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Abstract

Tensor factorization has received increasing in-
terest due to its intrinsic ability to capture
latent factors in multi-dimensional data with
many applications including Electronic Health
Records (EHR) mining. PARAFAC2 and its
variants have been proposed to address irregu-
lar tensors where one of the tensor modes is not
aligned, e.g., different patients in EHRs may
have different length of records. PARAFAC?2
has been successfully applied to EHRs for ex-
tracting meaningful medical concepts (pheno-
types). Despite recent advancements, current
models’ predictability and interpretability are
not satisfactory, which limits its utility for
downstream analysis. In this paper, we pro-
pose MULTIPAR: a supervised irregular tensor
factorization with multi-task learning for com-
putational phenotyping. MULTIPAR is flexible
to incorporate both static (e.g. in-hospital mor-
tality prediction) and continuous or dynamic
(e.g. the need for ventilation) tasks. By su-
pervising the tensor factorization with down-
stream prediction tasks and leveraging infor-
mation from multiple related predictive tasks,
MULTIPAR can yield not only more meaning-
ful phenotypes but also better predictive per-
formance for downstream tasks. We conduct
extensive experiments on two real-world tem-
poral EHR datasets to demonstrate that MUL-
TIPAR is scalable and achieves better tensor fit

with more meaningful subgroups and stronger
predictive performance compared to existing
state-of-the-art methods. The implementation
of MULTIPAR is available'.

Keywords: tensor factorization, electronic
health records, PARAFAC2, multi-task learn-
ing

1. Introduction

Tensor factorization has received increasing inter-
est due to its intrinsic ability to capture the multi-
dimensional structure in the data. It has a wide
range of applications including social network anal-
ysis Spiegel et al. (2011); Fernandes et al. (2021),
health data mining Wang et al. (2015a); Afshar et al.
(2019); Ren et al. (2020); Yin et al. (2020); Afshar
et al. (2018); Yi et al. (2021); Meyers et al. (2022),
recommender systems Karatzoglou et al. (2010), and
signal processing Sidiropoulos et al. (2016). Canoni-
cal Polyadic (CP) Carroll and Chang (1970); Harsh-
man (1970), Tucker Snyder et al. (1979), and ten-
sor singular value decomposition (SVD) Kilmer et al.
(2013); Kilmer and Martin (2011) are popular regular
tensor factorization methods, where each mode of the
tensor has a fixed size. However, in real-world cases,
different people in recommender systems or patients
in health data may have different lengths of records,
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which can not be handled by regular tensor factoriza-
tion methods. PARAFAC2 Harshman (1972); Kiers
et al. (1999) has been proposed for factorizing ir-
regular tensors, where one of the mode sizes is not
fixed. We introduce our motivating application for
Electronic Health Records (EHRs) mining below for
irregular tensor factorization.

EHRs are patient-centered records collected from
a variety of institutions, hospitals, and pharmaceu-
tical companies over a long period of time. EHR
mining can significantly improve the ability to di-
agnose diseases and reduce or even prevent medi-
cal errors, thereby improving patient outcomes Ya-
dav et al. (2017). However, directly using the raw,
massive, high-dimensional, and longitudinal EHRs is
challenging. For example, a single disease can consist
of several heterogeneous subgroups yet be coded with
the same diagnosis category, e.g., hypertension can
be divided into hypertension resolver, hypertension,
and prehypertension subgroups. Thus, researchers
and healthcare practitioners seek to identify pheno-
types, or disease subgroups, to better understand dif-
ferences in biological mechanisms and treatment re-
sponses, which can lead to more effective and precise
treatment.

The tensor factorization technique has been widely
used to capture the multi-dimensional structure in
EHRs for computational phenotyping Ho et al.
(2014b,a); Wang et al. (2015a); Afshar et al. (2019);
Ren et al. (2020); Yin et al. (2020); Afshar et al.
(2018). Compared to traditional clustering-based ap-
proaches, tensor factorization can mine concise and
potentially more interpretable latent information be-
tween multiple attributes (e.g., diagnosis and medi-
cations) in addition to clustering patients into sub-
groups. One key characteristic of EHR data is that
different patients have different visit lengths, varying
disease states, and varying time gaps between con-
secutive visits. Hence, PARAFAC2 has been applied
to extract phenotypes from EHR data.

As shown in Figure 1, the EHR data can be repre-
sented as an irregular tensor where each slice Xy, rep-
resents the information of patient k with Iy, visits and
J medical features. Each patient record can be cap-
tured using a binary, numeric, or count matrix Xy,
where each matrix value represents the measurement
associated with a particular feature for a particular
visit. Figure 1 also illustrates the computational phe-
notyping process using PARAFAC2. Each slice of the
irregular tensor X will be factorized by PARAFAC2
to three factor matrices. Uy, € RI**® captures tem-
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Figure 1: Overview of MULTIPAR on MIMIC-
EXTRACT dataset

poral evolution of the R phenotypes for patient k.
V € R7*E contains the R phenotypes. Each row
of the V' matrix represents one latent and potentially
interpretable phenotype. Each medical feature is rep-
resented with a weight indicating its contribution to
the phenotype in each row. S;, € REXE is a diagonal
matrix with the importance membership of patient k
in each one of the R phenotypes.

