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Abstract

Deep learning models typically require large
quantities of data for good generalization. How-
ever, acquiring labeled medical imaging data
is expensive, particularly for rare pathologies.
While standard data augmentation is routinely
performed to improve data variety, it may not
be sufficient to improve the performance of
downstream tasks with a clinical diagnostic pur-
pose. Here we investigate the applicability of
SinDDM (Kulikov et al., 2023), a single-image
denoising diffusion model, for medical image
data augmentation with lung ultrasound (LUS)
images. Qualitative and quantitative evalua-
tion of perceptual quality of the generated im-
ages were conducted. A multi-class classifica-
tion task to detect various pathologies from
LUS images was also employed to demonstrate
the effectiveness of synthetic data augmentation
using SinDDM. We further evaluated the im-
age generation performance of FewDDM, an ex-
tended version of SinDDM trained on a limited
number of images instead of a single image. Our
results show that both SinDDM and FewDDM
are able to generate images superior in quality
compared to single-image generative adversarial
networks (GANs), and are also highly effective
in augmenting medical imaging data with lim-
ited number of samples to improve downstream
task performance.
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1. Introduction

Recent advances in deep learning have accelerated its
usage in various medical imaging applications such as
classification, segmentation, anomaly detection, de-
noising, reconstruction, etc., across anatomies and
across imaging modalities including magnetic reso-
nance imaging (MRI), computed tomography (CT),
positron emission tomography (PET), X-Ray, ultra-
sound, etc. (Kim et al., 2019; Suganyadevi et al.,
2022; Fan et al., 2023; Ma et al., 2023; Anandasabap-
athy et al., 2021; Dutta et al., 2022; Fan et al., 2022).
However, deep learning models are data-hungry, typ-
ically requiring hundreds or thousands of images to
learn relevant patterns from high-dimensional data.
Acquiring labeled medical imaging data is expensive
and time-consuming due to the nature of the acquisi-
tion process, the medical expertise needed for anno-
tation as well as privacy and security concerns. This
problem becomes even more acute for rare patholo-
gies or abnormalities, making the training data un-
balanced and causing deep learning models to focus
more on the majority class(es). Basic image manipu-
lation techniques such as geometric transformations,
cropping, color space augmentations, noise injections,
etc. to improve data variety may not always be suffi-
cient for medical imaging applications and may not be
label-preserving in nature for all modalities or tasks
(Shorten and Khoshgoftaar, 2019; Zhao et al., 2019).
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DDM for LUS data augmentation

A popular alternative approach is to augment
training data by incorporating synthetic images gen-
erated by deep learning-based techniques like neural
style transfer or generative models such as genera-
tive adversarial networks (GANs) (Ma et al., 2020),
variational autoencoders (Diamantis et al., 2022) and
diffusion models (Akrout et al., 2023). In particular,
denoising diffusion models (DDMs) are becoming in-
creasingly popular in data augmentation for medical
imaging because of their ability to generate diverse,
high-quality samples (Pinaya et al., 2022; Moghadam
et al., 2023; Chambon et al., 2022). However, DDMs
typically require large datasets for training in order to
learn the underlying data distribution, making them
unsuitable for usage in the medical imaging domain,
particularly for rare abnormalities. A recent line of
research focuses on adapting such models to work
with a limited number of images, or even a single
image. This typically requires an adjustment of the
receptive field such that the model can learn inter-
nal patch statistics within a single image (Nikankin
et al., 2022; Wang et al., 2022; Kulikov et al., 2023).
A recent development in this context is SinDDM, a
heirarchical DDM trained on multiple scales of a sin-
gle image, which is able to generate diverse random
samples of arbitrary dimensions from the image (Ku-
likov et al., 2023).

In this paper, we investigate the applicability of
SinDDM in medical image data augmentation us-
ing lung ultrasound (LUS) images as a case study.
Lung ultrasound is an inexpensive, reliable and non-
invasive way to detect pulmonary diseases (Chavez
et al., 2014; Abdalla et al., 2016), and has also
been widely used to complement COVID-19 diagno-
sis in the recent pandemic (Smith et al., 2020; Sultan
and Sehgal, 2020). Here we consider a lung ultra-
sound (LUS) image classification task with COVID-
19, bacterial pneumonia and healthy controls using
a publicly available dataset of LUS images as well
as videos curated and labeled by medical experts
(Born et al., 2021). The number of pneumonia images
in the dataset, already less than the other classes,
was further reduced to create an artificial class im-
balance. This enabled us to investigate the useful-
ness of synthetic images generated by SinDDM in
improving the downstream task performance in the
scenario of severe class imbalance. We further ex-
tended SinDDM to FewDDM, training on a limited
number of images instead of a single image when
more than one sample is available. Extensive ex-
periments show that both SinDDM and FewDDM

are able to generate synthetic images that are able
to considerably boost downstream classification per-
formance. Furthermore, qualitative and quantitative
evaluations of the generated images show that the
DDM-based approaches are able to generate more re-
alistic synthetic images in comparison to GAN-based
approaches when trained on a single image, while pre-
serving pathological markers better.

