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Abstract
Recent advances in deep learning architectures
for sequence modeling have not fully transferred
to tasks handling time-series from electronic
health records. In particular, in problems re-
lated to the Intensive Care Unit (ICU), the
state-of-the-art remains to tackle sequence clas-
sification in a tabular manner with tree-based
methods. Recent findings in deep learning for
tabular data are now surpassing these classical
methods by better handling the severe hetero-
geneity of data input features. Given the sim-
ilar level of feature heterogeneity exhibited by
ICU time-series and motivated by these find-
ings, we explore these novel methods’ impact
on clinical sequence modeling tasks. By jointly
using such advances in deep learning for tab-
ular data, our primary objective is to under-
score the importance of step-wise embeddings
in time-series modeling, which remain unex-
plored in machine learning methods for clinical
data. On a variety of clinically relevant tasks
from two large-scale ICU datasets, MIMIC-III
and HiRID, our work provides an exhaustive
analysis of state-of-the-art methods for tabu-
lar time-series as time-step embedding models,
showing overall performance improvement. In
particular, we evidence the importance of fea-
ture grouping in clinical time-series, with signif-
icant performance gains when considering fea-
tures within predefined semantic groups in the
step-wise embedding module.
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1. Introduction

Recent years have seen the development of deep
learning architectures for Electronic Health Records
(EHRs), which explore machine learning solutions for
various clinical prediction tasks such as organ fail-
ure prediction (Hyland et al., 2020; Tomašev et al.,
2019), treatment effect estimation (Bica et al., 2020)
or prognostic modeling (Choi et al., 2016b). Most
work in this area primarily focuses on either modify-
ing the backbone sequence model (Horn et al., 2020;
Xu et al., 2018) or investigating modifications to the
training objective (Yèche et al., 2021, 2022; Cheng
et al., 2023). Still, the performance gap between
proposed deep learning methods and tree-based ap-
proaches remains significant (Yèche et al., 2021; Hy-
land et al., 2020).

Recent work for early prediction of acute kidney
injury using sparse multivariate time-series (Tomašev
et al., 2021) shows that enhancing the time-step em-
bedding neural network architectures, i.e simple re-
placement of linear layer to neural network for the
input feature space preprocessing, yields significant
performance gain. Concurrently, the state-of-the-art
on tabular data, which relied on boosted tree meth-
ods (Ke et al., 2017; Chen and Guestrin, 2016; Fre-
und et al., 1999), has been surpassed by recent de-
velopment in the field of deep learning (Gorishniy
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Figure 1: Schematic time-step embedding ar-
chitecture: features interact within pre-
defined semantic groups before being ag-
gregated into time-step embeddings.

et al., 2021, 2022). Despite these observations, re-
cent research in EHRs methods predominantly show-
cases the development of more powerful backbone se-
quence models, rather than investigating the influ-
ence of step-wise embedding modules. If some ap-
proaches have used feature embeddings, with their
primary focus being on evaluating the effect of self-
supervised pre-training (Tipirneni and Reddy, 2022),
a comprehensive evaluation of how feature embedding
efforts influence downstream performance is yet to be
extensively studied.

Motivated by these observations, our main objec-
tive is to showcase the significance of embedding
architectures in clinical time-series analysis.
To achieve this, we conduct an extensive evaluation
and comparison of various embedding architectures
specifically designed for tabular data, with a focus
not on optimizing the backbone sequence model, but
rather on optimizing the step-wise embedding mod-
ule. We find that we obtain timestep representa-
tions that serve as an expressive input to down-
stream sequence models – which boosts the over-
all performance of deep learning methods on clinical
time-series data. Our work is thus orthogonal and
complementary to the design of backbone architec-
tures (Horn et al., 2020) or of loss functions for su-
pervised (Yèche et al., 2022) and unsupervised learn-
ing (Yèche et al., 2021).

Second, our study demonstrates the importance
of feature groupings (Imrie et al., 2022; Masoomi
et al., 2020) in clinical time-series. In the medical
field, it is common to not consider measurement inter-
actions individually but through predefined seman-
tic groups of features (Kelly and Semsarian, 2009;
Meira et al., 2001). EHR data consist of multivariate

time-series exhibiting such heterogeneity, with vari-
ables collected from different data sources and relat-
ing to different organ systems. These structures, de-
termined by prior clinical knowledge, delineate fea-
ture groups tied to medical concepts or modalities,
such as measurement types or organs, which we incor-
porate into embedding modules. Results demonstrate
considering features in the context of their semantic
modality to improve performance. We illustrate the
optimal embedding pipeline uncovered by our work in
Figure 1: features interact within groups before be-
ing aggregated into time-step embeddings and input
to a sequential deep learning module for end-to-end
training. This scheme additionally enables the in-
terpretability of model results at a semantic group
level. Thus, we also explore how disentangling medi-
cal concepts could enhance the interpretability of the
model’s decision-making.

Contributions The main contributions of this pa-
per are the following: (1) First, we provide an exten-
sive benchmark of embedding architectures for clin-
ical prediction tasks. To the best of our knowledge,
no prior work has considered applying the develop-
ments from the tabular deep learning literature to
the heterogeneous time-series nature of clinical data.
(2) Our exhaustive analysis allows us to draw impor-
tant conclusions that semantically grouping features,
especially related to organ systems, greatly enhance
prediction performance. (3) Finally, combining these
insights, our systematic study sets a new state-of-the-
art performance on different established clinical tasks
and datasets.

2. Related work

Time-series feature embedding Despite devel-
opments in model architectures for supervised clini-
cal time-series tasks (Horn et al., 2020; Zhang et al.,
2021), deep learning methods still show performance
limitations on the highly heterogeneous, sparse time-
series nature of intensive care unit data (Yèche et al.,
2021; Hyland et al., 2020). Recent work has, how-
ever, demonstrated promising improvements with
the introduction of feature embedding layers before
the sequence model, together with auxiliary objec-
tives (Tomašev et al., 2021, 2019). This research
mirrors recent progress in the field of deep learning
for tabular data (Gorishniy et al., 2021, 2022), which
significantly outperforms state-of-the-art methods by
combining transformer-based approaches with em-
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beddings of tabular data rows. We note that a sep-
arate line of research explores self-supervised pre-
training methodologies for both clinical time-series
representation learning (Tipirneni and Reddy, 2022;
Labach et al., 2023)and tabular deep learning (Yin
et al., 2020; Huang et al., 2020; Kossen et al., 2021;
Somepalli et al., 2022). While we focus on end-to-
end supervised training in the present benchmark, we
note that this constitutes a promising avenue for fur-
ther work in clinical time-series feature embedding.

Feature groups within embeddings Recent
work on tabular data embeddings highlight the im-
portance of handling features of categorical or nu-
merical types through distinct architectures (Huang
et al., 2020; Arik and Pfister, 2021). This motivates
our benchmarking study on incorporating additional
feature structures, such as measurement or organ
type, within the embedding layers. Most research
on EHR data modeling focuses on extracting tempo-
ral trends (Luo et al., 2016; Ding and Luo, 2021) for
patient phenotyping (Aguiar et al., 2022; Qin et al.,
2023) from entire time-series. To the best of our
knowledge, this work is the first attempt to consider
and demonstrate the impact of global feature group-
ings at a time-step level on prediction performance.

We refer the reader to Appendix D for further dis-
cussion of related work.

3. Method

We summarize the overall deep learning pipeline
benchmarked in this work in Figure 2, followed by
an in-depth explanation of each component in this
section.

3.1. Notation

We define a patient stay in the intensive care unit
as a multivariate time-series X = [x1, . . . ,xT ], where
T is the length of a given stay. Each time-step is
xt = [x(1,t), . . . , x(d,t)] ∈ Rd. Depending on the spe-
cific task, for each patient stay X we have either an
associated label vector y ∈ RT (per each time-step)
or a single label y ∈ R that corresponds to the entire
patient stay – see Section 4 for an overview of studied
tasks and datasets.

