p[hep ratio conj tri] · p[hep ratio unconj to conj]

p[hep ratio unconj di] =

p[hep ratio conj di] · p[hep ratio unconj to conj]

p[gut deconj freq il] =

p[gut deconj freq co] · p[gut deconj freq il to co]

p[gut biotr freq CDCA] =

p[gut biotr freq CA] · p[gut biotr freq CDCA to CA]

p[gut pu freq il] =

p[gut pu freq co] · p[gut pu freq il to co]

B.4.3. Helpers for meal-related dynamics

GI reflex(loc, peak, t) = 1 + peak

·
(
t
√
e

loc
exp

(
− t2

2 · loc2

))
GI reflex(loc, peak, 0) = 1

GI reflex(loc, peak, loc) = 1 + peak

GI reflex(loc, peak,∞) = 1

p[bd transit coef] = GI reflex(p[meal reflex loc bd],

p[meal reflex peak bd], t since meal)

p[il transit coef] = GI reflex(p[meal reflex loc il],

p[meal reflex peak il], t since meal)

p[co transit coef] = GI reflex(p[meal reflex loc co],

p[meal reflex peak co], t since meal)

B.5. Zero- and first-order dynamics defining
the fluxes

B.5.1. Synthesis fluxes

rcCA
syn = p[synthesis] · p[syn frac CA]

rcCDCA
syn = p[synthesis] · (1− p[syn frac CA])

B.5.2. Transit fluxes

Transit fluxes are further categorized based on the
organs involved in the transit process:

Liver vs. Bile Duct

rcCA
li to bd = p[li to bd freq] · xcCA

li

rcCDCA
li to bd = p[li to bd freq] · xcCDCA

li

rcSBA
li to bd = p[li to bd freq] · xcSBA

li

rcCA
bd from li = rcCA

li to bd

rcCDCA
bd from li = rcCDCA

li to bd

rcSBA
bd from li = rcSBA

li to bd

rcCA
bd to li = p[bd backflow coef] · xcCA

bd

rcCDCA
bd to li = p[bd backflow coef] · xcCDCA

bd

rcSBA
bd to li = p[bd backflow coef] · xcSBA

bd

rcCA
li from bd = rcCA

bd to li

rcCDCA
li from bd = rcCDCA

bd to li

rcSBA
li from bd = rcSBA

bd to li

Bile Duct vs. Ileum

rcCA
bd to il = p[bd discount] · p[bd to il freq]

· p[bd transit coef] · xcCA
bd

rcCDCA
bd to il = p[bd discount] · p[bd to il freq]

· p[bd transit coef] · xcCDCA
bd

rcSBA
bd to il = p[bd discount] · p[bd to il freq]

· p[bd transit coef] · xcSBA
bd

rcCA
il from bd = rcCA

bd to il

rcCDCA
il from bd = rcCDCA

bd to il

rcSBA
il from bd = rcSBA

bd to il

Ileum vs. Colon

rcCA
il to co = p[il to co freq] · p[il transit coef] · xcCA

il

rcCDCA
il to co = p[il to co freq] · p[il transit coef] · xcCDCA

il

rcSBA
il to co = p[il to co freq] · p[il transit coef] · xcSBA

il

ruCA
il to co = p[il to co freq] · p[il transit coef] · xuCA

il

ruCDCA
il to co = p[il to co freq] · p[il transit coef] · xuCDCA

il

ruSBA
il to co = p[il to co freq] · p[il transit coef] · xuSBA

il

rcCA
co from il = rcCA

il to co

rcCDCA
co from il = rcCDCA

il to co

rcSBA
co from il = rcSBA

il to co

ruCA
co from il = ruCA

il to co

ruCDCA
co from il = ruCDCA

il to co

ruSBA
co from il = ruSBA

il to co
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Plasma vs. Liver

rcCA
pl to li = p[hep ratio conj tri]

· p[pl flow thru li] ·
xcCA
pl

p[pl volume]

rcCDCA
pl to li = p[hep ratio conj di]

· p[pl flow thru li] ·
xcCDCA
pl

p[pl volume]

rcSBA
pl to li = p[hep ratio conj di]