Various works have proposed improvements to the
basic PARAFAC2 model. SPARTan Perros et al.
(2017) modified the MTTKRP calculation order of
PARAFAC?2 to handle large and sparse data. COPA
Afshar et al. (2018) further introduced various con-
straints to improve the interpretability of the fac-
tor matrices for more meaningful phenotype extrac-
tion. REPAIR Ren et al. (2020) and LogPar Yin
et al. (2020) added a low-rankness constraint to im-
prove PARAFAC?2 robustness to missing data. De-
spite these advances, current PARAFAC2 models are
completely unsupervised and only attempt to learn
the latent factors to best recover the original obser-
vations. Some works have considered using the latent
factors as features for downstream prediction tasks
(e.g., in-hospital mortality or hospital readmission
prediction using extracted phenotypes), and achieved
limited performance gain than using the raw data as
features. This is because the tensor factorization does
not take advantage of the downstream labels. The ex-
tracted factors, while interpretable, may not be the
most representative or discriminating for downstream
prediction tasks. In addition, current work Afshar
et al. (2018); Yin et al. (2020); Ren et al. (2020);
Perros et al. (2017); Kim et al. (2017b) using ten-
sor factorization for predictive tasks only consider a
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single task (e.g., in-hospital mortality prediction) and
ignore useful information from other prediction tasks.

To address these limitations, we propose MULTI-
PAR: a supervised irregular tensor factorization with
multi-task learning for both phenotype extraction
and predictive learning, as shown in Figure 1. MUL-
TIPAR jointly optimizes the tensor factorization and
downstream prediction together, so that the factor-
ization can be “supervised” or informed by the pre-
dictive tasks. In addition, we use a multi-task frame-
work to leverage information from multiple predictive
tasks. It provides flexibility to incorporate both one-
time or static (e.g. in-hospital mortality prediction)
and continuously changing or dynamic (e.g. the need
for ventilation) outcomes. To achieve this, the tem-
poral features from U matrix are used for dynamic
prediction and the features from S matrix are used
for static prediction, as shown in Figure 1.

Our main hypothesis is that such a supervised
multi-task framework can yield not only more mean-
ingful phenotypes but also better predictive accuracy
than performing tensor factorization independently
followed by predictive learning using the phenotypes
extracted from the tensor. In addition, by sharing
the representation across tasks, the learned pheno-
types can generalize better for each task. Our em-
pirical studies on two large publicly available EHR
datasets with representative predictive tasks (both
static and dynamic) and different models (e.g. logis-
tic regression and recurrent neural networks) verified
this hypothesis.

In summary, we list our main contributions below:

1. We propose a supervised framework for
PARAFAC2 tensor factorization and down-
stream prediction tasks such that the factor-
ization can be “supervised” or informed by the
predictive tasks.

2. We use a multi-task framework to leverage infor-
mation from multiple predictive tasks and pro-
vide flexibility to incorporate both static and dy-
namic tasks and different models (e.g. logistic
regression and recurrent neural networks).

3. We introduce a novel unified and dynamic weight
selection method for weighing the tensor factor-
ization and predictive tasks during the optimiza-
tion process, where the tensor factorization is
considered as one task, to achieve an overall op-
timized result.

4. We evaluate MULTIPAR’s tensor reconstruc-
tion quality, predictability, scalability, and in-
terpretability on two real-world temporal EHR
datasets through a set of experiments, which
verify MULTIPAR can identify more meaning-
ful subgroups and yield stronger predictive per-
formance compared to existing state-of-the-art
approaches.

2. Background

2.1. Irregular Tensor Factorization

Definition 1 (Original PARAFAC2 model)

K
. 1
argmin Z §|\Xk —UiSk V|7,
{Ush{S:}, V.

subject to: Uy = QkH,Q,;'—Qk = I, Sy is diagonal.
where Qi € R ¥ to be orthogonal, I, € REXE s
the identity matriz and R is the target rank of the
PARAFAC2 decomposition.

Given a tensor representing the EHR data as in
Figure 1 where each slice X}, represents the informa-
tion of patient k with Iy, visits and J medical features,
PARAFAC2 decomposes the irregular tensor X into
the factorization matrices which have the following
interpretations:

e U, € RI**® represents the temporal trajectory
of Iy, clinical visits in each one of the R pheno-

types.

e V € R/*E represents the relationship between
medical features and phenotypes.

e S, € REXE represents the relationship between
patients and phenotypes. Each column in S rep-
resents one phenotype, and if a patient has the
highest weight in a specific phenotype, it means
the patient is mostly associated with or exhibits
a particular phenotype.

2.2. Supervised and Multi-task learning
Framework

Supervision can enhance traditional unsupervised
tasks such as clustering for a wide range of appli-
cations, e.g., graph learning Wang et al. (2015b),
pattern classification Liu et al. (2018b). Wang et
al. proposed a supervised feature extraction frame-
work using discriminative clustering to improve the

500



MULTIPAR

graph learning model’s clustering accuracy Wang
et al. (2015b). Liu et al. proposed a supervised
minimum similarity projection framework using the
lowest correlation representation to improve the pat-
tern model’s classification accuracy Liu et al. (2018Db).
Over the past years, multi-task learning (MTL)
Zhang and Yang (2018, 2017) has attracted much
attention in the artificial intelligence and machine
learning communities. Traditional machine learning
frameworks solve a single learning task each time,
which ignores commonalities and differences across
different tasks. MTL aims to learn multiple related
tasks jointly so that the knowledge contained in one
task can be leveraged by other tasks, with the hope
of improving generalization performance by learn-
ing a shared representation Baxter (2000); Thrun
(1999). MTL has been used successfully across all
applications, from natural language processing Col-
lobert and Weston (2008); Tsoumakas and Katakis
(2009) and speech recognition Deng et al. (2013);
Chen and Mak (2015) to computer vision Girshick
(2015) and drug discovery Ramsundar et al. (2015);
Harutyunyan et al. (2019). However, no current work
has considered improving the predictability of tensor
factorization using MTL.