We consider step-wise embedding architectures un-
der two scenarios: first, as a function applied to the
entire feature space xt, referred to as direct (D); sec-
ond, we propose to apply them separately to distinct
feature groups, referred to as feature grouping (G).

In the latter case, there are several ways to group
the d observed variables for each time-step xt based
on their assignment to a particular medical con-
cept from a set of K concepts {M1, . . . ,MK}, such
that all variables are assigned to a single concept:⋃K
k=1 Mk = {1, . . . , d} and ∀k ̸= k

′
: Mk′ ∩Mk = ∅.

In the context of ICU-related tasks, we define the
splitting of features into concept groups by leveraging
the prior knowledge: organ, measurement type (lab-
oratory values, observations, treatments, etc.) and
variable type as shown by Tomašev et al. (2019).
The exact groups are provided in Appendix B.1. We
group the features on a time-step level t, and we de-
note the subset of features belonging to the concept
Mk as x(Mk,t). For each k, we learn a representation
of h(Mk,t) that we refer to as concept embedding.

Definition 1 Let fθk denote the embedding model
for concept Mk, parameterized by θk, taking as in-
put the subset of features x(Mk,t) and with output

h(Mk,t) = fθk
(
x(Mk,t)

)
. We term the latent repre-

sentation h(Mk,t) as the concept embedding.

Definition 2 The time-step embedding ht is a rep-
resentation of all input features xt at a given time-
step. This embedding can be obtained through two
approaches, as illustrated in Figure 2:
(D) In the first (direct) scenario, ht = fθ(xt), where

fθ is an embedding model parameterized by θ,
processing the entire set of features for each time-
step t.

(G) In the second (feature grouping) scenario, ht =

gψ
[{

h(Mk,t)

}K
k=1

]
, where gψ is an aggregation

function applied to the K concept embeddings of
each feature group.

The resulting time-step embedding ht is subse-
quently passed as input to the sequential backbone.
In the following, we discuss design choices for fea-
ture encoder architectures (fθ and fθk) and for the
aggregation function gψ.

3.2. Direct time-step embedding

As first candidates, following (Gorishniy et al., 2021;
Grinsztajn et al., 2022), we consider MLP and ResNet
architectures as feature encoders. These are well-
studied deep learning models, whose impact on step-
wise feature preprocessing remains unexplored in the
context of clinical sequence modeling.

We also consider a more advanced architecture bor-
rowed from deep learning for tabular data, the Fea-
ture Tokenizer Transformer (FTT (Gorishniy et al.,

270



Step-wise Embeddings for Clinical Time-Series

Tt

Feature grouping Concept embedding

Time step features

Direct (D)

Feature
Grouping (G)Feature Aggregation

Time-step embedding

Sequence backbone
model input

Time-step embeddings

Task target

Figure 2: Pipeline overview. The entire set of features xt for time-step t is: (D) preprocessed to directly
form a time-step embedding ht (green line); (G) grouped to form concept embeddings h(Mk,t),
which are aggregated to create a final time-step embedding ht (yellow line). The resulting time-
step embeddings are then passed to the backbone model. The whole pipeline is trained in an
end-to-end fashion to predict the task target ŷ.

2021)). This complex encoder consists of two distinct
modules. First, the Feature Tokenizer (FT) embeds
individual features x(j,t) ∈ R in timestep vector xt
to high-dimensional continuous variables e(j,t) ∈ Rm.

This module is linear, parametrized by W ∈ Rd×m,
such that e(j,t) = xTt Wj . The final output of the FT

module is a matrix et = stack[e1,t, . . . , ed,t] ∈ Rd×m.
Next, the Transformer (T) module learns a unique
time-step embedding ht from matrix et, by apply-
ing a transformer (Vaswani et al., 2017) along the d
dimension. More specifically, to obtain a global rep-
resentation, ht is the output from a “classification
token” [CLS] (Devlin et al., 2018) which is concate-
nated to the input et.

We do not consider unsupervised methods such as
factor analysis, standard auto-encoders, and varia-
tional auto-encoders for the embedding module de-
sign, given reports of them not demonstrating signif-
icant performance benefits for ICU data feature em-
beddings (Tomašev et al., 2019). Compared to MLP
and ResNet, which consider features equally, FTT,
through this two-stage modeling, should handle fea-
ture heterogeneity more efficiently, a crucial consid-
eration in the context of ICU data.

3.3. Feature aggregation

As introduced in Section 3.1, in scenario (G), our
aim is to explore the impact of embedding distinct
groups of features independently. There, we simply
use the same architecture for K concept embedding
models, each with its own set of parameters θk as in
Definition 1.

In terms of aggregation function gψ, designed to
combine concepts h(Mk,t) into an overall timestep
embedding ht, we consider the choices: mean (or
sum) pooling, concatenation 1, and attention-based
pooling. The latter option additionally offers inter-
pretability of concept-level interactions through at-
tention weight analysis, as discussed in Section 5.

3.4. Training

The entire set of features xt for time-step t is pre-
processed as shown in Figure 2. The resulting time-
step embeddings for each for each t are subsequently
fed into the sequential backbone model, which is
trained in a supervised manner for the final task’s

1. The concatenation function is not, by itself, an aggrega-
tion function. It also presents scalability issues and lacks
permutation invariance. Nevertheless, we include it in our
study for experimental purposes.

271



Step-wise Embeddings for Clinical Time-Series

target prediction ŷ. Consistent with previous ap-
proaches(Tomašev et al., 2019, 2021; Gorishniy et al.,
2021), no specific loss for the embeddings was fac-
tored in. The primary objective of this study is
to demonstrate that a simple step-wise module in-
tegrated in standard end-to-end supervised train-
ing pipeline can produce significant performance im-
provements.

4. Experimental setup

To ensure reproducibility we share our code.1

Clinical prediction tasks We demonstrate the ef-
fectiveness of our embedding methods for electronic
health records by studying their effect on prediction
performance for different clinical tasks related to in-
tensive care. Our method and related baselines are
benchmarked on the online binary prediction task
of (1) circulatory and (2) respiratory failure within
the next 12 hours, (3) remaining length of stay and
on prediction of (4) patient mortality at 24 hours
after admission, as well as (5) patient phenotyping
after 24 hours. Tasks (1-5), as defined in HiRID-
ICU-Benchmark (Yèche et al., 2021), are based on
the publicly available HiRID dataset (Faltys et al.,
2021; Hyland et al., 2020). We also consider the task
of continuously predicting mortality within 24 hours,
throughout the patient stay – also known as (6) de-
compensation, (7) patient mortality at 48 hours after
admission and (8) remaining length of stay. We study
the latter three task on the well-known MIMIC-III
dataset (Johnson et al., 2016). Further details on
the definition of each task can be found in bench-
mark papers which introduced them (Harutyunyan
et al., 2019; Yèche et al., 2021). Further details on
task definition and data pre-processing are provided
in Appendix A.

Success metrics Our primary success metric for
the usefulness of our method is performance on down-
stream clinical tasks. As these often consist of sig-
nificantly imbalanced classification problems (Yèche
et al., 2021), performance is measured through the
area under the precision-recall curve (AUPRC), the
area under the receiver operating characteristic curve
(AUROC), and balanced accuracy (Bal. Acc.). For
regression problems we report mean absolute error
(MAE) in hours. This follows established practice

1. https://github.com/ratschlab/clinical-embeddings

on clinical early prediction tasks (Yèche et al., 2021;
Harutyunyan et al., 2019).