· p[pl flow thru li] ·
xcSBA
pl

p[pl volume]

ruCA
pl to li = p[hep ratio unconj tri]

· p[pl flow thru li] ·
xuCA
pl

p[pl volume]

ruCDCA
pl to li = p[hep ratio unconj di]

· p[pl flow thru li] ·
xuCDCA
pl

p[pl volume]

ruSBA
pl to li = p[hep ratio unconj di]

· p[pl flow thru li] ·
xuSBA
pl

p[pl volume]

rcCA
li from pl = rcCA

pl to li + ruCA
pl to li

rcCDCA
li from pl = rcCDCA

pl to li + ruCDCA
pl to li

rcSBA
li from pl = rcSBA

pl to li + ruSBA
pl to li

B.5.3. Deconjugation fluxes

rcCA
il deconj = p[gut deconj freq il] · xcCA

il

rcCDCA
il deconj = p[gut deconj freq il] · xcCDCA

il

rcSBA
il deconj = p[gut deconj freq il] · xcSBA

il

rcCA
co deconj = p[gut deconj freq co] · xcCA

co

rcCDCA
co deconj = p[gut deconj freq co] · xcCDCA

co

rcSBA
co deconj = p[gut deconj freq co] · xcSBA

co

ruCA
il deconj = rcCA

il deconj

ruCDCA
il deconj = rcCDCA

il deconj

ruSBA
il deconj = rcSBA

il deconj

ruCA
co deconj = rcCA

co deconj

ruCDCA
co deconj = rcCDCA

co deconj

ruSBA
co deconj = rcSBA

co deconj

B.5.4. Biotransformation fluxes

ruCA
co biotr = p[gut biotr freq CA] · xuCA

co

ruCDCA
co biotr = p[gut biotr freq CA] · xuCDCA

co

ruSBA
co biotr = ruCA

co biotr + ruCDCA
co biotr

B.5.5. Active uptake fluxes

rcCA
il au = p[max asbt rate] · xcCA

il

rcCDCA
il au = p[max asbt rate] · xcCDCA

il

rcSBA
il au = p[max asbt rate] · xcSBA

il

ruCA
il au = p[max asbt rate] · xuCA

il

ruCDCA
il au = p[max asbt rate] · xuCDCA

il

ruSBA
il au = p[max asbt rate] · xuSBA

il

B.5.6. Passive uptake fluxes

ruCA
il pu = p[gut pu freq il] · xuCA

il

ruCDCA
il pu = p[gut pu freq il] · xuCDCA

il

ruSBA
il pu = p[gut pu freq il] · xuSBA

il

ruCA
co pu = p[gut pu freq co] · xuCA

co

ruCDCA
co pu = p[gut pu freq co] · xuCDCA

co

ruSBA
co pu = p[gut pu freq co] · xuSBA

co
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B.5.7. Reabsorption fluxes

rcCA
li from gut = p[hep ratio conj tri] · rcCA

il au

+ p[hep ratio unconj tri]

· (ruCA
il au + ruCA

il pu + ruCA
co pu)

rcCDCA
li from gut = p[hep ratio conj di] · rcCDCA

il au

+ p[hep ratio unconj di]

· (ruCDCA
il au + ruCDCA

il pu + ruCDCA
co pu )

rcSBA
li from gut = p[hep ratio conj di] · rcSBA

il au

+ p[hep ratio unconj di]

· (ruSBA
il au + ruSBA

il pu + ruSBA
co pu )

rcCA
pl from gut = (1− p[hep ratio conj tri]) · rcCA

il au

rcCDCA
pl from gut = (1− p[hep ratio conj di]) · rcCDCA

il au

rcSBA
pl from gut = (1− p[hep ratio conj di]) · rcSBA

il au

ruCA
pl from gut = (1− p[hep ratio unconj tri])

· (ruCA
il au + ruCA

il pu + ruCA
co pu)

ruCDCA
pl from gut = (1− p[hep ratio unconj di])