3. Proposed Method

In this section, we present the MULTIPAR model in
the context of EHR phenotyping and its optimization.

3.1. Problem Formulation

We formalize the objective function for the MULTI-
PAR model in Definition 2. Given an irregular ten-
sor X, our goal is to factorize it into Uy, Sy and
V' using supervised irregular tensor factorization to
improve predictability and interpretability. Hence
our objective function consists of several components.
The PARAFAC2 loss for X ensures the reconstructed
tensor closely approximates the original tensor. The
static outcomes loss and dynamic outcomes loss are
to ensure the phenotypes are supervised by the down-
stream prediction tasks, including both static and dy-
namic tasks. Static tasks have one-time or static la-
bels, and dynamic tasks have continuously changing
or temporal dynamic labels for each time stamp. An
approximate uniqueness constraint ensures unique-
ness of the solution of the tensor factorization. Fi-
nally, for EHR phenotype discovery, various con-
straints can be imposed on the factorization matrices

to yield meaningful and high-interpretability pheno-
types. The MULTIPAR model accommodates such
interpretability-purposed constraints including: non-
negativity for Sy, sparsity for V. We explain each of
the loss components and constraints in detail below.

Definition 2 (MULTIPAR objective function)

PARAFAC?2 loss for X

K
argmin Z Z p1L1 (X, {UESEV  Yij)
Qk7H7Sk:V k=1 (i,j)EQ

dynamic outcomes loss

—_——
p3L3(Uy)

static outcomes loss

+  p2Llo(Sk) +

non-negativity constraint

approzximate uniqueness constraint

K
+ al[US U, —1|7) + > ei(Sk)
k=1

sparsity constraint

+ eV
(1)

wherek =1,..., K, H,{S},I € REXE_ ¢, is the non-
negativity constraint, and co is the sparsity penalty.

PARAFAC2 loss. The PARAFAC2 tensor fac-
torization loss can ensure the reconstructed tensor
closely approximates the original tensor. To accom-
modate different data types, the PARAFAC2 loss can
be any smooth loss function, e.g., Least square loss,
Poisson loss Hong et al. (2020) and Rayleigh Loss
Hong et al. (2020).

Static outcomes loss. Previous PARAFAC2 mod-
els separate the PARAFAC2 training process and
downstream prediction process. For example, in-
hospital mortality prediction accuracy may be used
as the metric to measure the predictability of the phe-
notypes extracted by the model. In the MULTIPAR
model, we optimize the downstream prediction tasks
and tensor factorization together by adding the pre-
diction losses of the prediction tasks to the objec-
tive function. If the prediction task has one label
per patient, we denote it as a static outcome pre-
diction task. For illustrative purposes, we use a lo-
gistic regression model on the S matrix to predict
static outcome tasks, and add the cross-entropy loss
to the objective function. In fact, any differentiable
loss function (e.g., square loss, exponential loss) can
be incorporated in the objective function.

Dynamic outcomes loss. Different from static out-
comes, dynamic outcomes have labels at each times-
tamp. For example, predicting whether a patient will
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be on a ventilator at a given future time can be used
to measure the model’s predictability. For illustra-
tive purposes, we use the long short-term memory
(LSTM) model on the U matrix to predict each pa-
tient’s dynamic outcome labels, and add the loss of
the LSTM model to the objective function. Similar to
the static outcome loss, other models (e.g., gated re-
current units, vanilla recurrent neural networks) and
their associated loss functions can be incorporated
into the objective function.

Approximate uniqueness constraint. The opti-
mization of the original PARAFAC2 model adopts
the alternating direction method of multipliers (AO-
ADMM) Roald et al. (2021), which can not make
full use of the parallel computation feature of GPUs.
To adopt mainstream deep learning frameworks like
PyTorch and TensorFlow, we use a stochastic gra-
dient descent (SGD) based optimization approach.
The uniqueness constraint in the original PARAFAC2
model is Q,;'—Qk = I. Similar to LogPar Yin et al.
(2020), to optimize Qy, we relax the uniqueness con-
straint to || Q) Qx — I||%.

Non-negativity on S. The diagonal matrix S in-
dicates the importance of membership of patient &
in each one of the R phenotypes. Since only non-
negative membership values make sense, we zero out
the negative values in S.

Sparsity on V. The V matrix captures the associa-
tion between a medical feature and a particular phe-
notype. In order to improve interpretability, we in-
troduce a sparsity constraint on the V matrix. [y and
Iy norms are two popular sparsity regularization tech-
niques. The [y regularization norm, or hard thresh-
olding, will cap the number of non-zero values in a
matrix. The [; regularization norm, or soft threshold-
ing, will shrink matrix values towards zero. As hard
thresholding is a non-convex optimization problem
that can not be optimized by the SGD framework,
we adopt soft thresholding, which is convex and can
be migrated into the SGD optimization framework.