Benchmarked methods We evaluate different
embedding architectures including linear mapping
and Feature Encoders, as referenced in Section 3.2.
We also compare these to deep learning models that
do not use an embedding layer, where a sequential
model gets the raw feature vector at each time-step.
Additionally, we consider a Gradient Boosted Tree
method using LightGBM (Ke et al., 2017), based
on manually-extracted features (Yèche et al., 2021).
Downstream, we use deep learning backbones and op-
timized hyperparameters for our specific prediction
tasks, as per prior research (Yèche et al., 2021; Haru-
tyunyan et al., 2019). We use a Gated Recurrent
Unit (GRU) (Cho et al., 2014) network for circula-
tory failure prediction and a Transformer (Vaswani
et al., 2017) for all other tasks. That architectural
choice for each task is based on previously published
papers (Yèche et al., 2022; Yèche et al., 2021) Further
implementation details are provided in Appendix B.

5. Results

In this section, we provide results for the proposed
benchmarking study, systematically evaluating the
performance of different embedding modules for EHR
modeling. We validate the following hypotheses: (1)
Relying on deep learning for tabular data methods
in time-step embeddings can significantly improve
the performance of deep learning models for clini-
cal time-series. (2) Specifically, via a comprehen-
sive examination of time-step encoder components,
we demonstrate that relying on the FTT approach
coupled with feature grouping and appropriate ag-
gregation tends to yield the best overall performance.
(3) Attention-based embedding architectures help us
gain interpretability on the feature and medical con-
cept level into deep learning models for tabular time-
series, which remains largely unexplored in the rele-
vant literature. (4) Models based on strong clinical
priors such as feature assignments to organ systems,
show superior performance.

Advancing deep learning approaches with
step-wise embedding First, we present the ex-
perimental results that demonstrate the performance
improvement achieved through well-designed embed-
ding methods in deep-learning models for clinical
time-series predictions. Despite deep learning mod-
els(Cho et al., 2014; Vaswani et al., 2017) often falling
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Table 1: Performance benchmark for different embedding architectures, measured through the
Area under the Precision-Recall Curve (AUPRC) or Mean Absolute Error (MAE) in hours. Mean
and standard deviation are reported over five training runs. Best and overlapping results are
highlighted in bold. Reference Benchmark results are best as reported by Yèche et al. (2021) and
Harutyunyan et al. (2019) (We train LightGBM, Transformer and Temporal Convolutional Network
(TCN) on MIMIC-III for comparison). Step-wise encoders are based on prior work (linear Yèche
et al. (2021), MLP Tomašev et al. (2019), ResNet Tomašev et al. (2019), and FTT Gorishniy et al.
(2021)) and our proposed concept groups. The backbone baseline considers the raw input feature
vector at each time-step without any embedding layer.

Dataset HiRID MIMIC-III

Clinical pred. task Circ. Fail. Resp. Fail. Mort. LoS Pheno. Decomp. Mort. LoS
Metric AuPRC ↑ AuPRC ↑ AuPRC ↑ MAE ↓ Bal. Acc. ↑ AuPRC ↑ AuPRC ↑ MAE ↓

Reference Benchmarks

LSTM 32.6 ± 0.8 56.9 ± 0.3 60.0 ± 0.9 60.7 ± 1.6 39.5 ± 1.2 34.4 ± 0.1 48.5 ± 0.3 123.1 ± 0.2
Transformer 35.2 ± 0.6 59.4 ± 0.3 61.0 ± 0.8 59.5 ± 2.8 42.7 ± 1.4 34.3 ± 0.7 53.3 ± 0.4 98.3 ± 0.7
TCN 35.8 ± 0.6 58.9 ± 0.3 60.2 ± 1.1 59.8 ± 2.8 41.6 ± 2.3 36.6 ± 0.3 51.8 ± 0.6 97.8 ± 0.9
LightGBM 38.8 ± 0.2 60.4 ± 0.2 62.6 ± 0.1 57.0 ± 0.3 45.8 ± 2.0 37.1 ± 0.3 48.2 ± 0.4 99.7 ± 0.1

Step-wise Encoders

Backbone 36.6 ± 0.5 59.5 ± 0.4 60.1 ± 0.3 59.3 ± 0.6 42.7 ± 0.3 31.8 ± 0.4 52.5 ± 0.1 99.1 ± 0.4
+ linear embedding 39.1 ± 0.4 60.5 ± 0.2 61.0 ± 0.8 58.0 ± 0.4 43.4 ± 1.8 34.5 ± 0.4 51.2 ± 0.8 97.9 ± 0.1
+ MLP embedding 38.8 ± 0.3 60.6 ± 0.3 60.7 ± 0.6 56.9 ± 1.1 41.0 ± 3.1 34.7 ± 0.5 49.6 ± 1.9 97.3 ± 0.3
+ ResNet embedding 37.0 ± 0.5 59.1 ± 0.1 59.2 ± 0.7 57.3 ± 0.7 43.3 ± 2.5 33.6 ± 0.5 51.5 ± 0.8 99.6 ± 0.5
+ FTT embedding 38.8 ± 0.6 59.8 ± 0.1 60.5 ± 0.6 55.7 ± 0.1 39.8 ± 2.6 38.7 ± 0.3 51.2 ± 0.8 96.9 ± 0.8
+ FTT: type groups 40.2 ± 0.4 60.3 ± 0.3 61.6 ± 1.0 54.4 ± 0.3 43.6 ± 0.8 38.0 ± 0.4 52.1 ± 0.1 97.0 ± 1.0
+ FTT: organ groups 40.6 ± 0.4 60.7 ± 0.5 62.3 ± 1.9 54.0 ± 0.1 46.5 ± 0.6 37.4 ± 0.1 52.6 ± 0.6 96.4 ± 0.4

behind classical methods like gradient-boosted trees,
as shown in Table 1 and in related work (Yèche et al.,
2021), we found that using tabular data deep learning
techniques such as FT-Transformer (Gorishniy et al.,
2021) helps bridge this performance gap. Building
on these insights, our proposed approach of incorpo-
rating feature grouping into the embedding process
yields further significant performance gains, enabling
us to overcome or match the performance of tree-
based methods. We refer the interested reader to Ap-
pendix C for additional results on other metrics and
comparison with other methods, which further sup-
port our conclusions. Overall, our analysis establishes
a new state-of-the-art benchmark for clinical
time-series tasks, marking a substantial advance-
ment in the field. Indeed, leveraging well-designed
embedding methods and incorporating feature group-
ing improves performance by a similar scale to opti-
mising the backbone architecture of sequence models
in Yèche et al. (2021).

Performance discrepancy between HiRID
and MIMIC-III datasets. Incorporating feature

groups within the embedding layers shows notable
differences in performance gains between the HiRID
and MIMIC-III datasets. This discrepancy could be
attributed to two primary factors: (1) data resolu-
tion and the (2) number of features. With HiRID
data resolution being twelve times greater, this leads
to sequences of 2016 steps (equivalent to one week)
for online tasks. The HiRID dataset processing from
Yèche et al. (2021) has a much greater number of
features (231), compared to 18 features extracted by
Harutyunyan et al. (2019) in MIMIC-III Benchmark.
Consequently, FTT models utilizing feature grouping
exhibit superior performance on the HiRID dataset,
enhancing feature interaction within semantically re-
lated groups and rendering the models more resis-
tant to noise, thereby boosting performance. Our
results suggest that the use of an embedding module
enables deep learning models to extracted relevant
signals more effectively. On the contrary, the limited
number of features available in MIMIC-III does not
allow for significant performance gains with grouping,
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Table 2: Benchmarking analysis of embedding design choices for circulatory failure prediction. Ab-
lations on the default architecture: FTT (Gorishniy et al., 2021) with organ splitting and attention-
based aggregation.

(a) Embedding architecture.

