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Abstract
App-based N-of-1 trials offer a scalable experi-
mental design for assessing the effects of health
interventions at an individual level. Their prac-
tical success depends on the strong motivation
of participants, which, in turn, translates into
high adherence and reduced loss to follow-up.
One way to maintain participant engagement
is by sharing their interim results. Continu-
ously testing hypotheses during a trial, known
as “peeking”, can also lead to shorter, lower-risk
trials by detecting strong effects early. Never-
theless, traditionally, results are only presented
upon the trial’s conclusion. In this work, we
introduce a potential outcomes framework that
permits interim peeking of the results and en-
ables statistically valid inferences to be drawn
at any point during N-of-1 trials. Our work
builds on the growing literature on valid con-
fidence sequences, which enables anytime-valid
inference with uniform type-1 error guarantees
over time. We propose several causal estimands
for treatment effects applicable in an N-of-1
trial and demonstrate, through empirical eval-
uation, that the proposed approach results in
valid confidence sequences over time. We an-
ticipate that incorporating anytime-valid infer-
ence into clinical trials can significantly enhance
trial participation and empower participants.

Keywords: N-of-1 trials, anytime-valid infer-
ence, design-based, confidence sequence, causal
inference, personalized medicine

1. Introduction

The statistical inference of individual causal effects
of health interventions holds great importance for

many clinical and biomedical applications. In par-
ticular, understanding which treatment and dosage
are most effective for a particular patient lies at the
heart of personalized medicine. To this aim, differ-
ent methodologies have been proposed. One popu-
lar approach involves the collection and analysis of
extensive population-level datasets with the goal of
estimating effects at the individual level. With suit-
able covariates and a clear understanding of disease
mechanisms, it becomes feasible to potentially ac-
quire individual-level effects (Shalit et al., 2017; Bica
et al., 2020; Smith et al., 2020; Verstraete et al., 2021;
Diemert et al., 2021). Nevertheless, the practicality
of this approach is often limited to specific applica-
tions. For instance, in cases like cancer, personal-
ized signatures can be derived from genetic muta-
tions. However, more often, causal effects can only
be identified within specific subgroups (van Kruijs-
dijk et al., 2014; Zhang et al., 2017; van Amster-
dam et al., 2022; Msaouel et al., 2022). As a sec-
ond approach, stemming from recent biotechnologi-
cal advancements, personalized treatments have been
developed directly for selected rare target diseases
in personalized drug development (Kim et al., 2019;
Seydel, 2023). However, such approaches are still re-
stricted to a selected class of drug targets and limited
by resources and costs.

As a third approach, experimental studies can be
designed to directly evaluate and compare the effec-
tiveness of one or multiple treatments in a given per-
son. These so-called N-of-1 trials have been estab-
lished as the gold standard for inferring individual-
level effects, and different guidelines have been pro-
posed for their standardized application (Nikles
and Mitchell, 2015; Vohra et al., 2015; Porcino
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et al., 2020). More formally, N-of-1 trials are multi-
crossover randomized controlled trials (RCTs) in one
person, hence one or more treatments are admin-
istered over time in a predefined, potentially ran-
domized, sequence. Also, if the same N-of-1 trial
is performed in multiple persons in a so-called se-
ries of N-of-1 trials, the trials can be jointly analyzed
to yield efficient population-level treatment effect es-
timates (Zucker et al., 2010). In order to achieve
sufficient statistical power for inference, N-of-1 tri-
als require frequent longitudinal measurements which
has hindered their application in practice. Only re-
cently, digital tools have been developed for setting
up and executing N-of-1 trials. This, in turn, en-
ables scalability across various studies, patients, and
providers (Taylor et al., 2018; Daskalova et al., 2020;
Zenner et al., 2022; Konigorski et al., 2022). For ex-
ample, the StudyU platform (https://www.studyu.
health) contains several open studies that are cur-
rently running with patients and healthy participants
in different countries, and are investigating differ-
ent health interventions on outcomes such as chronic
pain, antidepressant discontinuation symptoms, and
sleep quality.

Digital app-based N-of-1 trials provide a straight-
forward and expandable means for evaluating patient
outcomes, whether actively reported by patients or
passively collected sensor data. However, their suc-
cess still relies on the retention and high adherence
of the patients to the trial. To keep the trial partic-
ipants engaged, apart from developing user-friendly
interfaces for the apps, it is also important to provide
frequent feedback. A classical study design involves
collecting all trial data, conducting analysis, and sub-
sequently reporting the results back to the partici-
pants. However, if patients are required to provide
daily outcomes in a trial that runs for weeks or even
months, without any intermediate feedback, patients
might lose interest. On the other hand, “peeking”
at the intermediate results (performing a hypothesis
test before the end of the trial) introduces statistical
biases. Thus, a framework for valid statistical infer-
ence is required at all time points of an N-of-1 trial
in order to enable intermediate analysis.

Contributions. In this work, we provide a statis-
tical framework that allows anytime-valid inference
in N-of-1 trials with intermediate analysis of the re-
sults. Our contributions are to provide a (i) poten-
tial outcomes framework for N-of-1 trials, (ii) formal
definition of several causal estimands of interest in
N-of-1 trials, and (iii) construction of confidence se-

quences that allow anytime-valid inference. Finally,
we validate our approach empirically in simulation
studies and compare it to existing state-of-the-art ap-
proaches.

1.1. Related Work

The field of N-of-1 trials has originated from the med-
ical domain, and continues to be largely driven by
its clinical applications. As such, the existing liter-
ature has almost exclusively focused on an applied
presentation, and omitted a more formal statistical
definition of the study setup and estimands of in-
terest. There exist some recent contributions: Yang
et al. (2021) give a formalization of different poten-
tial study designs and their consequences on design
parameters. Daza (2018, 2019) and Daza and Schnei-
der (2022) present a counterfactual framework for sin-
gle case studies which include both observational and
experimental N-of-1 settings. They define individual-
level target estimands and estimators in their work,
which can include time trends and carryover effects.
As a difference to these previous approaches, we con-
sider design-based estimands based on the immedi-
ate causal effects conditional on the accrued history,
and focus on constructing anytime-valid confidence
sequences for the proposed target parameters.