SDW: Smooth dynamic weight selection. Our
objective function consists of several main losses from
the tensor factorization and the multiple predictive
tasks. Each of these losses is associated with a weight.
Numerous deep learning applications benefit from
MTL with multiple regression and classification ob-
jectives. Yet the performance of MTL is strongly de-
pendent on the relative weighting between each task’s
loss. Hence a key challenge for our framework is how
to tune the weights for different loss terms and tasks.

We introduce a novel unified and dynamic weight se-
lection method for weighing the tensor factorization
and predictive tasks, where the tensor factorization
is considered as one task, to achieve an overall opti-
mized result.

The DWA weight selection Liu et al. (2018a) was
proposed to dynamically change the task weights at
each epoch by considering the rate of change of the
loss over the epoch, however, the noisy nature of
SGD weights can cause drastic fluctuations in the
task weights between epochs. This can cause oscillat-
ing behavior between the various tasks and impedes
convergence of the algorithm. Therefore, we propose
a novel smooth dynamic weight selection method to
choose the weight for each task. While Definition
2 shows p; as the weight for tensor loss, ps and p3
as the accumulative weights for static and dynamic
tasks respectively, here we use Weight,(t) to denote
the weight for each individual task n in epoch t. We
first calculate the relative descending rate of each task
loss and denote it as w, (¢t — 1). t here represents an
epoch index:

Loss,(t — 1)

wn(t=1) = Loss,(t —2)

(2)

We then calculate the weight for each task using
the following equation:

exp(35L, (walt — §)/C)/m)

Sty exp(3y (wilt = 4)/C)/m)
(3)
Intuitively, each task weight is dynamically up-
dated based on a “smoothed” descending rate of the
loss, the higher the rate (i.e. the more the task con-
tributes to the optimization objective), the higher the
weight for the task in the next epoch. We use C
to control the softness distribution between different
tasks. If C is large enough, the weight for each task
will be uniform. Different from Hinton et al. (2015),
we introduce m, the weight update window size. The
task weights are updated as an average over several
epochs from iteration ¢ to t +m (instead of using one
iteration). The main rationale for this smoothing is
to reduce the SGD update uncertainty and training
data selection randomness. Finally, a softmax oper-
ator, which is multiplied by the number of tasks IV,
ensures the sum of the weight equals N. For t = 1,
we initialize all the weights to 1.

Weight,(t) :== N
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Algorithm 1 Optimization Framework for MULTI-
PAR
Require: Input tensor X; Model parameters pi-ps,
01-02; Interpretability constraint types c1, co; Ini-
tial rank estimation R.
1: while Not reach convergence criteria do
Update {Uy} using eq.(5) by SGD;
Update {Q} using eq.(6) by SGD;
Update H using eq.(7) by SGD;
Update Sy, using eq.(8) by Proximal/Projected
SGD;
6:  Update V using eq.(10) by Proximal /Projected
SGD;
7. Calculate weight for each prediction task using
eq. 2 and eq.3 by SDW;
8: end while
Ensure: Phenotype

{QrH}, {Sk}, V.

AN

factor matrices

(U} =

3.2. Optimization

To solve the optimization problem in Eq. (1), MUL-
TIPAR follows an alternative optimization strategy
where we optimize one variable individually with all
other variables fixed. According to whether the sub-
problem is differentiable, we group the variables into
two groups: pure smooth subproblems which can be
directly solved by SGD, and proximal mapping-based
smooth subproblems Parikh and Boyd (2014). The
proximal map is a key building block for optimiz-
ing nonsmooth regularized objective functions, e.g.,
the || - ||1 ¢1-norm regularization function for induc-
ing sparsity and || - ||« nuclear norm regularization for
inducing low-rankness. We present the optimization
details and convergence analysis in the appendix 6.1.

4. Experiment
4.1. Dataset

We use two real-world datasets to evaluate MULTI-
PAR in terms of its reconstruction quality, predictive
performance, interpretability, and scalability.

eICU? Pollard et al. (2018): The eICU Collabo-
rative Research Database is a freely available multi-
center database for critical care research. It con-
tains variables used to calculate the Acute Physiology
Score (APS) III for patients. We select 202 diagnosis
codes that have the highest frequency, as in Kim et al.

2. https://eicu-crd.mit.edu

(2017a). The resulting number of unique ICU visits is
145426. The maximum number of observations for a
patient is 215. We select three static outcome predic-
tion tasks, including intubated prediction, ventilation
prediction, and dialysis prediction. The ventilation
prediction here is a static prediction task indicating
whether a patient needs to be ventilated at the time
of the worst respiratory rate, we will use “vent-res”
as the name for this task.

MIMIC-EXTRACT? Wang et al. (2020):
MIMIC-Extract is an open-source pipeline for trans-
forming raw EHR data in MIMIC-III into data frames
that are directly usable in common machine learning
pipelines. We use the vitals labs mean table, which
contains 34,472 patients with 104 features (Vital lab
codes). The maximum number of observations for
a patient is 240. We further normalize the data to
[0,1]. We select three static outcome prediction tasks,
including in-hospital mortality prediction, readmis-
sion prediction, ICU mortality prediction, and one
dynamic outcome prediction task, which is ventila-
tion prediction for every visit.

4.2. Evaluation Metrics

In order to test the tensor reconstruction quality of
MULTIPAR model, we adopt the FIT € (—o0,1]
score Bro et al. (1999) as the quality measure (the
higher the better):

_ Zf:l [Xr — UpSi VT2
— .
> k= 1Xkl?

The original tensor, denoted as {Xy}, serves as the
ground truth. Uy, S,V are factor matrices after the
MULTIPAR tensor factorization.