Architecture AUPRC

None 36.6 ± 0.5
MLP 37.6 ± 0.8
ResNet 37.0 ± 0.5
FTT 40.6 ± 0.4

(b) Group aggregation.

Aggregation AUPRC

Concatenate 39.4 ± 0.2
Average 38.7 ± 0.4
Attention 40.6 ± 0.4

(c) Feature grouping strategies
as defined in Section 3.1.

Grouping AUPRC

None 38.8 ± 0.6
Variable type 39.6 ± 0.1
Meas. type 39.9 ± 0.1
Organ 40.6 ± 0.4

suggesting that this strategy may not be as beneficial
in low-dimensional datasets.

Step-wise encoder with feature grouping ab-
lation study. To better understand the impact of
each component introduced in Section 3, we investi-
gate various design choices for step-wise embedding
architectures, and analyze their impact on perfor-
mance. Table 2 summarizes our findings of possible
concept-level architectures, feature groupings defini-
tions, and aggregation methods. We focus on re-
sults for the circulatory failure prediction task for
conciseness (referring the reader to Appendix C for
exhaustive results on other tasks). In Table 2(a),
we find that FTT yields the largest performance
gains amongst group encoder architectures. Simi-
larly, in Table 2(b), we find attention-based aggre-
gation (Vaswani et al., 2017) to consistently improve
over other aggregation methods, confirming the need
to capture complex concept dependencies present at
a time-step level. This supports results from the tab-
ular deep learning literature (Gorishniy et al., 2021).
In addition to improving performance, we note that
attention mechanisms also provide significant advan-
tages in terms of model interpretability, as further
discussed in Section 5. Finally, with respect to differ-
ent group definitions, we observe pre-defined group-
ing using domain knowledge to yield the best perfor-
mance.

Interpretability As a final experiment, we explore
the interpretability gained from attention-based mod-
els (Choi et al., 2016a; Vig and Belinkov, 2019; Vig,
2019) by analyzing attention at different levels of the
model architecture. This provides insights into the
relevance of features within a single concept embed-
ding as well as the differences in importance between
concept embeddings to the overall downstream pre-

diction model. Temporal aggregations of attention
scores can highlight patient trends in a given time
window (Gandin et al., 2021; Lim et al., 2021).

In the context of respiratory failure prediction, we
average attention weights over all test patient trajec-
tories and over all timesteps. Within the group of
features pertaining to the pulmonary system, we find
in Figure 3(a) that attention is on average highest
on two input features that are highly predictive of
this type of organ failure based on its definition (Fal-
tys et al., 2021; Yèche et al., 2021): fraction of in-
spired oxygen (FiO2) and peripheral oxygen satura-
tion (SpO2). We also find in Figure 3(b) that the
pulmonary organ system has very high importance
in predicting respiratory failure, confirming that vari-
ables related to lung function, oxygen saturation and
ventilation settings are correctly identified as key in-
dicators of event imminence within the embedding
model. Note that this analysis is independent of
the actual label for a patient at a given time, and
thus measures the average contribution of different
features and groups in predicting respiratory failure.
The various levels of importance scoring can be of
assistance to clinicians in different decision-making
processes. For instance, on a concept level (e.g. or-
gan systems), it can help to categorize patients in
a dynamic way and make it easier to plan resources
(e.g. patients with respiratory problems may require
ventilators). Additionally, more detailed information
on a feature level can be used to make treatment de-
cisions.

Attention scores may not be a perfect explana-
tion (Serrano and Smith, 2019), yet they can still
effectively point out important signals. In a clinical
decision-support context, these explanations do not
need to be taken as absolute truth, but rather as a
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Figure 3: Interpretability Analysis of attention-based embeddings for respiratory failure prediction, high-
lighting the importance of relevant pulmonary variables – particularly close to event occurrence.

way to direct the clinician’s attention to the areas
that require the most care.

Another form of useful insight gained from
attention-based embeddings on clinical time-series
consists of patterns of attention as a function of
time (Lim et al., 2021), as illustrated in Figure 3(c).
For this analysis, we plot attention weights as a func-
tion of time for individual patients within the test set.
Upon entry to the intensive care unit, the attention
mechanism focuses initially on the most relevant or-
gan system, as little patient information is available
to predict imminent organ failure. As more informa-
tion is acquired, attention becomes more balanced
across organs, and focuses again on the pulmonary
system as a respiratory failure event becomes more
likely. This temporal attention pattern highlights the
relevance of recent measurements and changes in vari-
ables, allowing for a deeper understanding of the pre-
dictive patterns and potential early warning signs.
We refer the reader to Appendix C for an exhaustive
overview of this interpretability analysis, and note
that this promising result could benefit from further
investigations beyond the scope of the present bench-
mark, to correlate attention patterns with medical
insights and patient evolution trends.

Overall, this study suggests that attention-based
embeddings (at different levels in the architecture:
features, groups, time) enhance the interpretability
of deep learning models for tabular times-series, by
shedding light on the most relevant features, medical
concept groups and time windows for specific predic-

tions. By understanding which variables are weighted
more heavily in the model’s decision-making process,
clinicians and domain experts can gain trust and val-
idate the machine learning models developed using
such embedding methods (Ahmad et al., 2018).

6. Limitations & Broader Impact

Limitations While the FT-Transformer and the
use of feature groups provide a powerful setup for the
step-wise embedding module, it is crucial to address
certain limitations associated with each.

The FT-Transformer is resource-intensive, de-
manding substantially more hardware and time for
training compared to simpler models (MLP, ResNet,
especially gradient boosting methods). Scaling it to
ICU datasets like HiRID with a large number of fea-
tures is challenging. Hence, the extensive use of
the FT-Transformer for such datasets might increase
CO2 emissions from ML pipelines. The research com-
munity has already devised a diverse range of solu-
tions aimed at enhancing the speed, memory, and
computational efficiency of Transformer-based archi-
tectures (Tay et al., 2022). However, when deploy-
ing actual models based on these benchmarked archi-
tectures, the performance impact of such efficiency-
focused modifications remains to be explored.

On the other hand, the concept of feature groups
introduces its own set of challenges. Using predefined
feature groups, like organ or measurement type, may
streamline the model’s task, but it could limit its flex-
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ibility and requires clinical understanding for effective
definition. The role of healthcare professionals is cru-
cial for defining initial feature groups. Limitations
also include the challenge of assigning each variable
to a single concept, which may not fully capture the
multifaceted nature of clinical data.

Broader Impact Integrating a step-wise embed-
ding module with feature groups for ICU models,
could impact both the medical and research com-
munities. Firstly, feature grouping approach could
help for precision medicine. By analyzing a pa-
tient’s data within the context of their specific feature
group, clinicians can better tailor treatment plans to
address individual needs. From a machine learning
viewpoint, feature splitting can amplify the perfor-
mance of predictive models. Meaningfully group-
ing data permits these models to discern more com-
plex and nuanced relationships between features, re-
sulting in more accurate predictions. Further, the
grouping of data can assist in continuous patient
monitoring. Healthcare professionals can promptly
identify any substantial changes in a patient’s condi-
tion. Moreover, it can aid in assessing the risk of de-
veloping specific conditions, allowing for timely pre-
ventative measures. Finally, the interpretability
derived from attention-based models offers enhanced
trust, validation, and transparency. By identify-
ing the most relevant features and feature groups and
comprehending temporal dynamics through attention
patterns, these models become more explainable and
trustworthy.

7. Conclusion

Our work benchmarks embedding architectures for
deep learning as a new paradigm for clinical time-
series tasks, which finally surpasses traditional tree-
based methods in terms of performance. Relying
on deep learning for tabular data methods, we sys-
tematically study different design choices for embed-
ding architectures, demonstrating their essential roles
in achieving state-of-the-art results. We find that
for distinct groups of features predictive performance
significantly improves. We also find that attention-
based embeddings offer the best performance as well
as greater interpretability, by identifying relevant fea-
tures and feature groups – such transparency is crit-
ical to building trust for real-world clinical applica-
tions (Ahmad et al., 2018).