Other related work has been published in the
traditional RCTs literature that is relevant to our
aim of enabling anytime-valid inference. In RCTs,
interim analyses are often performed to evaluate
safety and side effects, as well as to assess inter-
mediate treatment effects that might warrant early
termination of the trial based on predefined crite-
ria for treatment inferiority or superiority. Com-
mon approaches for such interim analyses include
the O’Brien-Fleming (O'Brien and Fleming, 1979),
Haybittle-Peto (Haybittle, 1971; Peto et al., 1976)
and Pocock (Pocock, 1977) methods, which aim to
control the overall type I error across all interim tests
by adjusting the respective critical test statistic val-
ues. While the Pocock method chooses the same al-
pha level at all interim tests, the O’Brien-Fleming
and Haybittle-Peto method require stronger evidence
at earlier interim points. In the CONSORT extension
with guidelines for harm-related stopping rules, the
O’Brien-Fleming method is recommended (Ioannidis
et al., 2004). Demets and Lan (1994) and others have
generalized these ideas through an “alpha-spending
function” which generates critical values such that
the sum of probabilities of exceeding those values
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across the interim tests equal the type I error rate al-
pha. We note that all these approaches have been de-
signed for classical population-level RCTs, and have
not been evaluated in N-of-1 trials. As only excep-
tion, Selukar (2021) considers a very specific situa-
tion, when a series of N-of-1 trials is sequentially mon-
itored, interim analyses are few and pre-defined, and
only summary statistics are available of each trial.

Third, relevant work has originated from causal in-
ference literature on sequential designs for single time
series (Bojinov and Shephard, 2019; Malenica et al.,
2021; Ham et al., 2022). Malenica et al. (2021) define
conditional estimand classes of interest and provide
inference on them in an adaptive setting of a single
time series. Bojinov and Shephard (2019) provide
a potential outcome framework for single time se-
ries and define estimands of interest from the design-
based perspective. Finally, we adapt and build on
work by Ham et al. (2022), who provide design-based
confidence sequences for very long time series in a
setting where treatment is randomized at each time
point. In this work we focus specifically on the setup
of N-of-1 trials as crossover experiments in treatment
blocks, with N-of-1 trial-specific estimands.

2. Statistical Formulation

2.1. Notation and Observed Data

We consider the trajectory of a single individual in an
N-of-1 trial with K treatment periods (also denoted
as “periods” or “blocks”). Suppose for each period
k ∈ [K] := {1, . . . ,K}, there are Tk time points. We
write (k, t) to indicate the t-th time point of the treat-
ment period k. We emphasize that, despite our focus
on a single N-of-1 trial, our results generalize to a
series of N-of-1 trials with multiple patients.

Let Ok,t := (Ak,t, Yk,t,Wk,t) denote data for a
single individual at time point (k, t) including the
treatment, outcome, and covariates. Specifically, at
each time point (k, t), one assigns a binary treatment
Ak,t ∈ A := {0, 1} to a patient, where Ak,t = 1 de-
notes the treatment and Ak,t = 0 the control (or al-
ternative treatment). In N-of-1 trials, the same treat-
ment is assigned throughout a period (e.g., for block
k, control is given at all time points (1, . . . , Tk)). In
an extreme case, one might randomize at each follow-
up time (corresponding to the chronological observa-
tion), so Tk = 1 for all k ∈ [K]. Notice that the num-
ber of time points within a block, Tk, can vary by
k, allowing for different lengths of each treatment pe-

riod. Once the treatment is assigned for block k, post-
treatment outcome of interest Yk,t ∈ Y and possibly
a vector of other time-varying covariates Wk,t ∈ W
are collected. Therefore, at each time point t, we as-
sign treatment Ak,t according to the period k, then
collect Yk,t, followed by Wk,t. See Figure 1 for an
illustration of the N-of-1 trial path.

Let Ok,1:t = (Ok,1, . . . , Ok,t) denote the data
collected in period k up to time t. As each
k contains Tk data points, we define Ok :=
Ok,1:Tk

= (Ok,1, . . . , Ok,Tk
) as the full data col-

lected in the k-th treatment period. Similarly,
we write Ak = (Ak,1, . . . , Ak,Tk

) for the full and
Ak,1:t = (Ak,1, . . . , Ak,t) for the cropped sequence
of treatments in block k. To clarify, we illus-
trate the proposed notation with a simple exam-
ple where K = 2 and T1 = T2 = 2. With-
out putting any assumptions on the design of treat-
ment blocks (and therefore treatment assignment),
all possible treatment sequences for a single indi-
vidual are as follows: {(1, 1), (0, 0)}, {(0, 0), (1, 1)},
{(1, 1), (1, 1)} and {(0, 0), (0, 0)}. Symbolically,
we write the resulting treatment sequence as
{(A1,1, A1,2), (A2,1, A2,2)} = {A1,1:2, A2,1:2}.

Figure 1: Illustration of a N-of-1 trial path for a sin-
gle individual.

It follows that data collected for a whole block k is
then Ok = (Ak, Yk,Wk), where Yk = (Yk,1, . . . , Yk,Tk

)
and Wk = (Wk,1, . . . ,Wk,Tk

). When no time-varying
covariates are gathered beyond the outcome of inter-
est, we represent this as Wk = ∅. We emphasize that
Wk (and the entire history, or some function of it,
for that matter) can be used to inform treatment al-
location in the subsequent block, k + 1, allowing for
adaptive treatment assignment. Finally, let O0 be the
baseline covariates obtained before the start of the
trial. Without loss of generality, we assume Tk = T
for all blocks k ∈ [K] (T > 1), which aligns with the
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design of a canonical N-of-1 trial. We, however, em-
phasize that all of our results generalize to the setting
where the Tk values vary in each treatment period.

Below, we provide some essential definitions re-
garding time and block-specific variable collections
used throughout the manuscript. For a single indi-
vidual, let Ōk,t = (O0, O1,1, . . . , Ok,t) denote the full
history up to time t of block k (including baseline
covariates), while Ok,t = (Ok,t, . . . , OK,T ) denotes all
future variables from index (k, t) to (K,T ). Then,
the full trajectory (or a time-series) is presented by
OKT := ŌK,T = {O0, O1,1, . . . , OK,T }. Similarly, we
define all past and future collections of A, Y , and W .
For example, we write Āk,t = (A1,1, . . . , Ak,t) for the
sequence of treatments until the t-th time point of
period k. Lastly, let HA

k,t := Ōk,t−1 be the full his-
tory of all variables until Ak,t. It then follows that
HY

k,t := (Ak,t, Ōk,t−1) and H
W
k,t := (Ak,t, Yk,t, Ōk,t−1)

are the full variable histories until Yk,t and Wk,t.