We evaluate the derived phenotypes’ predictabil-
ity power using the PR-AUC score of the prediction
tasks. We split the data with a proportion of 8:2
as training and test sets and use PR-AUC score to
evaluate the predictive power.

FIT =1

(4)

4.3. Methods for Comparison

We compare MULTIPAR with three baseline meth-
ods: SPARTan, COPA (two state-of-the-art irregu-
lar tensor factorization methods) and singlePAR (a
single-task version of MULTIPAR).

e SPARTan Perros et al. (2017) - scalable
PARAFAC2: A tensor factorization method

3. https://github.com/MLforHealth/MIMIC_Extract/

503


https://eicu-crd.mit.edu
https://github.com/MLforHealth/MIMIC_Extract/

MULTIPAR

007
2
PR EEE o'y 1
o Y v .
2@ A b
o 4' A 0L ) X
05fF = = = = 9 EY LXK - - - - A
0.4 —e—In-hospital
Readmission
0.3 -A-icu
Ventilation

0.20.30.40.50.60.70.80.9 1 1.11.21.31.41.51.61.71.81.9 2
C

Figure 2: PR-AUC score using different C

for fitting large and sparse irregular tensor data.
It only considers the tensor reconstruction loss.

e COPA Afshar et al. (2018) - scal-
able PARAFAC2 with additional reg-
ularizations: An irregular tensor factor-
ization method that introduces various con-
straints/regularizations to improve the inter-
pretability of the factor matrices. For both
SPARTan and COPA, the extracted phenotypes
are used for training the models for the down-
stream predictive tasks.

e SinglePAR - supervised single task
PARAFAC2: The supervised irregular tensor
factorization with single prediction task (single
task version of MULTIPAR). The weight of
tensor factorization and prediction tasks are
also tuned using SDW.

4.4. Implementation Details

The multi-task dynamic weight selection of MUL-
TIPAR has two hyper-parameters that need to be
tuned. C' controls the softness distribution between
different tasks, and m is the weight update window
size. In order to find the best C, we vary C from 0.2 to
2, and compare the prediction tasks’ PR-AUC scores
on different dataset under different ranks. Figure 2
shows the MIMIC-EXTRACT dataset result when
rank = 50 and m is fixed to 5. The dashed line is the
PR-AUC when all the tasks have equal weight. C' is
set to —= in the remaining experiments to achieve
the best result.

We vary the weight update window size m from 1
to 10, and compare the convergence speed and PR-
AUC score. We fix C = \/%7 and plot the tensor
loss in each epoch and set the maximum number of

m=1 m=3 m=5 m=8 m=10
In-hospital mortality prediction task 0.740 0.789 0.854 0.783 0.768
Readmission prediction task 0.872  0.893 0.902 0.892 0.853
ICU mortality prediction task 0.626 0.638 0.635 0.583 0.571
Ventilation prediction task 0.600 0.605 0.603 0.591 0.587
Convergence epoch 200 187 98 110 150

Table 1: Experiment result of PR-AUC and conver-
gence epochs when m varies

epochs to be 200. When m = 1, it does not converge
after 200 epochs. When m = 5, it requires the least
number of epochs to converge (when the total loss
plateaus). Although when m = 3, some prediction
tasks” PR-AUC scores are slightly better than m = 5,
it requires too many epochs to converge. Thus, in our
experiments below, we adopt m = 5. The result is
shown in Table 1.

4.5. Experiment Result

Tensor reconstruction quality analysis. For the
following experiments on tensor reconstruction qual-
ity, we run each method for 5 different random ini-
tializations and report the average F'IT. In addition,
we evaluate model completion performance under dif-
ferent target ranks, R, from 10 to 60, and run 200
epochs.

=y o
E-—a--%
04 —— MULTIPAR

-A-COPA
SinglePAR-intubated

SinglePAR-ventiation 03 SinglePAR-venti res
10 20 £ 40 50 60 SingloPAR dialysis
Rank 10 20 30 40 50 60

“ EA)I(R';[;%CT (b) eICU

Figure 3: FIT score on MIMIC-EXTRACT and eICU
dataset

First, we compare MULTIPAR’s FIT with the
baseline models on two datasets shown in Figure 3.
MULTIPAR optimizes all prediction tasks and ten-
sor factorization together. SPARTan and COPA first
finish the tensor factorization, and then predict the
downstream prediction tasks. SinglePAR optimizes
the evaluated task and tensor factorization together.
As Figure 3(a) and 3(b) shows, MULTIPAR outper-
forms all baseline methods on all datasets. In par-
ticular, MULTIPAR achieves a FIT score of 0.97 and
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0.71 on MIMIC-EXTRACT and eICU respectively, a
13% and 40% relative improvement when compared
to the best baseline model SinglePAR, which shows
the strong tensor reconstruction ability of MULTI-
PAR, thanks to the “supervision” of the multiple pre-
dictive tasks. COPA performs better than SPARTan
because it introduces various regularizations on the
factor matrices, which can slightly improve the ten-
sor reconstruction ability.