Overall, our study advances the field of machine
learning for clinical time-series by leveraging meth-
ods and design choices from the tabular deep learn-
ing literature. We believe our findings will encourage
further work in embedding design for clinical time-
series, with the potential to better support clinical
decision-making and improve patient outcomes.
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mann, Matthias Hüser, Xinrui Lyu, Martin Fal-
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Appendix A. Clinical datasets and
prediction tasks

A.1. Task definition

In this section, we provide more details on the defi-
nition of tasks for circulatory failure, respiratory fail-
ure and mortality from HiRID benchmark (Yèche
et al., 2021) and decompensation and mortality
from MIMIC-III benchmark (Harutyunyan et al.,
2019). The details about the MIMIC-III and HiRID
datasets, including the number of patients, endpoint
definition, and statistics on annotated failure events
and labels, are available in the corresponding papers
that introduced these datasets: (Johnson et al., 2016)
for MIMIC-III and (Faltys et al., 2021) for HiRID.
The respective patient splits are provided in the cor-
responding benchmark papers: (Harutyunyan et al.,
2019) for MIMIC-III and (Yèche et al., 2021) for
HiRID.

HiRID benchmark tasks:
1. Circulatory failure is a failure of the cardio-

vascular system, detected in practice through el-
evated arterial lactate (> 2 mmol/l) and either
low mean arterial pressure (< 65 mmHg) or ad-
ministration of a vasopressor drug. Yèche et al.
(2021) defines a patient to be experiencing a cir-
culatory failure event at a given time if those
conditions are met for 2/3 of time points in a
surrounding two-hour window. Binary classifi-
cation, dynamic prediction throughout stay

2. Respiratory failure is defined by Yèche et al.
(2021) as a P/F ratio (arterial pO2 over FIO2)
below 300 mmHg. This definition includes mild
respiratory failure. As above, Yèche et al. (2021)
consider a patient to be experiencing respiratory
failure if 2/3 of timepoints are positive within
a surrounding 2h window. Binary classification,
dynamic prediction throughout stay

3. Mortality refers to the death of the patient.
The label of the time-point 24 hours after ICU
admission was set to 1 (positive) if the patient
died at the end of the stay according to this
field, and 0 (negative) otherwise, defining a bi-
nary classification problem to be solved once per
stay. If the admission was shorter than 24 hours,
no label was assigned to the patient.

4. Patient phenotyping is classifying the patient
after 24h regarding the admission diagnosis, us-
ing the APACHE group II and IV labels2.

2. APACHE II and IV (Zimmerman et al., 2006; Knaus et al.,
1985) are subsequent versions of the major illness severity

5. Remaining length of stay is a regression task,
continuous prediction of the remaining ICU stay
duration.

MIMIC-III benchmark tasks:
1. Decompensation refers to the death of a pa-

tient in the next 24h. The event labels are di-
rectly extracted from the MIMIC-III (Johnson
et al., 2016) metadata about the time of death
of a patient.

2. Mortality refers to the death of a patient after
48 hours of observed ICU data. The event la-
bels are directly extracted from the MIMIC-III
(Johnson et al., 2016) metadata.

3. Length of stay is a prediction of the remaining
time the patient will stay in the ICU.

MIMIC-III license is PhysioNet Credentialed
Health Data License 1.5.0; HiRID — PhysioNet Con-
tributor Review Health Data License 1.5.0.

A.2. Pre-processing

We describe the pre-processing steps we applied to
both datasets, HiRID and MIMIC-III.

Imputation. Diverse imputation methods exist for
ICU time series. For simplicity, we follow the ap-
proach of original benchmarks (Harutyunyan et al.,
2019; Yèche et al., 2021) by using forward imputa-
tion when a previous measure existed. The remaining
missing values are zero-imputed after scaling, corre-
sponding to a mean imputation.

Scaling. Whereas prior work explored clipping the
data to remove potential outliers (Tomašev et al.,
2019), we do not adopt this approach as we found
it to reduce performance on early prediction tasks. A
possible explanation is that, due to the rareness of
events, clipping extreme quantiles may remove parts
of the signal rather than noise. Instead, we simply
standard-scale data based on the training sets statis-
tics.

Appendix B. Implementation details

B.1. Modality splitting

Organ splitting is detailed in Table 10 and Table 11.
Splitting by variable type is provided in Table 12 and

score used in the ICU. They also introduce a patient group-
ing according to admission reason. We use an aggregate
of these two groupings for this task (see also Yèche et al.
(2021))
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Table 3: Hyperparameter search range for
mortality, MIMIC-III with Trans-
former(Vaswani et al., 2017) backbone.
In bold are parameters selected by random
search.

Hyperparameter Values

Learning Rate (1e-5, 3e-5, 1e-4, 3e-4)

Drop-out (0.0, 0.1, 0.2, 0.3, 0.4)

Attention Drop-out (0.0, 0.1, 0.2, 0.3, 0.4)

Depth (1, 2, 3)

Heads (1, 2, 4)

Hidden Dimension (16, 32, 64)

L1 Regularization (1e-3, 1e-2, 1e-1, 1, 10)

Table 13. Both are obtained from metadata in Hi-
IRID and MIMIC-III datasets, which specify which
organ or value type each variable belongs to. Mea-
surement splitting is determined by whether the vari-
able is numerical or categorical, and this can be found
in the related dataset descriptions (Faltys et al., 2021;
Johnson et al., 2016).

B.2. Training Setup

Training details. For all models, we set the batch
size according to the available hardware capacity. We
use Nvidia RTX2080 Ti GPUs with 11GB of GPU
memory. Depending on the model size, dataset and
task, we use between 1 to 8 GPUs in a distributed
data-parallel mode. We early stopped each model
training according to their validation loss when no
improvement was made after 10 epochs.

Libraries. A full list of libraries and the version
we used is provided in the environment.yml file.
The main libraries on which we build our experi-
ments are the following: pytorch 1.11.0 (Paszke et al.,
2019), scikit-learn 0.24.1(Pedregosa et al., 2011), ig-
nite 0.4.4, CUDA 10.2.89(NVIDIA et al., 2020),
cudNN 7.6.5(Chetlur et al., 2014), gin-config 0.5.0
(gin-config Team, 2019).

Infrastructure. We follow all guidelines provided
by pytorch documentation to ensure the repro-
ducibility of our results. However, reproducibility
across devices is not ensured. Thus we provide here

the characteristics of our infrastructure. We trained
all models on a 1 to 8 Nvidia RTX2080 Ti with a
Xeon E5-2630v4 CPU. Training took between 3 and
10 hours for a single run.

Architecture choices for the sequential back-
bone model. We used the same architecture and
hyperparameters reported giving the best perfor-
mance on circulatory failure, respiratory failure and
decompensation in Yèche et al. (2022). For all other
tasks from HiRID benchmark, we used the same ar-
chitecture and hyperparameters reported in Yèche
et al. (2021). For mortality, MIMIC-III benchmark
we carried out our own random search on validation
AUPRC performance. The exact parameters for this
task are reported in Table 3.

Gradient Boosting We used the same architec-
ture and hyperparameters reported giving the best
performance on HiRID benchmark tasks in Yèche
et al. (2021). For mortality and decompensation,
MIMIC-III benchmark we carried out our own ran-
dom search on validation AUPRC performance. The
range of hyperparameters considered for the gradi-
ent boosting method, LightGBM framework5 can be
found in Table 4.

B.3. Embedding architectures

We follow MLP, ResNet and FT-Transformer imple-
mentation, described in Gorishniy et al. (2021). Ar-
chitecture and hyperparameters investigated for each
task are given in Table 5 for MLP and ResNet archi-
tectures and in Table 6 for FT-Transformer, along
with the setting giving optimal validation perfor-
mance in each case.