2.2. Likelihood of the Trajectory

We let OKT ∼ P0, where P0 denotes the true proba-
bility distribution of OKT . Throughout the remain-
der of the text, we use capital letters to indicate ran-
dom variables, and lowercase for their realizations.
We use the naught subscript to denote true proba-
bility distributions or components thereof. Let M
denote the statistical model for the probability distri-
bution of the data, which is nonparametric, beyond
possible knowledge of the treatment mechanism (i.e.,
known randomization probabilities). We note that
the true probability distribution of the data is an el-
ement of M, and denote P as any probability dis-
tribution such that P ∈ M. Suppose that P0 ad-
mits a density p0 w.r.t. a dominating measure µ
over O which can be written as the product measure
µ = ×k=K,t=T

k=1,t=1 (µA×µY ×µW ), with µA, µY , and µW

measures over A, Y, and W. The likelihood of oKT

can be factorized according to the time-ordering as

p0(o
KT ) = p0,O0(o0)

K∏
k=1

T∏
t=1

p0,A(ak,t | hAk,t) (1)

p0,Y (yk,t | hYk,t)p0,W (wk,t | hWk,t),

where ak,t 7→ p0,A(ak,t | hAk,t), yk,t 7→ p0,Y (yk,t | hYk,t),
and wk,t 7→ p0,W (wk,t | hWk,t) are conditional densities
w.r.t. dominating measures µA, µY , µW .

3. Causal Effects for N-of-1 Trials

The main design components of an N-of-1 trial in-
clude the (1) number of blocks K, (2) length of
each block, T , and (3) choice of treatment alloca-
tion for treatment periods (pre-specified or random-
ized, type of randomization) (Yang et al., 2021). If
the treatment sequence is pre-specified before a trial,
then an individual is assigned a specific treatment
sequence deterministically (e.g., control-treatment-
control-treatment). This is useful when one is inter-
ested in the effect of a specific treatment sequence,
or wishes to avoid randomly generating unwanted
treatment sequences (e.g., giving the same treatment
across consecutive periods). Alternatively, one might
generate treatment sequences by randomizing treat-
ment allocation across blocks. In this work, we focus
specifically on randomized treatment sequences.

There are numerous randomization schemes for de-
signing an N-of-1 trial (Yang et al., 2021). In this
work, we rely on (1) pairwise randomization, where
the order of two different treatments in a consecutive
pair of treatment periods is randomized; (2) restricted
randomization, where treatment is randomly assigned
with the restriction that the number of treatment and
control periods is approximately the same (but treat-
ment probability is never zero) and (3) unrestricted
randomization, where treatment is randomly assigned
at each period. All of the listed schemes randomize
on the block-level, and assign the same treatment at
all time points within a block.

3.1. Time-Series Potential Outcomes

We define āk = (a1, . . . , ak) as the treatment path un-
til period k, where we remind that ak = ak,1:T . In
a point treatment setting, the treatment path is of
length 1, and each study participant has 21 potential
outcomes. In an N-of-1 trial, however, we follow a sin-
gle individual over time and administer K different
treatments, each of length T (or more generally, Tk).
For a binary treatment and unrestricted randomiza-
tion, we then have 2K different treatment paths that
could have been observed. In Table 1, we include
the total number of possible treatment sequences for
each considered randomization scheme, at both odd
and even number of treatment periods.

We define Yk,t(āk,t) as the potential outcome
at time point (k, t), which may depend on the
full history of assigned treatments up until (k, t).
Note that we don’t make assumptions on car-
ryover or other time-dependent effects. Conse-
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Table 1: Number of possible treatment paths gener-
ated under different randomization schemes.

Randomization Odd K Even K

Pairwise 2
K+1

2 2
K
2

Restricted ∼ 2
(

K
(K−1)/2

)
∼
(

K
K/2

)
Unrestricted 2K 2K

quently, we denote Ȳk,t(āk,t) as the collection of
potential outcomes up until (k, t): Ȳk,t(āk,t) =
(Y1,1(ā1,1), ..., Y1,T (ā1,T ), ..., Yk,1(āk,1), ..., Yk,t(āk,t)).
Further, let Yk(āk) denote a summary potential
outcome of treatment period k. In particular,
Yk(āk) depends on the potential outcomes for
all time points t within block k, i.e., Yk(āk) :=
f(Yk,1(āk,1), . . . , Yk,T (āk,T )), where f is any function
that takes as input the potential outcomes in block
k. Finally, let Ȳk(āk) = (Y1(ā1), . . . , Yk(āk)) denote
the counterfactual outcomes that would have been
observed over time under treatment path Āk = āk.
When f is the average function across the respective
block, we have that Ȳk(āk) = (Y1(ā1), . . . , Yk(āk)) =

(1/T
∑T

t=1 Y1,t(ā1,t), . . . , 1/T
∑T

t=1 YK,t(āK,t)).
Note that we assume that future potential out-

comes do not cause past treatments (Granger, 1969).
We formalize this in Assumption 1. Finally, we do
not make assumptions on the dimension of any of the
defined potential outcomes.

Assumption 1 (Granger Causality) Let W̄T =
∅. For each k ∈ [K], we have that

P (Ak,1 = ak,1 | Āk−1 = āk−1, ȲK(āK))

= P (Ak,1 = ak,1 | Āk−1 = āk−1, Ȳk−1(āk−1)).

To illustrate the notation, consider a simple de-
sign with unrestricted randomization, A ∈ {0, 1},
K = 2 and T = 2. For the first period k = 1,
there are 21 = 2 potential outcomes: Y1,2(0, 0) and
Y1,2(1, 1). For the second treatment period, there are
22 = 4 potential outcomes at the end of the treatment
block: Y2,2(0, 0, 0, 0), Y2,2(0, 0, 1, 1), Y2,2(1, 1, 0, 0),
and Y2,2(1, 1, 1, 1), and the total number of potential
outcomes at the end of the two treatment periods
under unrestricted randomization is 2 + 4 = 6 (more
generally, 2(2K − 1) for a trial consisting of K treat-
ment periods). The total number of treatment paths,
however, is 2K = 22 = 4, out of which we observe only

one. See Bojinov and Shephard (2019) for more ex-
amples. Let’s consider the block-average function for
f , so that each Yk(āk) is the average of all potential
outcomes in block k. For the first period, we then
have that Y1(ā1) = 1/2

∑T=2
t=1 Y1,t(ā1,t), and Y1(ā1)

is an average of Y1,1(0) and Y1,2(0, 0), or Y1,1(1) and
Y1,2(1, 1). Similarly, for the second treatment period

k = 2, Y2(ā2) = 1/2
∑T=2

t=1 Y2,t(ā2,t). Therefore, the
potential outcomes that would have been observed
over time are Ȳ2(ā2) = (Y1(ā1), Y2(ā2)).