· (ruCDCA
il au + ruCDCA

il pu + ruCDCA
co pu )

ruSBA
pl from gut = (1− p[hep ratio unconj di])

· (ruSBA
il au + ruSBA

il pu + ruSBA
co pu )

B.5.8. Excretion fluxes

rcCA
co to fe = p[co to fe freq] · p[co transit coef] · xcCA

co

rcCDCA
co to fe = p[co to fe freq] · p[co transit coef] · xcCDCA

co

rcSBA
co to fe = p[co to fe freq] · p[co transit coef] · xcSBA

co

ruCA
co to fe = p[co to fe freq] · p[co transit coef] · xuCA

co

ruCDCA
co to fe = p[co to fe freq] · p[co transit coef] · xuCDCA

co

ruSBA
co to fe = p[co to fe freq] · p[co transit coef] · xuSBA

co

rcCA
fe from co = rcCA

co to fe

rcCDCA
fe from co = rcCDCA

co to fe

rcSBA
fe from co = rcSBA

co to fe

ruCA
fe from co = ruCA

co to fe

ruCDCA
fe from co = ruCDCA

co to fe

ruSBA
fe from co = ruSBA

co to fe

B.5.9. Sulfation fluxes

In human, a portion of secondary bile acids exists in
sulfated form (Alnouti (2009)). However, according

to Sips et al. (2018), the process of desulfation hap-
pens at a very slow rate. This means only a small
fraction of sulfated bile acids can re-enter the entero-
hepatic circulation through desulfation, while the ma-
jority is excreted through feces. Hence, for simplicity,
we account for sulfation by modeling its end outcome:
the additional excretion of secondary bile acids into
feces, which is again modeled with first-order dynam-
ics.

rcSBA
co sulfate = p[co sulfate freq] · p[co transit coef]

· xcSBA
co

ruSBA
co sulfate = p[co sulfate freq] · p[co transit coef]

· xuSBA
co

rcSBA
fe sulfate = rcSBA

co sulfate

ruSBA
fe sulfate = ruSBA

co sulfate

Appendix C. Reinforcement Learning
Specifications And
Training Statistics

C.1. Rationale for training a separate model
for each patient

Our current model essentially serves as a prototypical
in-silico model for PSC, answering the question: what
does a typical PSC patient’s trajectory look like? To
this end, we selected a single patient whose measure-
ments minimized the sum of the distances to all pa-
tients and found our model’s predictions to be consis-
tent with existing literature. To ensure these findings
were not coincidences from this one patient’s data, we
repeated the training for four additional patients and
observed similar trends.

We want to emphasize that our approach is rooted
in a biological mechanistic model. Ultimately, this
mathematical model approximates the real world.
Parameterized with real data, the mathematical
model serves as a starting point in RL that is subse-
quently optimized through the reward function. The
primary objective of employing RL is to understand
the change in enzyme activities in response to the dis-
ruptions in bile acid metabolism. This understanding
is critical, as it provides valuable biological insights
into this dynamic process, as well as lays the ground-
work for developing an interpretable, individualized
predictive model. Such a model could inform clin-
icians in making disease management decisions, for
example, determining when a liver transplant may
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become necessary for a given patient. Our current
work is a very important step in this direction.
In future work, we plan to achieve a more indi-

vidualized approach by incorporating patient-specific
characteristics that are pertinent to disease progres-
sion. For example, body weight, which is linked to
blood volume, could individualize the mechanistic
model to generate patient-specific trajectories, which
can then be compared to the real-world patient mea-
surements in the reward function.

C.2. Additional Details of RL Setup

State: the state vector comprises bile acid levels
xbile acids and parameter values that represent
host enzyme activity levels padapt. Specifically,
xbile acids includes 30 variables across six bile acid
species and six organs, denoted by {xBA

OG,∀BA ∈
{cCA, cCDCA, cSBA}, OG ∈ {li, bd, il, co, pl, fe}}
and {xBA

OG,∀BA ∈ {uCA, uCDCA, uSBA}, OG ∈
{il, co, pl, fe}}. Unconjugated bile acids in
the liver and bile duct are not included
as we assume bile acids are always conju-
gated in these two organs. padapt includes
{p[synthesis] , p[syn frac CA] , p[hep ratio conj tri] ,
p[hep ratio conj di] , p[max asbt rate]}, same as the
parameters in the action space.