2. Related work

In this section, we review the existing literature
on synthetic data generation approaches for medical
imaging applications, particularly when data avail-
ability is severely limited.

2.1. Synthetic image generation in medical
imaging

Synthetic image generation using deep learning tech-
niques is becoming increasingly popular in medical
imaging applications due to data availability and pri-
vacy issues inherent to the domain (Kebaili et al.,
2023). Besides data augmentation, medical image
generation also finds its usage in domain translation
applications (Lyu and Wang, 2022; Li et al., 2023).
Neural style transfer (Gatys et al., 2016) techniques
have been used to generate clinical images of skin le-
sions with underrepresented skin colors to improve
cancer detection (Rezk et al., 2022) or to generate
kidney histology images to improve histological clas-
sification performance (Cicalese et al., 2020). An-
other popular approach is deep generative modeling,
which learns the underlying data distribution and
generates new data by sampling from the learned dis-
tribution. Generative adversarial networks (GANs)
and their variants have been widely used to gener-
ate synthetic data in the medical imaging domain
(Shin et al., 2018a,b; Sandfort et al., 2019; Tang et al.,
2019; Ma et al., 2020). More recently, diffusion mod-
els have emerged as the de-facto standard in image
generation owing to their ability to produce high-
quality and highly diverse images (Yang et al., 2022;
Croitoru et al., 2023; Dhariwal and Nichol, 2021). De-
noising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020) have been used for generating synthetic
high-resolution 3D brain MRIS (Pinaya et al., 2022;
Dorjsembe et al., 2022), 4D temporal volume cardiac
MRIs (Kim and Ye, 2022), histopathology images of
brain cancer (Moghadam et al., 2023), chest X-Ray
images with different abnormalities (Chambon et al.,
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2022; Packhäuser et al., 2022), etc. However, these
models typically need to be trained on hundreds or
thousands of domain-specific images in order to learn
the underlying data distribution. This is at odds with
the data availability problem pertinent to the medical
imaging domain, particularly for rare abnormalities.

2.2. Synthetic image generation from limited
data

A number of recent works explore the use of genera-
tive models to generate synthetic images from a lim-
ited number of samples, or even one sample. Uncon-
ditional single-image GANs have been proposed pre-
viously for texture generation (Li and Wand, 2016;
Bergmann et al., 2017), but do not perform well
on natural images with varying textures and non-
repetitive structures (Shaham et al., 2019). More
recently, Shocher et al. (2019) proposed InGAN, a
single-image conditional GAN for image retargeting
in the natural image domain. SinGAN (Shaham
et al., 2019) is an unconditional heirarchical GAN
model operating on different scales of a single natu-
ral image to learn internal patch distributions within
the image and generate new samples of arbitrary sizes
and considerable variability. A number of approaches
have also been proposed in the context of DDPMs in
order to leverage the high quality and mode coverage
of such models as well as utilize their conditioning
capabilities. SinDDM (Kulikov et al., 2023) adopted
a similar multi-scale approach as SinGAN. SinDiffu-
sion (Wang et al., 2022) trained a diffusion model
at a single scale, instead redesigning the network ar-
chitecture to develop a patch-wise receptive field in
order to learn internal patch statistics within a single
image. SinFusion (Nikankin et al., 2022) also utilized
network redesigns to adjust the receptive field of the
model and trained on large random crops of the input
image to generate new samples, while extending its
applicability to video generation, extrapolation and
upsampling.

Generative models trained on limited data have
also been explored in the medical imaging domain.
Tub-GAN (Zhao et al., 2018) used style transfer to
generate diverse retinal and neuronal images from a
small number of training examples. MinimalGAN
(Zhang et al., 2023) is another style-based GAN that
modeled content and style separately to produce di-
verse outputs from limited data, and can be trained
with a single image or multiple images. Thambawita
et al. (2022) proposed SinGAN-Seg, a modified ver-

sion of the SinGAN architecture along with a style-
transfer based fine-tuning step, in order to gener-
ate synthetic medical images and their correspond-
ing segmentation masks by training on a single im-
age, and evaluated their approach for a polyp seg-
mentation task. However, there has been little ex-
ploration of the effectiveness of single-image diffusion
model-based approaches in the medical imaging do-
main, particularly for data augmentation purposes in
clinical diagnostic tasks.

3. Methods

SinDDM, a hierarchical denoising diffusion model
(DDM), can be trained on a single image and can
generate novel high-quality variants of the training
image. In this study, we investigate the feasibility
of leveraging SinDDM for data augmentation in the
context of a real-world medical imaging application.
Specifically, in addition to assessing the perceptual
image quality of the generated samples, we evaluate
the feasibility of leveraging trained SinDDMs for data
augmentation to improve the performance of a clini-
cal task. Our study also investigates the use of SinD-
DMs trained with a limited number of images instead
of one single image.