3.2. Target Parameter

In an N-of-1 trial, treatments are assigned based on
the current treatment period. In this section, we es-
tablish several causal estimands that might be of in-
terest in an N-of-1 trial, using the potential outcomes
as defined in Subsection 3.1. The first target parame-
ter is the immediate causal effect (ICE) of treatment,
as opposed to control, at period k. It is defined as the
short-term (contemporaneous) effect of administering
treatments during period k, assessed at time (k, T ),
right after the last treatment in period k, conditional
on the observed past. A formal definition is provided
in Definition 1. Another parameter of interest is the
time t-specific ICE, which represents the causal effect
of assigning treatment from time (k, 1) to (k, t). This
target parameter hints at the effect of administering
treatment for t time points in a treatment period. We
note that ICE is a special case of the time t-specific
ICE where t = T .

Definition 1 (Immediate Causal Effect)

ψk(āk−1) = Yk(āk−1, ak = 1)− Yk(āk−1, ak = 0)

for any k ∈ [K]. 1, 0 are vectors of dimension T ×1.

Definition 2 (Time t-specific ICE)

ψk,t(āk−1) = Yk,t(āk−1, ak,1:t = 1t)

− Yk,t(āk−1, ak,1:t = 0t)

for any k ∈ [K], where 1t and 0t are vectors of di-
mension t× 1, and ak,1:t = (ak,1, . . . , ak,t).

Notice that the causal estimands in both Defini-
tion 1 and Definition 2 are functions of the entire
treatment path. As such, they include the carry-
over effect from the past treatment period assign-
ment in addition to the effect of period k. We also
emphasize that they are data-adaptive parameters —
the estimand changes as a function of the observed
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past and/or treatment path. Defining causal effects
conditional on history might seem unusual from the
classical causal inference perspective. However, such
data-adaptive approach allows us to define causal ef-
fects (1) for long time-series, (2) with valid infer-
ence (as the central limit theorem still holds), and
(3) without any additional assumptions on the time-
series structure (Bojinov and Shephard, 2019). Data-
adaptive target parameters in longitudinal settings
have been previously described from both super pop-
ulation and design-based perspectives (Bojinov and
Shephard, 2019; Malenica et al., 2021). Lastly, we
define another target parameter of interest in N-of-1
trials in Definition 3, the Average Immediate Causal
Effect (AICE) — the running average of treatment
effects over blocks. A similar parameter can also be
defined for the average over time t-specific ICE.

Definition 3 (AICE) For any k ∈ [K],

ψk
AICE =

1

k

k∑
j=1

ψj(āj−1).

3.3. Estimation

In this paper, we focus on the design-based ap-
proach to causal inference. Within the design-based
paradigm, the full set of potential outcomes is fixed
and always conditioned on; as such, the only source
of randomness comes from the treatment assignment.
Let Fk denote the filtration which contains all ob-
served data up to time (k, T ) conditional on Ȳk(āk)

(Ōk = {(Aj,t, Yj,t,Wj,t)}j=k,t=T
j=1,t=1 ), and all the poten-

tial outcomes (ȲK(āK)). The filtration Fk obeys the
nesting property where Fk ⊂ Fk+1 for all k. At the
beginning of each period k, we randomly assign treat-
ment with probability g(Ak,1) = P (Ak,1 | Fk−1).
Note that g(Ak,1) = g(Ak,2) = . . . = g(Ak,T ), as
the probability of treatment is the same for each
time point t in block k. By Assumption 1, it fol-
lows that g(Ak,1) = P (Ak,1 | Fk−1) = P (Ak,1 |
Āk−1 = āk−1, Ȳk−1(āk−1)). We emphasize that if
treatment is assigned independently of the past, then
g(Ak,1) = P (Ak,1).
To estimate ICE and AICE, we focus on the time-

series version of the Horvitz-Thomson and the stabi-
lized IPTW (Hájek) estimator in this work (Horvitz
and Thompson, 1952; Hájek, 1971; Robins et al.,
2000; Hirano et al., 2003; Imbens and Rubin, 2015).
To enable statistical inference, we assume there is a
positive probability of treatment and control at every

period k. Formally stated in Assumption 2, the posi-
tivity assumption excludes the pre-determined treat-
ment periods occasionally used in N-of-1 trials.

Assumption 2 (Positivity) For every k ∈ [K],

0 < g(Ak,1) < 1.

Under Assumption 2, we can estimate ICE and
AICE using the observed data. The IPTW estimator
of ψk(āk−1), denoted as ψ̂k, is then defined as

ψ̂k :=
1(Ak,1 = 1)f(Yk,1:T )

g(Ak,1)
− 1(Ak,1 = 0)f(Yk,1:T )

1− g(Ak,1)
.

Recall f is any function that takes data of block k as
input (in the estimator, observed data at time points
(k, 1 : T )). The variance estimator is defined as

σ̂2
k :=

1(Ak,1 = 1)f(Yk,1:T )
2

g(Ak,1)2
+
1(Ak,1 = 0)f(Yk,1:T )

2

(1− g(Ak,1))2
.

Lemma 1 establishes that the proposed estimator is
unbiased, and derives its variance over the random-
ization (proof in Appendix A).

Lemma 1 (Properties of the ICE Estimator)
Under Assumption 2, it follows that

E(ψ̂k − ψk(āk−1)|Fk−1) = 0

and

Var(ψ̂k − ψk(āk−1)|Fk−1) ≤ E(σ̂2
k|Fk−1).

The running average immediate effect over treat-
ment periods, i.e. the AICE, can be estimated by

ψ̂k
AICE = 1/k

k∑
j=1

ψ̂j . (2)

The unbiasedness of ψ̂k
AICE follows trivially from

Lemma 1. To stabilize the variance of the IPTW,
we also investigate the Hájek estimator of AICE, de-
noted as ψ̃k

AICE and presented in Equation (3). We
allocate the study of the Hájek estimator of AICE to
Appendix B.

ψ̃k
AICE :=

∑k
j=1 1(Aj,1 = 1)f(Yj,1:T )/g(Aj,1)∑k

j=1 1(Aj,1 = 1)/g(Aj,1)
(3)

−
∑k

j=1 1(Aj,1 = 0)f(Yj,1:T )/(1− g(Aj,1))∑k
j=1 1(Aj,1 = 0)/(1− g(Aj,1))

,

312



Anytime-valid inference in N-of-1 trials

with the corresponding variance estimator:

σ̃2
AICE :=

∑k
j=1 1(Aj,1 = 1)f(Yj,1:T )

2/g(Aj,1)
2∑k

j=1 1(Aj,1 = 1)/g(Aj,1)2
(4)

+

∑k
j=1 1(Aj,1 = 0)f(Yj,1:T )

2/(1− g(Aj,1))
2∑k

j=1 1(Aj,1 = 0)/(1− g(Aj,1))2
.