SinglePAR performs better than SPARTan and
COPA on most of the ranks but is left behind COPA
on large ranks. SinglePAR jointly optimizes predic-
tion task and tensor factorization together. We can
see that certain tasks benefit the tensor FIT while
others may guide the tensor factorization into a sub-
optimal direction and degrade the tensor reconstruc-
tion quality. Although MULTIPAR model is super-
vised, thanks to the MTL, it can use all of the avail-
able outcomes across the different tasks to learn gen-
eralized representations of the data that are useful for
tensor reconstruction.

e
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Figure 4: PR-AUC for prediction tasks on MIMIC-
EXTRACT

Predictability analysis. A logistic regression
model is trained on the patient importance member-
ship matrix S for static outcome prediction tasks
and an LSTM model is trained on the temporal evolu-
tion matrix Uy for dynamic outcome prediction task.
LSTM is a variant of the recurrent neural network
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Figure 5: PR-AUC for prediction tasks on eICU
dataset

(RNN) that mitigates the gradient vanishing prob-
lem in traditional RNNs.

In the MIMIC-EXTRACT dataset, only the venti-
lation prediction task is a dynamic task, and all the
tasks in the eICU dataset are static tasks. In order
to illustrate the benefit of using the latent factors
as features for a downstream prediction model, we
also include an LSTM model trained using the origi-
nal EHR data. The input to the LSTM model is an
irregular tensor which contains k different patients,
and each patient information X}, consists of g visits
and J medical features. The output is the prediction
label for the different patients and different visit for
the dynamic task.

We evaluate the prediction accuracy as a function
of the tensor factorization rank. As shown in Figures
4 and 5, MULTIPAR outperforms the other methods.
In Figure 4, when the rank is 10, MULTIPAR outper-
forms the best baseline methods SinglePAR by 17%,
18%, 20% and 22% for each of the tasks respectively.
This demonstrates MULTIPAR’s strong generaliza-
tion ability across multiple prediction tasks by lever-
aging the shared information between different tasks
as well as the strong predictive power of the extracted
phenotypes. Moreover, SinglePAR always outper-
forms COPA, SPARTan, and LSTM, which shows
that the supervised learning framework can improve
predictability. The figures also illustrate the impor-
tant role PARAFAC2 plays as the non-tensor based
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LSTM model performs the worst because it lacks the
ability to filter out noise in the raw EHR.

Scalability analysis. Adding MTL on the
PARAFAC?2 framework can raise potential scalability
issues on large datasets. Therefore, we evaluated the
computational time of MULTIPAR compared with
the other baseline methods using different data sizes
and different feature sizes. We use two Titan RTX
GPUs, each GPU has 24 GB of RAM, and train
50 epochs of both methods. Although MULTIPAR
adds MTL, it still exhibits linear scalability similar to
SinglePAR. While MTL adds some additional train-
ing time, it is not significantly more as the maxi-
mum added time is 8 minutes. Moreover, the ex-
periment result is consistent with our computational
complexity analysis, the per-iteration computational
complexity is linear with respect to number of pa-
tients J and feature size K. The results can be found
in Figure 6.

m
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Figure 6: Training time on MIMIC-EXTRACT and
elCU with varying patient size and feature size

Interpretability analysis. Finally, we did an inter-
pretability analysis of MULTIPAR on the MIMIC-
EXTRACT dataset. We first illustrate the pheno-
types discovered by MULTIPAR in Appendix 6.3. It
is important to note that there is no post-processing
in these extracted phenotypes. A critical care ex-
pert reviewed and endorsed the presented phenotypes
which suggest collective characteristics such as nor-

mal vital signs, abnormal renal and liver function,
normal blood counts and serum electrolytes, and ab-
normal vital signs. We then test MULTIPAR’s abil-
ity to find meaningful subgroup temporal trajectories
in Appendix 6.3, which can help clinical care experts
make precise prescriptions and treatments for specific
subgroups of patients.

5. Conclusion

We proposed MULTIPAR: a supervised irregular ten-
sor factorization with multi-task learning to jointly
optimize the tensor factorization and multiple down-
stream prediction tasks. It is built on three
major contributions: a supervised framework for
PARAFAC2 tensor factorization and downstream
prediction tasks; a new multi-task learning method
combining tensor factorization and multiple predic-
tion models; and a novel weight selection method
for supervised multi-task optimization. We con-
ducted extensive experiments and demonstrated that
MULTIPAR can extract more meaningful phenotypes
from EHR data with higher predictability for down-
stream tasks compared to state-of-the-art methods
in a scalable way. In the future, we plan to incorpo-
rate low-rankness constraints for robustness against
missing data, incorporate more sophisticated regular-
ization constraints to capture the complex and non-
linear temporal relationships, and conduct more thor-
ough and larger scale interpretability analysis.
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6. First Appendix

6.1. Optimization

To solve the optimization problem in Eq. (1), MUL-
TIPAR follows an alternative optimization strategy
where we optimize one variable individually with all
other variables fixed. According to the subprob-
lem differentiable, we group the variables into two
groups: pure smooth subproblems which can be di-
rectly solved by SGD and proximal mapping-based
smooth subproblems Parikh and Boyd (2014). Prox-
imal map is a key building block for optimizing nons-
mooth regularized objective functions, e.g., the || - ||1
£1-norm regularization function for inducing sparsity
and || - ||« nuclear norm regularization for inducing
low-rankness. In the following, we omit the iteration
number for brevity in notation.

6.1.1. PURE SMOOTH SUBPROBLEMS UPDATES.

For the pure smooth subproblems, we use SGD to up-
date the variables, which include the following three
parts:

Update of Ug. The subproblem of U takes the
form as follows

argr%ikn Z p1L(Xiji, {UrSKV " }iji)
(i,7)€Q
+ 01/|Uk — QuH||% + psL3(Up).