B.4. Concept aggregation

Embeddings from each concept are aggregated by
taking the average of the multiple embeddings, con-
catenating them, of computed an attention-based ag-
gregation. Hyperparamters investigated for each task
for attention-based aggregation are given in Table 7.

Appendix C. Additional results and
ablations

In this Section, we provide the additional results on
other metrics, which support our conclusions from
the Section 5.

5. https://lightgbm.readthedocs.io/en/latest/
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Task Depth Colsample bytree 3 Subsample 4

Mortality (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)
Decompensation (3, 4, 5, 6, 7) (0.33, 0.66, 1.00) (0.33, 0.66, 1.00)

Table 4: Hyperparameter search range for LGBM. In bold are the parameters we selected using random
search.

Table 5: Embedding architecture and hyperparameter values studied for each clinical prediction task
for MLP and ResNet architectures. Best values, obtained by random search over the proposed grid,
are highlighted in bold.

Dataset HiRID MIMIC-III

Clinical prediction task Circulatory Failure Respiratory Failure Mortality Decompensation Mortality

Embedding architecture (MLP, ResNet) (MLP, ResNet) (MLP, ResNet) (MLP, ResNet) (MLP, ResNet)
Modality split (none, organ, categorical, type) (none, organ, categorical, type) (none, organ, categorical, type) (none, organ, categorical, type) ( none, organ, categorical, type)
Aggregation (avg., concat., attention) (avg., concat., attention) (avg., concat., attention) (avg., concat., attention) ( avg., concat., attention)
Embedding depth (1 2 3 4) (1 2 3 4) (1 2 3 4) (1 2 3 4) ( 1 2 3 4)
Embedding latent dim. (8 16 32 64) (8 16 32 64) (8 16 32 64) (8 16 32 64) (8 16 32 64)
L1 regularization weight (0 0.1 1 10) (0 0.1 1 10) (0 0.1 1 10) (0 0.1 1 10) ( 0 0.1 1 10)

Table 6: Embedding architecture and hyperparameter values studied for each clinical prediction
task for FTT architecture. Best values, obtained by random search over the proposed grid, are
highlighted in bold.

Dataset HiRID MIMIC-III

Clinical prediction task Circulatory Failure Respiratory Failure Mortality Decompensation Mortality

Modality split (none, organ, categorical, type) (none, organ, categorical, type) (none, organ, categorical, type) (none, organ, categorical, type) (none, organ, categorical, type)
Aggregation (avg., concat., attention) (avg. concat., attention) (avg., concat., attention) (avg., concat., attention) (avg., concat., attention)
FTT token dim (32 64) (32 64) (16 32 64 128) (16 32 64 128) (16 32 64 128)
FTT depth (1 2) (1 2) (1 2 3) (1 2 3) (1 2 3)
FTT heads (1 2 3) (1 2 3) (1 2 3 ) (1 2 3 ) (1 2 3)

Table 7: Hyperparameter values studied for each clinical prediction task for attention-based aggregation.
Best values, obtained by random search over the proposed grid, are highlighted in bold.

Dataset HiRID MIMIC-III

Clinical prediction task Circulatory Failure Respiratory Failure Mortality Decompensation Mortality

Agg. depth (1 2 3) (1 2 3) (1 2 3 ) (1 2 3 ) (1 2 3)
Agg. heads (1 2 3) (1 2 3 ) (1 2 3 ) (1 2 3 ) (1 2 3)

C.1. Comparison with unsupervised
pretraining techniques

In Table 8 we provide a comparison with pretrain-
ing techniques followed by training MLPs on top of
the pretrained representations to perform the down-
stream prediction tasks. For fair comparison with
Yèche et al. (2021) we used a temporal convolutional
network (TCN) as the backbone sequence architec-
ture.

C.2. Additional performance benchmark
results for embedding architectures

In this section, we additionally compare the previ-
ously described methods on all tasks. First, we re-
port AUROC metric for the results, given in the Sec-
tion 5, Table 1, see Table 9.

In addition to Table 2 we summarize our findings
of possible concept-level architectures, feature group-
ings definitions, and aggregation methods on all other
tasks in Table 14 - Table 20.
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Table 8: Comparison with a set of unsupervised pretraining techniques on two MIMIC-III benchmark tasks:
Decompensation and Length-of-stay. Semi-supervised approaches inlcude some labels to pretrain
patient representations.

Task Decompensation Length-of-stay

Metric AUPRC AUROC Kappa

Self-Supervised Pretraining

SACL (Cheng et al., 2021) 29.3 ± 0.9 87.5 ± 0.4 40.1 ± 0.5
CLOCS (Kiyasseh et al., 2021) 32.2 ± 0.8 90.5 ± 0.2 43.0 ± 0.2
NCL (Yèche et al., 2021) 35.1 ± 0.4 90.8 ± 0.2 43.2 ± 0.2

Semi-Supervised Pretraining

SCL (D) (Khosla et al., 2021) 32.1 ± 0.9 89.5 ± 0.3 41.8 ± 0.4
NCL (Yèche et al., 2021) 37.1 ± 0.7 90.9 ± 0.1 43.8 ± 0.3

Our Supervised Step-Wise Embedding Approach

FTT embedding (Gorishniy et al., 2021) 38.2 ± 0.4 90.9 ± 0.3 42.9 ± 0.6
FTT with organ grouping 38.2 ± 0.5 91.1 ± 0.3 44.0 ± 0.3

C.3. Interpretability

Additional tasks. Additional results on circula-
tory failure prediction are shown in Figure 4 and in
Figure 5. Average attention weights between differ-
ent organ systems, highlight the importance of rele-
vant groups of features in predicting the correspond-
ing organ failure. We find that the cardiovascular and
hematology organ systems show the highest relevance
to predicting circulatory failure, confirming that vari-
ables related to heart function, blood pressure, and
vascular dynamics may play a critical role. Over-
all, features and organ groups with highest attention
weights correspond to important predictive variables
from a clinical perspective as shown by Hyland et al.
(2020).

Attention over time. We provide additional ex-
amples of attention pattern over time in Figure 6 and
Figure 7, showing the insights gained from attention-
based embedding methods in interpreting model be-
haviour.

Appendix D. Prior work: deep
learning backbones for
ICU data

As was mentioned, the performance gap between
proposed deep learning methods and tree-based ap-
proaches remains significant (Yèche et al., 2021; Hy-
land et al., 2020). Some approaches have considered

the use of additional data sources via fusion mod-
els (Husmann et al., 2022; Khadanga et al., 2019) to
achieve comparable performance. In this section, we
also aim to address several prior papers that have
contributed to the development of backbone model
architectures for supervised clinical time-series tasks.
The SeFT model (Horn et al., 2020) treats observa-
tions as tuples of time value, observed variable value,
and modality indicator. These tuples are concate-
nated and each individually passed through a linear
layer to generate embeddings, which then are ag-
gregated across the entire time-series. The RAIN-
DROP model (Zhang et al., 2021) maps each ob-
served variable to a high-dimensional space with an
MLP and uses Graph Neural Networks to learn rele-
vant relationships. Separate line of research explores
self-supervised pre-training methodologies for clini-
cal time-series representation learning (Tipirneni and
Reddy, 2022; Labach et al., 2023). StraTS (Tipirneni
and Reddy, 2022) represents the data in the same way
as SeFT. The TESS model (Labach et al., 2023) con-
siders time bins which are passed through an MLP.
To summarize, SeFT and StraTS employ the same
architecture, where the features interact within the
whole time-series, and necessitates a specific data rep-
resentation. Time-step level and group level interac-
tions are not in the scope of these studies. Similar to
SeFT, RAINDROP aggregates information across the
entire time-series for the feature embeddings and em-
ploys an architecture not suited for online prediction
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Table 9: Performance benchmark for different embedding architectures, measured through the
receiver operating characteristic curve (AUROC). Mean and standard deviation are reported over
five training runs.