4. Confidence Sequences

We now introduce design-based asymptotic confi-
dence sequences for N-of-1 trials. First, we define a
confidence sequence as a sequence of confidence inter-
vals that are uniformly valid over time (also known
as anytime-valid). We say (Ik)

K
k=1 is a valid confi-

dence sequence with type-1 error α (or level 1 − α)
for the target parameter (ψk

AICE)
K
k=1 if for any data-

dependent stopping rule at 1 ≤ τ ≤ K,

P (∃k ∈ {1, . . . , τ} s.t. ψk
AICE /∈ Ik) ≤ α. (5)

Under Equation (5), we can perform valid inference
through each Ik. Furthermore, one can terminate a
trial as soon as a statistically significant effect is de-
tected with ψk

AICE /∈ Ik, allowing for ”peeking” dur-
ing the trial duration.
Anytime-valid inference was first introduced by

Wald (1945). Since then, significant advancements
have been made in developing confidence sequences
under minimal regularity conditions (Howard et al.,
2021; Bibaut et al., 2023). Two of the key contri-
butions include the idea of time-uniform analogues of
asymptotic confidence intervals (known as asymptotic
confidence sequences), and their extension to design-
based framework for anytime-valid causal inference
(Waudby-Smith et al., 2023; Ham et al., 2022). For
clarity, we provide a semi-formal definition as Defini-
tion 4. Informally, asymptotic confidence sequences
are valid confidence sequences as the number of time-
points grows. While practically this might mean we
don’t have valid coverage at early times, this concern
is alleviated by the (i) N-of-1 design, where each pe-
riod is of length T > 1, and by the (ii) upper bound
variance estimator introduced in Section 3.3.

Definition 4 (Asymptotic Confidence Sequence)
A sequence of intervals (Ik)

K
k=1 is a level 1−α asymp-

totic confidence sequence for the target parameter
sequence (ψk

AICE)
K
k=1 if there exists a non-asymptotic

confidence sequence (I ′k)
K
k=1 of level 1 − α such

that each interval Ik shares the center with I ′k,

and that width(Ik)/width(I
′
k) → 1 a.s.. More-

over, we say (Ik)k has approximation rate R if
width(Ik)− width(I ′k) = Oa.s.(R).

We now formally introduce the asymptotically
valid confidence sequences for the target parameter
sequence of the running average immediate causal
effect, (ψk

AICE)k. We emphasize however, that all
mentioned estimands in Section 3.2 are just special
cases of the results derived in Theorem 1. In particu-
lar, Theorem 1 applies to a weighted mean version of
AICE, which simplifies to the Immediate Causal Ef-
fect when the weight is zero for all treatment periods
except the time t block. Before stating Theorem 1
(proof in Appendix C), we need two more assump-
tions. In Assumption 3, we assume there is an un-
known, possibly extreme constant M which bounds
the realized potential outcomes. As M can be arbi-
trarily large and realizations are bounded, we con-
sider Assumption 3 a mild regularity condition. As-
sumption 4 concerns the behavior of the variance,
and is satisfied as long as potential outcomes do not
vanish over time.

Assumption 3 (Bounded Potential Outcomes)
There exists a constant M ∈ R such that for any
k ∈ [K], and any treatment path āk, |Yk(āk)| ≤M .

Assumption 4 (Non-vanishing Variance)

Let S̃k :=
∑k

j=1 σ
2
j , where σ2

j :=
Yj(āj−1,1T )2

g(Aj,1)
+

Yj(āj−1,0T )2

1−g(Aj,1)
. Then, S̃k → ∞ as k → ∞ a.s.

Theorem 1 Let Sk =
∑k

j=1 σ̂
2
j . Under Assump-

tions 2, 3 and 4, and for any constant η > 0,

1

k

k∑
j=1

ψ̂j ±
1

k

√
η2Sk + 1

η2
log

(
η2Sk + 1

α2

)

forms a valid (1−α) asymptotic confidence sequence
for the target parameter sequence (ψk

AICE)k, with ap-

proximation rate o(

√
S̃k log S̃k/k).
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5. Experiments

In the first experiment, we generate 1000 indepen-
dent N-of-1 trials for an individual under the null hy-
pothesis and illustrate the need for novel approaches
to construct valid confidence sequences. In each in-
dependent trial, we set K = 30 blocks and T = 10
time points within each block. For simplicity, there is
no treatment effect or covariates. We consider unre-
stricted randomization with 50% probability for each
treatment.

First, we demonstrate the inflated type-1 error of
a naive t-test (which constructs a confidence interval
according to the two-sample t-test with level α = 0.05
at each block K), as well as the O’Brien-Fleming ap-
proach (O'Brien and Fleming, 1979). In Figure 3,
we observe that the naive approach quickly accumu-
lates type I errors, reaching 0.6 only after 6 treatment
blocks. A naive application of the O’Brien-Fleming
approach yields better performance than the simple
t-test, but still result in inflated type I errors that in-
crease over time. In contrast, our proposed anytime-
valid confidence interval achieves the target type 1
error level and does not yield any false positives.

The second experiment aims to visualize the per-
formance of the proposed confidence sequences and
demonstrate empirically that the sequences achieve
both early stopping and time uniform coverage. For
this purpose, we generate 1000 independent N-of-1
trials, each with a decreasing treatment effect size of
5 + 1/k, no carry-over effects, K = 100 treatment
blocks, and T = 10 data points within each block.
We consider both the unrestricted and pairwise ran-
domization schemes, where we construct confidence
sequences of AICE using our proposed IPTW (The-
orem 1 derived from Equation (2)) and stabilized
IPTW estimators (Equation (3)). In Figure 2 and
Figure 4 in Appendix D, we illustrate the confidence
sequences constructed by the proposed algorithms in
a single run.

In Table 2, we compute the average stopping time
and time-uniform coverage proportion among the
1000 independent trials. Here the stopping time is set
as the earliest block at which the confidence interval
excludes 0, up to the 100th block. The time-uniform
coverage refers to the proportion among the random
experiments where all confidence intervals cover the
true treatment effect. We observe that the proposed
confidence sequences enjoy high coverage and their
widths are decreasing over time as expected. The sta-
bilized estimator shows a slightly smoother interval

sequence and slightly longer average stopping times,
though overall both estimators show similar empirical
behavior in our considered scenarios. These insights
hold for both randomization schemes. In contrast,
the O’Brien Fleming method has an average stopping
time of 5.54 (2.93) and a uniform time coverage of 0.
While the average stopping time of O’Brien Fleming
is lower then for our proposed method, the reason for
that is due to accumulated bias from testing many
hypotheses (alas, better then the naive t-test, as seen
in Figure 1). As expected, the coverage of O’Brien
Fleming method is poor.
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Figure 2: Anytime valid confidence intervals of AICE
obtained by IPTW in a single run at α =
0.05. The dashed line represents the zero
(null) line. Top row: unrestricted random-
ization scheme. Bottom row: pairwise ran-
domization scheme.
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Figure 3: Empirical type I error of a naive t-test,
the O’Brien-Fleming approach, and the
anytime-valid approach, of 1000 N-of-1 tri-
als in the unrestricted randomization set-
ting. The dashed line represents α = 0.05.