Reward: Here we introduce the additional reward
terms used to ensure that the RL agent generates
bile acid levels that are physiologically plausible while
keeping the regulatable parameters close to their val-
ues in healthy conditions:

Enforcing physiologically plausible ranges.
All bile acid levels are nonnegative, and they are
upper bound by the maximum bile acid storage ca-
pacity in each organ. This reward term penalizes
the RL agent for violating physiologically plausible
bile acids ranges, pre-specified according to the lit-
erature. If the agent takes actions that lead to bile
acid levels outside of any of the ranges, a large neg-
ative reward (VIOLATE BOUNDARY PENALTY)
is applied, and the episode ends. We set VIO-
LATE BOUNDARY PENALTY to be -100.

Reward for not violating boundary conditions.
To encourage the RL agent to take actions that lead
to physiologically plausible states, we design this aux-
iliary reward term to give a small constant positive
reward for every RL step that stays within the physi-
ologically plausible ranges. We set the small positive
reward to be 4.

Encouraging parameters resembling healthy
conditions. This reward term encourages the RL
agent to keep the regulatable parameters close to
their values in healthy conditions. A negative reward
is applied to penalize deviation of parameters from
healthy conditions. We quantify the deviation as the
smallest number of steps it takes to move from the
healthy condition values to current values. For ex-
ample, for p[synthesis], a 25% higher or lower fold
change is allowed at every step, then a value that is
156.25% of the original value takes at least two steps
to reach, resulting in a deviation of 2. We sum up
the deviation across all parameters and set the nega-
tive value of the sum as the reward. We multiply the
negative deviation sum by a coefficient within [0, 1]
to match the range of other reward terms. Roughly
each parameter is allowed a deviation penalty of at
most 10 (and we clip the penalty at 10 if the deviation
exceeds 10), and five adaptable parameters result in
a total penalty of at most 50. We set the coefficient
of this reward term to be 0.02 such that the penalty
for parameter deviation is at most 1.

We also specify additional implementation details
of the reward terms mentioned in the main text:

Minimizing toxicity. The maximum possible LE
is calculated as the upper bound of physiologically
plausible bile acid in the liver integrated over one
day.

Resembling real-world patient data. Bile duct
ligation experiments in mice showed that the adapta-
tion usually stabilized after the first two weeks. Be-
cause ligation is an extreme model of bile duct ob-
struction, we allowed a four-week adaptation period
in the RL simulation before introducing the fitting
error to encourage RL trajectories that are similar
to stabilized patient data. Because bile acid mea-
surements are roughly log-normally distributed, log
transform is applied to both the actual measurements
and the RL-generated bile acid states. We set the cap
for fitting error, CAP, to be a generous value of 20.
We set the coefficient λerror to be 0.2 such that the
fitting error is bounded at 4, giving more emphasis on
the data-guided fitting error than the other biology-
inspired reward terms that are at most 1.

C.3. RL algorithm training

The actor and critic in PPO shared a neural network
with the architecture of a three-layer multilayer per-
ceptron with 100, 50, and 25 hidden units in each
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layer. We set the learning rate to be 0.002. We nor-
malized the states during the RL training for easier
optimization of the algorithm. We used 16 vectorized
environments on different processes to speed up train-
ing. We leave the other training parameters to be the
default of the implementation, including a discount
factor of 0.99 to mimic the optimization of long-term
homeostasis. We trained the RL agent for 4,000,000
environment steps to ensure convergence of the algo-
rithm.