Dataset HiRID MIMIC-III

Clinical prediction task Circulatory Failure Respiratory Failure Mortality Decompensation Mortality

LightGBM (Yèche et al., 2021) 91.2 ± 0.1 70.8 ± 0.1 90.5 ± 0.0 90.3 ± 0.1 84.2 ± 0.1

Deep learning backbone (DL) 90.5 ± 0.2 69.9 ± 0.4 90.7 ± 0.2 90.5 ± 0.1 86.1 ± 0.1
+ linear embedding (Yèche et al., 2021) 90.9 ± 0.1 71.0 ± 0.2 90.8 ± 0.2 91.1 ± 0.1 85.8 ± 0.2
+ MLP embedding (Tomašev et al., 2021) 91.0 ± 0.1 70.7 ± 0.3 90.5 ± 0.1 91.1 ± 0.5 85.6 ± 0.1
+ ResNet embedding (Tomašev et al., 2019) 90.1 ± 0.3 69.5 ± 0.1 89.9 ± 0.2 90.7 ± 0.2 85.9 ± 0.2
+ FTT embedding (Gorishniy et al., 2021) 91.1 ± 0.1 70.0 ± 0.1 90.5 ± 0.2 91.6 ± 0.1 85.8 ± 0.2
+ FTT with type grouping 91.0 ± 0.2 70.6 ± 0.2 90.1 ± 0.3 91.4 ± 0.1 86.0 ± 0.2
+ FTT with organ grouping 91.6 ± 0.03 70.6 ± 0.4 91.0 ± 0.3 91.4 ± 0.1 86.1 ± 0.2

tasks. TESS and StraTS focus on exploring the ef-
fects of self-supervised pre-training, which is distinct
from the focus of our research.
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Figure 4: Within concept embedding (hematology system).
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Figure 6: Attention patterns over time in embeddings for clinical time-series for Respiratory failure
prediction task. Example attention weights between different organ systems.
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Figure 7: Attention patterns over time in embeddings for clinical time-series for Circulatory failure
prediction task. Example attention weights between different organ systems.
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Table 10: Variable splitting by organ type, obtained based on public metadata in the HiRID dataset.
An intensive care physician was consulted to confirm the validity of these splits. Details on variable
name and acronyms can be obtained from the respective datasets (Hyland et al., 2020).

Organ Variable name

Central nervous system (Brain) GCS Antwort, GCS Motorik, GCS Augenöffnen, RASS, ICP, TOF, Benzodia-
cepine, Alpha 2 Agonisten, Barbiturate, Propofol, Liquor/h, Nimodipin, Opiate,
Non-opioide, NSAR, Ketalar, Peripherial Anesthesia, Antiepileptica, Anti delirant
medi, Psychopharma, Muskelrelaxans, Anexate, Naloxon, Parkinson Medikaiton, pH
Liquor, Laktat Liquor, Glucose Liquor

Circulatory system (Heart) HR, T Central, ABPs, ABPd, ABPm, NIBPs, NIBPd, NIBPm, PAPm, PAPs, PAPd,
PCWP, CO, SvO2(m), ZVD, ST1, ST2, ST3, Rhythmus, IN, OUT, Incrys, In-
colloid, packed red blood cells, FFP, platelets, coagulation factors, norepinephrine,
epinephrine, dobutamine, milrinone, levosimendan, theophyllin, vasopressin, desmo-
pressin, vasodilatators, ACE Inhibitors, Sartane, Ca Antagonists, B-Blocker, Andere,
Adenosin, Digoxin, Amiodaron, Atropin, Thyrotardin, Thyroxin, Thyreostatikum,
Mineralokortikoid, Antihistaminka, Terlipressin, Troponin-T, creatine kinase, crea-
tine kinase-MB, BNP, TSH, AMYL-S

Hematology (Blood) Glucose Administration, Insuling Langwirksam, Insulin Kurzwirksam, Throm-
bozytenhemmer, Heparin, NMH, Others in Case of HIT, Marcoumar, Protamin, Anti
Fibrinolyticum, Lysetherapie, Pankreas Enzyme, VitB Substitution, Weight, a-BE,
a COHb, a Hb, a Lac, a MetHb, v-Lac, aPTT, Fibrinogen, FII, Factor V, Factor
VII, factor X, INR, albumin, glucose, Ammoniak, Hb, total white blood cell count,
platelet count, MCH, MCHC, MCV, Ferritin, Lipase

Immune system Administriation of antibiotics, Administation of antimycotic, administration of antivi-
ral, Antihelmenticum, Steroids, Enteral Feeding, steroids, non-steroids, Chemother-
apie, Immunoglobulin, Immunsuppression, GCSF, C-reactive protein, procalcitonin,
lymphocyte, Neutr, Segm. Neut., Stabk. Neut., BSR, Cortisol

Hepatic system (Liver) ASAT, ALAT, bilirubine, total, Bilirubin, direct, alkaline phosphatase, gamma-GT
Pulmonary system (Lung) SpO2, ETCO2, RR, supplemental oxygen, FIO2, Peep, Ventilator mode, TV, Spitzen-

druck, Plateaudruck, AWPmean, RR set, AiwayCode, Beh. Pulm. Hypertonie,
a pCO2, a PO2, a SO2, Zentral venöse sättigung, pH Drain, AMYL-Drainag

Renal system (Kidneys) OUTurine/h, K-sparend, Aldosteron Antagonist, Loop diuretics, Thiazide, Acetazo-
lamide, Haemofiltration, Parenteral Feeding, Kalium, Phosphat, Na, Mg, Ca, Trace
elements, Bicarbonate, a HCO3-, a pH, K+, Na+, Cl-, Ca2+ ionizied, Ca2+ total,
phosphate, Mg lab, Urea, creatinine, urinary creatinin, urinary Na+, urinary urea

Table 11: Variable splitting by organ type, obtained based on public metadata in MIMIC-III dataset.
An intensive care physician was consulted to confirm the validity of these splits. Details on variable
name and acronyms can be obtained from the respective datasets (Hyland et al., 2020).

Organ Variable name

Central nervous system (Brain) Glascow coma scale eye opening, Glascow coma scale motor response, Glascow
coma scale total, Glascow coma scale verbal response

Circulatory system (Heart) Diastolic blood pressure, Heart Rate, Mean blood pressure, Systolic blood pres-
sure, Temperature, Capillary refill rate

Hematology (Blood) Glucose
Pulmonary system (Lung) Fraction inspired oxygen, Oxygen saturation, Respiratory rate
Renal system (Kidneys) pH
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Table 12: Variable splitting by data acquisition type, obtained based on public metadata in the HiRID
dataset.