Avg. Stop Time Coverage

O’Brien Fleming 5.54 (2.93) 0
IPTW 32.50 (7.40) 0.959
S-IPTW 31.28 (7.41) 1.0

Pair IPTW 31.96 (2.98) 1.0
Pair S-IPTW 33.32 (3.96) 1.0

Table 2: Average stopping time and uniform time
coverage proportion over 1000 independent
trials for the proposed confidence sequences
under the unrestricted and pairwise ran-
domization setting. ‘S-IPTW’ denotes the
stabilized IPTW. ‘Pair IPTW’ and ‘Pair S-
IPTW’ represent the IPTW and stabilized
IPTW, respectively, in the pairwise ran-
domization setting.

6. Discussion

In this work, we provide a statistical framework that
enables anytime-valid inference in N-of-1 trials for in-
termediate peeking at the results and analyzing them.
We validate our approach in simulation studies and
compare it to existing state-of-the-art approaches.
The results indicate that recommended methods for

population-level RCTs provide invalid confidence se-
quences for N-of-1 trials. Our proposed approach,
however, results in valid confidence sequences.

This contribution adds to the literature on interim
analysis and anytime-valid inference, with a specific
focus on N-of-1 trials. Our proposed estimands allow
traditional N-of-1 trials to make use of our developed
methodology, and allow participants of digital N-of-1
trials to start looking at the results while the trial
is ongoing. There is a high need for a user-friendly
solution that allows peeking, and we expect that this
will enable the further widespread use of N-of-1 trials.

As some concrete examples, we consider two stud-
ies that have recently been conducted using the
StudyU platform. In a first study run in a hos-
pital setting in Brisbane, Australia, patients de-
signed their personalized trial by selecting their non-
pharmacological interventions of interest and tested
their effect on reducing their chronic pain. The de-
fault study design was 2 weeks baseline, 6 weeks in-
terventions, followed by 2 or more weeks of baseline
assessments. There was a large wish of study partici-
pants to obtain intermediate feedback on their results
and to stop the trial as early as possible. In a follow-
up trial with the same population, we are planning to
implement anytime-valid inference to allow this fea-
ture. As a second example, students in Germany re-
cently ran a series of N-of-1 trials by similarly choos-
ing their own intervention of interest. They evalu-
ated the effect of non-pharmacological interventions
on sleep quality and designed a study in an ABAB
design with daily measurements over 1 month. With-
out separate sample size calculations for each person-
alized trial, the optimal study length was unclear and
most trials ended up not showing an effect of the in-
tervention, potentially because the studies were too
short. Implementing anytime-valid inference might
also be beneficial in this instance, allowing the study
to continue to run.

Follow-up work can evaluate our developed
methodology across a broader range of scenarios and
apply it to a clinical N-of-1 trial. Further, it can be
extended to population-level analyses of (adaptive)
series of N-of-1 trials.
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Appendix A. Proof of Lemma 1

The proof of Lemma 1 follows from classical results in
design-based causal inference and results in Appendix
A of Bojinov and Shephard (2019).

Proof [Lemma 1] Let g0(Ak,1) = 1 − g(Ak,1), 11 =
1(Ak,1 = 1), and 10 = 1(Ak,1 = 0). Then,

E(ψ̂k | Fk−1)

= E
(
11f(Yk,1:T )

g(Ak,1)
− 10f(Yk,1:T )

g0(Ak,1)
| Fk−1

)
=
g(Ak,1)Yk(āk−1, ak = 1)

g(Ak,1)

− g0(Ak,1)Yk(āk−1, ak = 0)

g0(Ak,1)

= Yk(āk−1, ak = 1)− Yk(āk−1, ak = 0)

= ψk(āk−1).

The second equality follows as Yk(āk) =
f(Yk,1(āk,1), . . . , Yk,T (āk,T )) and Yk(āk−1, ak =
1) = f(Yk,1(āk−1, 1), . . . , Yk,T (āk−1,1)). Therefore

we have that E(ψ̂k − ψk(āk−1)|Fk−1) = 0 and

E(|ψ̂k−ψk(āk−1)|) <∞. Note that the errors form a
martingale difference sequence, and are uncorrelated
through time. We now proceed to derive an upper
bound on the variance of the proposed estimator.
First, we derive the closed form expression for
Var(ψ̂k − ψk(āk−1) | Fk−1). Note that

Var(ψ̂k − ψk(āk−1) | Fk−1)

= E[(
f(Yk,1:T )

g(Ak,1)
(11 − g(Ak,1))

− f(Yk,1:T )

g0(Ak,1)
(10 − g0(Ak,1)))

2 | Fk−1]

= E[
(
f(Yk,1:T )

g(Ak,1)
(11 − g(Ak,1))

)2

︸ ︷︷ ︸
Term 1

+

(
f(Yk,1:T )

g0(Ak,1)
(10 − g0(Ak,1))

)2

︸ ︷︷ ︸
Term 2

− 2
f(Yk,1:T )

g(Ak,1)
(11 − g(Ak,1))

f(Yk,1:T )

g0(Ak,1)
(10 − g0(Ak,1))︸ ︷︷ ︸

Term 3

| Fk−1].

We look at each term separately. It follows that Term
1 equals

E[
(
f(Yk,1:T )

g(Ak,1)
(11 − g(Ak,1))

)2

| Fk−1]

=
Yk(āk−1, ak = 1)2

g(Ak,1)2
E[(11 − g(Ak,1))

2 | Fk−1]

=
Yk(āk−1, ak = 1)2

g(Ak,1)2
(g(Ak,1)− g(Ak,1)

2).

Similarly, we have that Term 2 equals

E

[(
f(Yk,1:T )

g0(Ak,1)
(10 − g0(Ak,1))

)2

| Fk−1

]

=
Yk(āk−1, ak = 0)2

g0(Ak,1)2
(g0(Ak,1)− g0(Ak,1)

2).

Finally, we obtain the Term 3, which is as follows:

E[(−2
f(Yk,1:T )

g(Ak,1)
(11 − g(Ak,1))

f(Yk,1:T )

g0(Ak,1)
(10 − g0(Ak,1))) | Fk−1]

= −2
Yk(āk−1, ak = 1)

g(Ak,1)

Yk(āk−1, ak = 0)

g0(Ak,1)

E[(11 − g(Ak,1))(10 − g0(Ak,1)) | Fk−1]

= 2Yk(āk−1, ak = 1)Yk(āk−1, ak = 0).