C.4. RL training statistics

Figure 10 shows the RL training statistics. We see
that PPO is able to converge across different val-
ues of p[bd max flow], with smaller p[bd max flow],
i.e., more severe obstruction of the bile ducts, result-
ing in less reward. This is expected because with
more severe diseases, balancing between minimizing
liver toxicity and maintaining cholesterol elimination
and digestion becomes more difficult, and restoring
homeostasis requires a higher level of adaptation that
will result in larger deviation from healthy conditions.
However, after training completes, as the simulation
in Figure 11 shows, after the initial adaptation pe-
riod right after the introduction of PSC pathophysi-
ology, simulation corresponding to p[bd max flow]=3
µmol/min generates fasting plasma bile acid profiles
closest to a representative PSC patient, shown by the
smallest fitting error indicated by the green curve.
This scenario represents a relatively severe bile duct
obstruction. We chose to focus on this scenario for
the later analysis under the assumption that a small
fitting error from actual data implies that this is more
likely to reflect what actually happens in PSC pa-
tients.

Appendix D. Complete Bile Acid
Dynamics After
Introducing PSC
Pathophysiology

For all simulations in this section, PSC pathophys-
iology was simulated by setting p[bd max flow]=3
µmol/min at day 0, much lower than the maximum
bile duct to the small intestine flux of 75 µmol/min
observed in the healthy individual simulation. We
initialized the bile acid values with their steady-state
values under healthy conditions. This is to mimic
one animal model of PSC — where bile duct ligation
surgeries are performed on healthy mice and PSC-like

symptoms will develop in the mice. Other ODE pa-
rameters were also initialized using their values under
healthy conditions. Only fasting values (8 AM) were
plotted in the figures.

D.1. Bile acid dynamics without RL

To see the simulated PSC bile acid dynamics without
RL, we ran the simulation for 60 days after introduc-
ing PSC pathophysiology. We chose a simulation pe-
riod of 60 days to be longer than the two-week adap-
tation period in the mouse experiment (after which
the mouse liver adaptation stabilizes) and to achieve
stable bile acid states (all organs other than the liver)
in the simulation. Simulated meals at 8 AM, 2 PM,
and 8 PM are included as usual. Figure 12 shows
the complete simulated 60-day bile acid dynamics
without RL adaptation. We observe unrealistically
high liver bile acid levels and decreased plasma conju-
gated bile acids that contradict clinical data. Chang-
ing p[bd max flow] to 10 µmol/min results in similar
trends. Moreover, continuing the simulation would
eventually run into numerical issues due to the ever-
increasing liver bile acid levels.

These discrepancies arise from the flawed assump-
tion that bile acid metabolism parameters are con-
stants. While this assumption might be valid un-
der healthy conditions, where a homeostatic state is
maintained, it fails to account for the dynamic nature
of PSC. Bile duct ligation experiments in mice have
shown bile duct obstruction rapidly disrupts bile acid
homeostasis, as reflected by the immediate shift in
bile acid profiles upon introducing PSC pathophysi-
ology into our model. When such disruption of home-
ostasis occurs, it is crucial to recognize that biological
systems are inherently dynamic and have the ability
to self-adapt in order to restore homeostasis.

For instance, in cholestatic conditions, bile acids
accumulate in the liver. The liver responds by sup-
pressing the synthesis of bile acids to mitigate poten-
tial toxicity associated with excessive bile acid expo-
sure. However, it is important to note that complete
suppression of bile acid synthesis is not a feasible op-
tion. Bile acid synthesis is the sole source of incoming
bile acids in the enterohepatic circulation. If synthe-
sis were completely halted, it would eventually de-
plete bile acids in all compartments, thereby leaving
no bile acids for the digestion of fat. Therefore, mod-
eling bile acid metabolism under PSC pathophysiol-
ogy requires accounting for the dynamic nature of the
system, its self-adjusting capabilities, and the various
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Figure 10: PPO training steps vs. mean reward evaluated on 5 episodes, each curve represents a different
level of disease severity reflected by p[bd max flow].

Figure 11: Fitting error between simulated fasting plasma bile acids (with adaptation) and fasting plasma
bile acid measurement from a representative PSC patient. Bile acid measurement from the actual
patient is cross-sectional, while the fitting error is calculated daily, over a 240-day simulation after
introducing PSC pathophysiology. Each curve represents a different level of disease severity re-
flected by p[bd max flow]. The adaptive ODE parameters are obtained from PPO agents trained
with the corresponding p[bd max flow] for 4M steps.
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Figure 12: Simulated 60-day bile acid dynamics after introducing PSC pathophysiology, without RL adap-
tations.

mechanisms aimed at preserving homeostasis. We
achieve this in our model by allowing the values of
the biomolecular parameters to undergo continuous
changes that ensure the preservation of homeostasis.