Variable type Variable name

Derived from raw data ETCO2, OUTurine/h, IN, OUT, Incrys, Incolloid
Laboratory values a-BE, a COHb, a Hb, a HCO3-, a Lac, a MetHb, a pH, a pCO2, a PO2,

a SO2, Zentral venöse sättigung, Troponin-T, creatine kinase, creatine kinase-
MB, v-Lac, BNP, K+, Na+, Cl-, Ca2+ ionizied, Ca2+ total, phosphate,
Mg lab, Urea, creatinine, urinary creatinin, urinary Na+, urinary urea, ASAT,
ALAT, bilirubine, total, Bilirubin, direct, alkaline phosphatase, gamma-GT,
aPTT, Fibrinogen, FII, Factor V, Factor VII, factor X, INR, albumin, glu-
cose, Ammoniak, C-reactive protein, procalcitonin, lymphocyte, Neutr, Segm.
Neut., Stabk. Neut., BSR, Hb, total white blood cell count, platelet count,
MCH, MCHC, MCV, Ferritin, TSH, AMYL-S, Lipase, Cortisol, pH Liquor,
Laktat Liquor, Glucose Liquor, pH Drain, AMYL-Drainag

Monitored variables HR, T Central, ABPs, ABPd, ABPm, NIBPs, NIBPd, NIBPm, PAPm, PAPs,
PAPd, PCWP, CO, SvO2(m), ZVD, ST1, ST2, ST3, SpO2, ETCO2, RR,
ICP, TOF, FIO2, Peep, Ventilator mode, TV, Spitzendruck, Plateaudruck,
AWPmean, RR set

Observed variables ZVD, Rhythmus, supplemental oxygen, GCS Antwort, GCS Motorik, GCS
Augenöffnen, RASS, ICP, AiwayCode, Haemofiltration, Liquor/h, Weight

Treatment variables packed red blood cells, FFP, platelets, coagulation factors, norepinephrine,
epinephrine, dobutamine, milrinone, levosimendan, theophyllin, vasopressin,
desmopressin, vasodilatators, ACE Inhibitors, Sartane, Ca Antagonists, B-
Blocker, Andere, Adenosin, Digoxin, Amiodaron, Atropin, K-sparend, Aldos-
teron Antagonist, Loop diuretics, Thiazide, Acetazolamide, Administriation of
antibiotics, Administation of antimycotic, administration of antiviral, Antihel-
menticum, Benzodiacepine, Alpha 2 Agonisten, Barbiturate, Propofol, Glu-
cose Administration, Insuling Langwirksam, Insulin Kurzwirksam, Nimodipin,
Opiate, Non-opioide, NSAR, Ketalar, Peripherial Anesthesia, Steroids, Throm-
bozytenhemmer, Enteral Feeding, Parenteral Feeding, Heparin, NMH, Others
in Case of HIT, Marcoumar, Protamin, Anti Fibrinolyticum, Kalium, Phos-
phat, Na, Mg, Ca, Trace elements, Bicarbonate, Antiepileptica, Anti delirant
medi, Psychopharma, steroids, non-steroids, Thyrotardin, Thyroxin, Thyre-
ostatikum, Mineralokortikoid, Antihistaminka, Chemotherapie, Lysetherapie,
Muskelrelaxans, Anexate, Naloxon, Beh. Pulm. Hypertonie, Pankreas En-
zyme, Terlipressin, Immunoglobulin, Immunsuppression, VitB Substitution,
Parkinson Medikaiton, GCSF

Table 13: Variable splitting by data acquisition type, obtained based on public metadata in the
MIMIC-III dataset.

Variable type Variable name

Laboratory values Glucose, pH
Monitored variables Diastolic blood pressure, Heart Rate, Mean blood pressure, Systolic blood pres-

sure, Temperature, Fraction inspired oxygen, Oxygen saturation, Respiratory
rate

Observed variables Glascow coma scale eye opening, Glascow coma scale motor response, Glascow
coma scale total, Glascow coma scale verbal response, Capillary refill rate
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Table 14: Benchmarking analysis of embedding design choices for Respiratory failure prediction on
the HiRID dataset. Ablations on the default architecture: FTT (Gorishniy et al., 2021) with
organ splitting and attention-based aggregation.

(a) Embedding architecture.

Architecture AUPRC

None 59.5 ± 0.4
MLP 60.6 ± 0.2
ResNet 58.2 ± 0.4
FTT 60.7 ± 0.5

(b) Group aggregation.

Aggregation AUPRC

Concatenate 61.1 ± 0.1
Average 60.1 ± 0.3
Attention 60.7 ± 0.2

(c) Feature grouping.

Grouping AUPRC

None 59.8 ± 0.1
Variable type 60.7 ± 0.1
Meas. type 60.3 ± 0.3
Organ 60.7 ± 0.5

Table 15: Benchmarking analysis of embedding design choices for Mortality prediction on the HiRID
dataset. Ablations on the default architecture: FTT (Gorishniy et al., 2021) with organ splitting
and attention-based aggregation.

(a) Embedding architecture.

Architecture AUPRC

None 60.1 ± 0.3
MLP 60.3 ± 0.2
ResNet 57.8 ± 0.4
FTT 61.6 ± 1.3

(b) Group aggregation.

Aggregation AUPRC

Concatenate 62.3 ± 1.9
Average 61.0 ± 0.7
Attention 61.6 ± 1.3

(c) Feature grouping.

Grouping AUPRC

None 60.5 ± 0.6
Variable type 60.9 ± 0.2
Meas. type 61.6 ± 1.0
Learned 62.3 ± 1.2
Organ 61.6 ± 1.3

Table 16: Benchmarking analysis of embedding design choices for Length-of-Stay prediction on the
HiRID dataset. Best performing model shown while fixing the specific variation and performing
a random search over the others.

(a) Embedding architecture.

Architecture MAE ↓
None 59.3 ± 0.6
MLP 56.9 ± 1.1
ResNet 57.3 ± 0.7
FTT 54.0 ± 0.1

(b) Group aggregation.

Aggregation MAE ↓
Concatenate 54.2 ± 0.2
Average 54.0 ± 0.1
Attention 54.0 ± 0.1

(c) Feature grouping

Grouping MAE ↓
None 55.7 ± 0.1
Meas. type 54.4 ± 0.3
Organ 54.0 ± 0.1

Table 17: Benchmarking analysis of embedding design choices for Phenotyping prediction on the
HiRID dataset. Best performing model shown while fixing the specific variation and performing
a random search over the others.

(a) Embedding architecture.

Architecture Bal.Acc ↑
None 42.7 ± 1.5
MLP 39.5 ± 1.8
ResNet 43.3 ± 1.7
FTT 46.5 ± 1.4

(b) Group aggregation.

Aggregation Bal.Acc ↑
Concatenate 43.2 ± 0.9
Sum 46.5 ± 1.4
Attention 41.8 ± 1.7

(c) Feature grouping

Grouping Bal.Acc ↑
None 39.8 ± 2.6
Meas. type 43.6 ± 0.8
Organ 46.5 ± 1.4
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Table 18: Benchmarking analysis of embedding design choices for Decompensation prediction on
MIMIC-III dataset. Ablations on the default architecture: FTT (Gorishniy et al., 2021) with
organ splitting and attention-based aggregation.

(a) Embedding architecture.

Architecture AUPRC

None 38.7 ± 0.3
MLP 36.3 ± 0.3
FTT 38.0 ± 0.4

(b) Group aggregation.

Aggregation AUPRC

Concatenate 36.2 ± 1.3
Average 37.4 ± 0.1
Attention 38.0 ± 0.4

(c) Feature grouping.

Grouping AUPRC

None 38.7 ± 0.3
Variable type 34.8 ± 0.3
Meas. type 38.1 ± 0.2
Organ 38.0 ± 0.4

Table 19: Feature grouping.

Table 20: Benchmarking analysis of embedding design choices for Mortality prediction on MIMIC-III
dataset. Ablations on the default architecture: FTT (Gorishniy et al., 2021) with organ splitting
and attention-based aggregation.

(a) Embedding architecture.

Architecture AUPRC

None 51.2 ± 0.8
MLP 51.3 ± 1.01
ResNet 50.6 ± 0.7
FTT 51.8 ± 0.6

(b) Group aggregation.

Aggregation AUPRC

Concatenate 51.9 ± 0.6
Average 52.6 ± 0.6
Attention 51.8 ± 0.6

(c) Group aggregation.

Grouping AUPRC

None 51.1 ± 0.5
Variable type 51.1 ± 0.7
Meas. type 51.4 ± 2.2
Organ 51.8 ± 0.6
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