Combining all terms and using the fact that a2 +
b2 ≥ 2ab (where a = Yk(āk−1, ak = 1) and b =
Yk(āk−1, ak = 0), we obtain the following upper
bound on the variance:

Var(ψ̂k − ψk(āk−1) | Fk−1)

=
Yk(āk−1, ak = 1)2

g(Ak,1)2
(g(Ak,1)− g(Ak,1)

2)

+
Yk(āk−1, ak = 0)2

g0(Ak,1)2
(g0(Ak,1)− g0(Ak,1)

2)

+ 2Yk(āk−1, ak = 1)Yk(āk−1, ak = 0)

=
Yk(āk−1, ak = 1)2

g(Ak,1)
+
Yk(āk−1, ak = 0)2

g0(Ak,1)

− (Yk(āk−1, ak = 1)− Yk(āk−1, ak = 0))2

≤ Yk(āk−1, ak = 1)2

g(Ak,1)
+
Yk(āk−1, ak = 0)2

g0(Ak,1)
.

319



Anytime-valid inference in N-of-1 trials

Note that

E(σ̂2
k|Fk−1)

= E
(
11f(Yk,1:T )

2

g(Ak,1)2
+
10f(Yk,1:T )

2

g0(Ak,1)2
| Fk−1

)
=
g(Ak,1)Yk(āk−1, ak = 1)2

g(Ak,1)2

+
g0(Ak,1)Yk(āk−1, ak = 0)2

g0(Ak,1)2

=
Yk(āk−1, ak = 1)2

g(Ak,1)
+
Yk(āk−1, ak = 0)2

g0(Ak,1)
,

and it follows that Var(ψ̂k − ψk(āk−1) | Fk−1) ≤
E(σ̂2

k|Fk−1) = σ2
k.

Appendix B. Hájek estimator of the
AICE

In the following, we study statistical properties of the
Hájek estimator of the running average immediate
effect over treatment periods, i.e. the AICE.

Lemma 2 (Hájek estimator of the AICE)
Under Assumption 2, it follows that

E(ψ̃k
AICE − ψk

AICE|Fk−1) = 0

and

Var(ψ̃k
AICE − ψk

AICE|Fk−1) ≤ E(σ̃2
AICE|Fk−1).

Proof [Lemma 2] Let g0(Aj,1) = 1 − g(Aj,1), 11 =
1(Aj,1 = 1), and 10 = 1(Aj,1 = 0). Then,

E(ψ̃k
AICE | Fk−1)

= E(
∑k

j=1 11f(Yj,1:T )/g(Aj,1)∑k
j=1 11/g(Aj,1)

−
∑k

j=1 10f(Yj,1:T )/g
0(Aj,1)∑k

j=1 10/g0(Aj,1)
| Fk−1)

=

∑k
j=1 g(Aj,1)Yj(āj−1, aj = 1)/g(Aj,1)∑k

j=1 g(Aj,1)/g(Aj,1)

−
∑k

j=1 g
0(Aj,1)Yj(āj−1, aj = 0)/g0(Aj,1)∑k

j=1 g
0(Aj,1)/g0(Aj,1)

=
1

k

k∑
j=1

(Yj(āj−1, aj = 1)− Yj(āj−1, aj = 0))

= ψk
AICE.

Obtaining the upper bound on the variance estimator
tracks derivation already presented in the proof of
Lemma 1, therefore we omit the details. It follows
that

Var(ψ̃k
AICE − ψk

AICE|Fk−1)

=

∑k
j=1 Yj(āj−1, ak = 1)2/g(Aj,1)∑k

j=1 1/g(Aj,1)

+

∑k
j=1 Yj(āj−1, ak = 0)2/g0(Aj,1)∑k

j=1 1/g
0(Aj,1)

− (

k∑
j=1

Yj(āj−1, ak = 1)−
k∑

j=1

Yj(āj−1, ak = 0))2

≤
∑k

j=1 Yj(āj−1, ak = 1)2/g(Aj,1)∑k
j=1 1/g(Aj,1)

+

∑k
j=1 Yj(āj−1, ak = 0)2/g0(Aj,1)∑k

j=1 1/g
0(Aj,1)

.

Since we have that

E(σ̃2
AICE|Fk−1)

= E(
∑k

j=1 11f(Yj,1:T )
2/g(Aj,1)

2∑k
j=1 11/g(Aj,1)2

−
∑k

j=1 10f(Yj,1:T )
2/g0(Aj,1)

2∑k
j=1 10/g0(Aj,1)2

| Fk−1)

=

∑k
j=1 Yj(āj−1, ak = 1)2/g(Aj,1)∑k

j=1 1/g(Aj,1)

+

∑k
j=1 Yj(āj−1, ak = 0)2/g0(Aj,1)∑k

j=1 1/g
0(Aj,1)

,

it follows that Var(ψ̃k
AICE − ψk

AICE|Fk−1) ≤
E(σ̃2

AICE|Fk−1).

Appendix C. Proof of Theorem 1

The proof of Theorem 1 can be obtained as in Ham
et al. (2022) (Theorem 5.2) and Waudby-Smith et al.
(2023) (Theorem 2.3), adapted to the N-of-1 setting
and proposed estimators. First, we state the Ville’s
maximal inequality in Lemma 3, as it is used in the
proof (Ville, 1939). We also use Theorem 4.4 of
Strassen (1967), adapted to our setting (same adap-
tation as in Ham et al. (2022)).
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Lemma 3 (Ville’s Maximal Inequality) Let
Mt denote a non-negative martingale with respect to
a filtration F . Then,

P (∃t ∈ N0 :Mt ≥
1

α
) ≤ αM0.

ForM0 = 1, we obtain the uniform type-1 error guar-
antee.

Proof [Theorem 1] Let Xk denote an i.i.d standard
normal random variable. As in Robbins (1970), we
construct a non-negative martingale with initial value
one for any λ ∈ R with respect to the filtration:

Mk(λ) := exp

 k∑
j=1

(λσjXj −
λ2σ2

j

2
)

,
where σ2

j is the true variance σ2
j :=

Yj(āj−1,1T )2

g(Aj,1)
+

Yj(āj−1,0T )2

1−g(Aj,1)
. By Robbins (1970), for any probabil-

ity distribution F (λ) on R,
∫
λ
Mk(λ)dF (λ) is still a

non-negative martingale with initial value one. For a
normal mixing distribution with mean λ and variance
η2, the resulting martingale Mk is written as

1

η
√
2π

∫
λ

exp

 k∑
j=1

(λσjXj −
λ2σ2

j

2
)

 exp

(
−λ2

2η2

)
dλ.