D.2. Bile acid dynamics with RL (Patient 1)

Figure 13 shows the complete 240-day PSC bile acid
dynamics with adaptive ODE parameters obtained
from the trained PPO agent. As indicated by the red
and blue dashed lines in the trajectories of plasma
bile acids, the RL adaptation led to the elevation
of plasma conjugated bile acids values and the de-
crease of plasma unconjugated bile acids. The result-
ing plasma bile acids profile was closer to the actual
PSC patient measurements, correcting the artifacts
in the simulation without RL where plasma bile acids
decreased across all species.

D.3. Bile Acid Dynamics with RL for ten
random seeds (Patient 1)

To understand how the stochasticity in the RL
agent’s actions affects the bile acid dynamics. Fig-
ure 14 showed the 240-day PSC bile acid dynamics
with adaptive ODE parameters obtained from the
trained PPO agent for ten random seeds. Trajectories
from all ten seeds shared a similar adaptation period

in the beginning, where bile duct bile acids increased,
ileum and colon bile acids decreased, and liver bile
acids experienced a sharp increase and then decreased
following the saturation of bile duct bile acids. After
the initial adaptation period, trajectories from dif-
ferent seeds exhibited larger but bounded variability
from the stochasticity of the RL actions. Interest-
ingly, all trajectories contained sporadic peaks of liver
bile acids, potentially explaining the episodic symp-
tom flare-ups in PSC patients.

D.4. In silico evaluation of bile acid
therapies (Patient 1)

ASBT inhibitors such as maralixibat have been in
clinical trials for PSC. As mentioned before, ASBT
mediates the active uptake of bile acid from the ileum.
We used our trained RL agent as an in-silico testbed
to test ASBT inhibitors for PSC by decreasing the
corresponding parameter p[max asbt rate]. Figure 15
showed the resulting simulated trajectories. Com-
pared to the case of no inhibition, the complete re-
duction of active uptake prevented peaks in liver bile
acids after the initial adaptation period. However,
significant increases in intestine and plasma bile acid
levels led to premature termination of the simulation,
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Figure 13: Simulated 240-day bile acid dynamics trajectory after introducing PSC pathophysiology with
adaptive ODE parameters obtained from a trained PPO agent.

Figure 14: Simulated 240-day bile acid dynamics trajectories after introducing PSC pathophysiology with
adaptive ODE parameters obtained from a trained PPO agent and ten random seeds.
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Figure 15: Simulated 240-day bile acid dynamics after introducing PSC pathology with adaptive ODE pa-
rameters obtained from a trained PPO agent. Complete reduction of active uptake was simulated
by forcing p[max asbt rate] to be down-regulated unless it reaches the lower bound of its prede-
fined physiological ranges.
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rendering complete reduction a perhaps unrealistic
strategy.
We further tested a more moderate strategy — 50%

reduction of active uptake with our trained RL agent.
Figure 16 showed a reduction of liver bile acid peaks
compared to the case of no intervention, suggesting
that partial suppression of active uptake might help
alleviate the toxicity burden on the liver. Further-
more, unlike complete reduction of active uptake, all
bile acid species were able to stay within plausible
ranges across the organs, making partial reduction a
more realistic strategy.

Appendix E. Bile Acid Dynamics
After Introducing PSC
Pathophysiology
(Patient 2–4)

To avoid potential bias from patient selection, we
replicated our experiments with four other represen-
tative patients who had the second to the fourth
smallest sum of distances to all patients. We
showed their bile acid dynamics as well as param-
eter adaptation trajectories below. For consistency
with results in the main text, we chose the case
of p[bd max flow]=3 µmol/min to train REMEDI
across all cases.
In Table 2, we also showed the fitting error between

REMEDI prediction trained with all patients and the
plasma measurements from the representative PSC
patient chosen in the main text.
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Figure 16: Simulated 240-day bile acid dynamics after introducing PSC pathology with adaptive ODE pa-
rameters obtained from a trained PPO agent and ten pre-specified random seeds. 50% reduction
of active uptake was simulated by forcing p[max asbt rate] to be down-regulated unless it reaches
or is below half of the lower bound of its predefined physiological ranges.