(5)

Update of Q.
form as follows

arg min 01| Uy — Q:H|7 + 02QL Qi — I|I7. (6)

The subproblem of Qj takes the

Update of H. The subproblem of H takes the form
as follows

K
, B 2
arglrnﬁnkz;1 [Ux — QuH}% (7)

6.1.2. PROXIMAL MAPPING-BASE SMOOTH
SUBPROBLEMS UPDATES

For the nonsmooth subproblems, we propose a proxi-
mal mapping-based Parikh and Boyd (2014) update,
which include the following two parts.

Update of Si. The subproblem of S;, takes the form
as follows

argnslin Z p1L(Xiji, {UkSKV T }iji) + p2La(Sk)
¥ ig)en
+ Cl(Sk).
(8)

We use projected SGD to update Sy, where each step
takes the following form

Sk = max(0,S — AG[Sk]), (9)
where G[Sy] denotes the stochastic gradient of
the smooth part Z(i,j)eﬂ p1L(Xijk, {UkSkVT}ijk)—i—
p1L2(Sy) with respect to S.

Update of V. The subproblem of V takes the form
as follows

K
argmin d Y o1 L(Xije, {URSKV higi) + 2| V-
k=1 (i,j)eQ
(10)

We use soft-thresholding operator to up-
date V, where each step takes the following
form: soft — thresholding(V — AG[V]) =
sign((V — AG[V]))((V — AG[V]) — £), where A
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is the step-size and G[V] denotes the stochastic
gradient of the smooth part

i1 Ygiyeq P LXKk, {UxSKV T }ijk)  with  re-
spect to V.

The complete algorithm. The optimization pro-
cedure is summarized in Algorithm 1.

6.2. Complexity and Convergence Analysis

The following theorem summarizes the computa-
tional complexity of Algorithm 1.

Theorem 3 (Per-iteration computational complez-
ity of MULTIPAR algorithm) For an input tensor
Oy : R for k=1,..,K and initial target rank
estimation R, Algorithm 1’s per-iteration complexity
is O(BR%2JK).

Proof MULTIPAR’s per-iteration complexity
breaks down as follows: Line 2 costs O(R(R+J+K));
Line 3 costs O(min{R?I, RI?}), where I denotes the
maximum among {I;}; Line 4,5,6 cost O(R?*(R +
J + K)). As a result, the per-iteration complexity
is O(3R2JK). m

Theorem 4 (Convergence Rate of MULTIPAR al-
gorithm) Let ®[t] = (Q[t], H[t], S[t], V[t]) be the iter-
ates of MULTIPAR at iteration t, and L = L1+ Lo+
L3 be the loss function of MULTIPAR. Under cer-
tain conditions, MULTIPAR will converge in terms
of limys 100 B[ L(VL(®[t]))[|] = 0.

Proof (Sketch of proof) MULTIPAR is a multi-block
SGD algorithm for nonconvex optimization in nature,
which has been extensively studied in optimization lit-
erature. The above theorem follows the convergence
results established in Xu and Yin (2015). |

6.3. Interpretability analysis

Finally, we did an interpretability analysis of MULTT-
PAR on the MIMIC-EXTRACT dataset. We first il-
lustrate the phenotypes discovered by MULTIPAR in
Table 2. We set rank to 4, and use the V matrix to se-
lect the most important vital signs in each phenotype
based on the weight. V matrix represents the mem-
bership of medical features in each phenotype, and
the “weight” column in Table 2 is the weight in the
V matrix. We then use the S matrix to find the pa-
tient subgroup of each phenotype, and calculate the

Phenotype 1 (Normal vital signs) Weight Average Value
Oxygen saturation 1.52 98.5
Systolic blood pressure 0.91 112.7
Heart rate 0.82 82.5
Mean blood pressure 0.79 81.2
Diastolic blood pressure 0.65 76.3
Respiratory rate 0.57 18.6
Co2 (etco2, pco2, ete.) 0.43 24.2

Phenotype 2 (Abnormal renal and liver function) Weight Average Value

Alanine aminotransferase 11.51 83.1

Blood urea nitrogen 9.64 42.3
Alkaline phosphate 8.01 153.2
Asparate aminotransferase 5.18 90.1
Albumin 3.90 3.2
Bicarbonate 2.76 17
Mean blood pressure 1.59 85
Phenotype 3 (Normal Blood Counts and Serum Electrolytes) Weight Average Value
Mean corpuscular hemoglobin concentration 7.54 32.1
Sodium 4.93 135.2
Mean corpuscular hemoglobin 3.62 30.8
Mean corpuscular volume 3.41 93.2
Chloride 2.73 103
Hemoglobin 1.04 12.8
Hematocrit 0.62 33.2
Phenotype 4 (Abnormal vital signs) ‘Weight Average Value
Glascow coma scale total 2.13 6.7
Oxygen saturation 1.41 85
Systolic blood pressure 1.30 153.1
Temperature 1.29 375
Heart rate 1.03 115
Mean blood pressure 0.93 95

Diastolic blood pressure 0.84 82

Table 2: Phenotypes discovered by MULTIPAR.

average value of the vital signs shown in the “Aver-
age value” column. It is important to note that there
is no post-processing in these extracted phenotypes.
A critical care expert reviewed and endorsed the pre-
sented phenotypes which suggest collective character-
istics such as normal vital signs, abnormal renal and
liver function, normal blood counts and serum elec-
trolytes, and abnormal vital signs.