Let Zk =
∑k

j=1 σjXj and σ̄2
k = 1/k

∑k
j=1 σ

2
j . Then,

Mk =
1

η
√
2π

∫
λ

exp

(
λZk − kλ2σ̄2

k

2

)
exp

(
−λ2

2η2

)
dλ

=
1

η
√
2π

∫
λ

exp

(
2η2λZk − λ2(1 + kη2σ̄2

k)

2η2

)
dλ

=
1

η
√
2π

∫
λ

exp

(
2λb− λ2a

2η2

)
,

where a = kη2σ̄2
k + 1 and b = η2Zk. We proceed

to complete the square by adding and subtracting
(b/a)2:

exp

(
2λb− λ2a

2η2

)
= exp

(
b

η2
λ− a

2η2
λ2
)

= exp

(
− a

2η2
(λ2 − 2b

a
λ)

)
= exp

(
− a

2η2
(λ− b

a
)2 +

(
b2

2aη2

))
.

Substituting back into Mk, and replacing a and b for
their values, we have that

Mk =
1√

2πη2/a

∫
λ

exp

(
− a

2η2
(λ− b

a
)2
)
dλ

1√
a
exp

(
b2

2aη2

)
=

1√
a
exp

(
b2

2aη2

)
=

1√
kη2σ̄2

k + 1
exp

(
η2Z2

k

2(kη2σ̄2
k + 1)

)
.

By Robbins (1970), we know that Mk is a non-
negative martingale. Applying Lemma 3, it follows
that

P (∀k ≥ 1,Mk <
1

α
) ≥ 1− α.

By basic algebra manipulation, we can show that
1√

kη2σ̄2
k+1

exp
(

η2Z2
k

2(kη2σ̄2
k+1)

)
< 1

α simplifies to

P

(
∀k ≥ 1,

∣∣∣∣1kZk

∣∣∣∣ < Ck

)
≥ 1− α, (6)

where Ck =

√
2(kη2σ̄2

k+1)

k2η2 log

(√
kη2σ̄2

k+1

α

)
.

Let uk = ψ̂k − ψk(āk−1). In Appendix A, we dis-

cuss that E(ψ̂k − ψk(āk−1)|Fk−1) = 0 and E(|ψ̂k −
ψk(āk−1)|) < ∞, so (uk)k is a martingale difference
sequence with respect to Fk−1 (and thus, uncorre-
lated through time). We note that the same ap-
plies for martingale difference sequence formed by
the Hájek estimator, as shown in Lemma 2. We
proceed to utilize the strong approximation theo-
rem from Strassen (1967) (Theorem 4.4), which ap-
plies to martingale difference sequences of the form
E(Xn|σ(X1, . . . , Xn−1)) = 0 (notation as in Strassen
(1967)). In the Appendix D, Ham et al. (2022) edit
Theorem 4.4 in order to accommodate martingale dif-
ference sequences we also have, of the form uk. The
edited formulation of Theorem 4.4 follows due to As-
sumption 3, and results in the following approxima-
tion:

1

k

k∑
j=1

uj =
1

k

k∑
j=1

σjXj + o

(
S̃
3/8
k log S̃k

k

)
a.s.
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where we remind that S̃k =
∑k

j=1 σ
2
j . Substituting

back into Equation (6), we have that

P (∀k ≥ 1,

∣∣∣∣∣∣1k
k∑

j=1

uj

∣∣∣∣∣∣ < Ck + o

(
S̃
3/8
k log S̃k

k

)
) ≥ 1− α.

(7)

Note that Equation (7) is the non-asymptotic confi-
dence width, denoted as (I ′k)

K
k=1 in Definition 4. By

Assumption 4, the asymptotic confidence width is

P

∀k ≥ 1,

∣∣∣∣∣∣1k
k∑

j=1

uj

∣∣∣∣∣∣ < Ck

 ≥ 1− α. (8)

Also by Assumption 4, the (1 − α) asymptotic con-
fidence sequence for the target parameter sequence
(ψk

AICE)k is then

1

k

k∑
j=1

ψ̂j ±

√√√√2(kη2σ̄2
k + 1)

k2η2
log

(√
kη2σ̄2

k + 1

α

)
. (9)

Finally, note that the (1 − α) asymptotic confi-
dence sequence in Equation (9) relies on the true
variance. In step 3 of Appendix D in Ham et al.
(2022) and Appendix A.2 of Waudby-Smith et al.
(2023), they show that under further assumption

of σ̃2
k

a.s.−−→ σ̄2
k, with σ̃2

k = 1/k
∑k

j=1 σ̂
2
j , we have

that Ck =

√
2(kη2σ̃2

k+1)

k2η2 log

(√
kη2σ̃2

k+1

α

)
. We in-

clude the argument for clarity in what follows. Let
σ̄2
k − σ̃2

k = o(σ̄2
k). Then we have that

√√√√2(kη2σ̄2
k + 1)

k2η2
log

(√
kη2σ̄2

k + 1

α

)

=

√√√√2(kη2(σ̃2
k + o(σ̄2

k)) + 1)

k2η2
log

(√
kη2(σ̃2

k + o(σ̄2
k)) + 1

α

)

=

√
kη2(σ̃2

k + o(σ̄2
k)) + 1)

k2η2
log

(
kη2(σ̃2

k + o(σ̄2
k)) + 1

α2

)

=

√√√√√
(
kη2σ̃2

k + 1

k2η2
+ o(σ̄2

k/k)

)
︸ ︷︷ ︸

Term 1

log

(
kη2σ̃2

k + o(kσ̄2
k) + 1

α2

)
︸ ︷︷ ︸

Term 2

.

We focus on Term 2 in the rest of the proof.

log

(
kη2σ̃2

k + o(kσ̄2
k) + 1

α2

)
= log

(
kη2σ̃2

k + 1

α2

)
+ log (1 + o(1))

= log

(
kη2σ̃2

k + 1

α2

)
+ o(1).

Therefore, valid (1 − α) asymptotic confidence se-
quence for (ψk

AICE)k is

1

k

k∑
j=1

ψ̂j±
1

k

√
η2
∑k

j=1 σ̂
2
j + 1

η2
log

(
η2
∑k

j=1 σ̂
2
j + 1

α2

)
.

Appendix D. Supplementary Figures
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Figure 4: Anytime valid confidence intervals of AICE
obtained by IPTW (left) and stabilized
IPTW (right), respectively, in a single run
at α = 0.05. The dashed line represents
the zero (null) line. Top row: unrestricted
randomization scheme. Bottom row: pair-
wise randomization scheme.
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