Table 2: Fitting Error (µmol, day 50 – 60 averaged): REMEDI − Data from PSC Patient 1.

Scenario/Plasma cCA cCDCA cSBA uCA uCDCA uSBA

REMEDI (without RL) -12.01 -10.37 -2.21 -0.08 -0.18 -0.35
REMEDI (trained with patient 1) -9.79 -5.27 0.67 0.05 0.16 0.15
REMEDI (trained with patient 2) -10.67 -4.75 0.54 0.02 0.33 0.26
REMEDI (trained with patient 3) -9.56 -7.32 0.19 0.15 0.10 0.22
REMEDI (trained with patient 4) -10.34 -5.14 1.17 0.01 0.09 0.14
REMEDI (trained with patient 5) -9.06 -9.51 -0.88 0.14 -0.12 -0.07
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Figure 17: Patient 2: Simulated 240-day bile acid dynamics trajectory after introducing PSC pathophysi-
ology with adaptive ODE parameters obtained from a trained PPO agent.

Figure 18: Adaptation of ODE parameters corresponding to the simulation scenario illustrated in Figure 17.
synthesis (blue): bile acid synthesis rate; syn frac CA (orange): fraction of CA (vs. CDCA) in
newly synthesized bile acid; hep ratio conj tri (green): fraction of bile acid uptake entering the
liver (vs. plasma) for cCA; hep ratio conj di (red): fraction of bile acid uptake entering the liver
for cCDCA and cSBA; max asbt rate (purple): efficiency of bile acid active uptake.
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Figure 19: Patient 3: Simulated 240-day bile acid dynamics trajectory after introducing PSC pathophysi-
ology with adaptive ODE parameters obtained from a trained PPO agent.

Figure 20: Adaptation of ODE parameters corresponding to the simulation scenario illustrated in Figure 19.
synthesis (blue): bile acid synthesis rate; syn frac CA (orange): fraction of CA (vs. CDCA) in
newly synthesized bile acid; hep ratio conj tri (green): fraction of bile acid uptake entering the
liver (vs. plasma) for cCA; hep ratio conj di (red): fraction of bile acid uptake entering the liver
for cCDCA and cSBA; max asbt rate (purple): efficiency of bile acid active uptake.

187



REMEDI

Figure 21: Patient 4: Simulated 240-day bile acid dynamics trajectory after introducing PSC pathophysi-
ology with adaptive ODE parameters obtained from a trained PPO agent.

Figure 22: Adaptation of ODE parameters corresponding to the simulation scenario illustrated in Figure 21.
synthesis (blue): bile acid synthesis rate; syn frac CA (orange): fraction of CA (vs. CDCA) in
newly synthesized bile acid; hep ratio conj tri (green): fraction of bile acid uptake entering the
liver (vs. plasma) for cCA; hep ratio conj di (red): fraction of bile acid uptake entering the liver
for cCDCA and cSBA; max asbt rate (purple): efficiency of bile acid active uptake.
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Figure 23: Patient 5: Simulated 240-day bile acid dynamics trajectory after introducing PSC pathophysi-
ology with adaptive ODE parameters obtained from a trained PPO agent.

Figure 24: Adaptation of ODE parameters corresponding to the simulation scenario illustrated in Figure 23.
synthesis (blue): bile acid synthesis rate; syn frac CA (orange): fraction of CA (vs. CDCA) in
newly synthesized bile acid; hep ratio conj tri (green): fraction of bile acid uptake entering the
liver (vs. plasma) for cCA; hep ratio conj di (red): fraction of bile acid uptake entering the liver
for cCDCA and cSBA; max asbt rate (purple): efficiency of bile acid active uptake.
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