The phenotypes discovered by the supervised sin-
gle task model SinglePAR strongly overlap with each
other as shown in Tables 3, 4, 5, and 6. Since we are
incorporating in-hospital mortality prediction task in
Table 3, most of the phenotypes discovered by Sin-
glePAR are abnormal in vital signs. COPA discov-
ered phenotypes shown in Table 7 contain more infor-
mation compared to SinglePAR, which makes sense
because a supervised model may guide the tensor fac-
torization to a specific direction geared toward the
task and cause information loss. However, MUL-
TIPAR does not have information loss compared to
COPA, it even provides a new phenotype (phenotype
2: abnormal in renal and liver function) which is not
discovered by COPA. This verifies the benefit of MTL
in MULTIPAR, which can leverage information from
multiple tasks to avoid local optimum.

We then test MULTIPAR’s ability to find meaning-
ful subgroup temporal trajectories, which can help
clinical care experts make precise prescriptions and
treatments for specific subgroup of patients. We se-
lect the patients with the number of observations
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Table 3: MIMIC-EXTRACT phenotypes discovered
by SinglePAR incorporating in-hospital mortality
prediction.

Phenotype 1

Oxygen saturation Systolic blood pressure
Heart rate PH

Mean blood pressure Diastolic blood pressure
Phenotype 2

Oxygen saturation Systolic blood pressure
PH Mean blood pressure
Heart rate Diastolic blood pressure
Phenotype 3

Temperature Glascow coma scale total
Oxygen saturation Systolic blood pressure
Heart rate Mean blood pressure

Phenotype 4

Glascow coma scale total ~ Heart rate
Temperature Systolic blood pressure
Mean blood pressure PH

equal to 22 for visualization purposes. We select the
four phenotypes for the temperature feature and sys-
tolic blood pressure feature, then use the S matrix
to find the patient subgroup for each phenotype, and
print the average value trajectory.

From Figure 7, we can see that the four patient
subgroups (clusters) exhibit very different temporal
trajectories in the temperature. Our clinical expert
interpreted that the green line suggests a hyperther-
mic slow resolver patient subgroup which exhibits a
slow decreasing trend as time increases, the red line
suggests a hyperthermic fast resolver patient sub-
group, which exhibits a fast decreasing trend as time
increases, the dark blue line suggests a normothermic
patient subgroup and the light blue line is a hypother-
mic patient subgroup. For the systolic blood pressure
trajectory shown in Figure 7(b), the green subgroup
has high, increasing blood pressure, the red subgroup
has high, decreasing blood pressure, the dark blue
and light blue subgroups have consistently normal
and low-normal blood pressure, respectively.
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Table 4: MIMIC-EXTRACT phenotypes discovered
by incorporating icu mortality prediction.

Phenotype 1
Oxygen saturation
Heart rate

Mean blood pressure
Phenotype 2
Hemoglobin PH

Sodium chloride

Mean corpuscular volume  Co2 (etco2, pco2, etc.)
Phenotype 3
Oxygen saturation
Heart rate

Mean blood pressure
Phenotype 4
Temperature
Oxygen saturation
Heart rate

Systolic blood pressure
respiratory rate
Diastolic blood pressure

Systolic blood pressure
Respiratory rate
Diastolic blood pressure

Glascow coma scale total
Systolic blood pressure
Mean blood pressure

Table 5: MIMIC-EXTRACT phenotypes discovered
by SinglePAR incorporating readmission prediction.

Phenotype 1
Temperature

Oxygen saturation
Heart rate

Phenotype 2

Oxygen saturation
Heart rate

Diastolic blood pressure
Phenotype 3

Glascow coma scale total
Systolic blood pressure
Mean blood pressure

Systolic blood pressure
Mean blood pressure
Respiratory rate

Sodium Chloride
Oxygen saturation PH
Hemoglobin Hear rate

Phenotype 4

Oxygen saturation Systolic blood pressure
Heart rate Mean blood pressure
Diastolic blood pressure ~ PH

Table 6: MIMIC-EXTRACT phenotypes discovered
by SinglePAR incorporating ventilation prediction

Phenotype 1
Oxygen saturation
Heart rate

Mean blood pressure
Phenotype 2
Respiratory rate Sodium

Temperature Mean corpuscular volume
Chloride PH

Phenotype 3

Oxygen saturation
Heart rate

Diastolic blood pressure
Phenotype 4

Systolic blood pressure
Respiratory rate
Diastolic blood pressure

Systolic blood pressure
Mean blood pressure
Respiratory rate

Temperature Glascow coma scale total
Oxygen saturation Diastolic blood pressure
Heart rate Mean blood pressure

Table 7: MIMIC-EXTRACT phenotypes discovered
by COPA.

Phenotype 1

(a) Temperature

(b) Blood pressure

Figure 7: Temporal Trajectory

Mean corpuscular hemoglobin concentration — Sodium
Mean corpuscular hemoglobin Oxygen saturation
Mean corpuscular volume Chloride

Phenotype 2

Temperature
Systolic blood pressure
Mean blood pressure

Oxygen saturation
Heart rate
Diastolic blood pressure

Phenotype 3

Glascow coma scale total

Temperature
Systolic blood pressure
Mean blood presst

Oxygen saturation
Mean blood pressure
Heart rate

Systolic blood pressure
Diastolic blood pressure
Respiratory rate
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