3.1. SinDDM

SinDDM is an unconditional denoising diffusion
model that employs a multi-scale diffusion process
to learn the internal statistics of structures within
a single training image (Kulikov et al., 2023). The
forward multi-scale diffusion process combines both
blur and noise over training image x at scale s and
timestep t, (s, t) ∈ {0, ..., N − 1} × {0, ..., T}, as

xs
t =

√
ᾱt(γ

s
t x̃

s + (1− γs
t )x

s) +
√
1− ᾱtϵ, (1)

where ϵ ∈ N (0, I). γs
t ∈ [0, 1] is a non-increasing

monotonic function of t and ᾱt follows a cosine sched-
ule (Nichol et al., 2021). In the blurry version of
the training image in different scales (x̃N−1, ..., x̃0),
x̃0 = x0 and x̃s = (xs−1) ↑r for every s ≥ 1, where
↑ represents upsampling operations using bicubic in-
terpolation. As t increases, xs

t becomes both noisier
and blurrier.

In order to sample an image, SinDDM first follows
the standard DDM approach at image scale s = 0
by starting with random noise at timestep t = T
and gradually removing noise until a clean sample
is generated at t = 0. An upsampling operation is
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then applied to obtain image sample at scale s = 1
and noise is added. A reverse diffusion process is
computed to form a sample at this scale. This process
is repeated until the finest scale s = N−1 is reached.

To drive the reverse diffusion process, a single
fully convolutional denoiser comprising 4 convolu-
tional blocks is trained on various scales of the image
to predict xs

0 based on xs
t . A small receptive field of

35×35 is achieved to capture the statistics of the fine
details within each scale. In addition, both the scale
s and the timestep t are injected into the model by
the use of joint embedding, which has been shown to
improve generation quality and training time.

3.2. SinGAN

In this study, we also compare the image generation
performance of SinDDM with that of the existing
GAN-based single-image generative model SinGAN
(Shaham et al., 2019). SinGAN is an unconditional
generative model trained to learn the internal distri-
bution of patches within the image. The model con-
sists of a pyramid of patch-GANs, where both train-
ing and inference are done in a coarse-to-fine manner.
At each image scale, the generator learns to generate
image samples in which all the overlapping patches
cannot be distinguished by the discriminator from the
patches in the down-sampled training image. During
the inference, the generation of an image starts at the
coarsest scale and sequentially passes through each of
the generator up to the finest scale, with noise added
at each image scale.

3.3. POCOVID-Net for lung ultrasound
classification

For task-based image quality evaluation of the syn-
thetic LUS images generated by SinDDM, we adopted
POCOVID-Net (Born et al., 2021), a deep learning-
based model for the downstream task of classifying
LUS images into COVID-19, bacterial pneuomonia
and healthy patients. POCOVID-Net comprises the
backbone neural architecture of VGG-16 pre-trained
on ImageNet (Deng et al., 2009). The backbone net-
work was followed by one dense layer of 64 neurons
with ReLU activation, dropout of 0.5, batch normal-
ization and an output layer having 3 nodes with a
softmax activation function.

4. Experiments

4.1. Dataset

For this work, we used the LUS data made publicly
available by Born et al. (2021) after removing all im-
ages and videos with non-commercial licenses. Figure
1 illustrates a representative example from each of the
COVID-19, bacterial pneumonia and healthy classes.
The selected dataset includes 106 videos and 32 im-
ages recorded with convex probe on patients with
COVID-19, bacterial pneumonia and healthy controls
respectively, as shown in Table 1. Since the data were
originally collected from various sources, the videos
have different lengths and frame rates. Here, the
videos and images were pre-processed as described in
previous work (Born et al., 2021). The videos were
split into image frames at a frame rate of 3 Hz and the
images were cropped to a standard aspect ratio. Our
final dataset consists of 1994 images in total, with
823, 267 and 904 images from COVID-19, bacterial
pneumonia and healthy classes respectively.

Figure 1: LUS image examples of COVID-19, bacte-
rial pneumonia and healthy controls.

Similar to previous studies (Diaz-Escobar et al.,
2021; Barros et al., 2021; Born et al., 2021), 5-fold
cross-validation was used to verify the robustness of
the classification results. The dataset was randomly
partitioned into five folds at the patient-level. Four
out of the five folds were merged to form the training
set while the remaining fold was used as the valida-
tion set, making each fold the validation set in turn.

4.2. Experimental settings

4.2.1. SinDDM training with limited
pneumonia data

To employ SinDDM to generate synthetic high-
quality LUS images, we first train SinDDM models
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Table 1: Number of videos and images in the selected
dataset per class, and the total number of
corresponding extracted image frames.

Class Videos Images Frames
COVID-19 56 19 823
Pneumonia 14 8 267
Healthy 36 5 904
Total 106 32 1994

for each of the 8 single LUS images of pneumonia pa-
tients. Note that in this study, we only augment data
based on LUS images rather than on image frames
extracted from videos. The SinDDM models were
trained using the Adam optimizer with its default
Torch parameters. Using V100 GPUs, we train our
model for 120 × 103 steps with an initial learning
rate of 0.001, which is reduced by half on [20, 40, 70,
80, 90, 110] × 103 steps. The batch size was set to
be 32. Apart from the vanilla SinDDM which was
trained on a single LUS image, we also investigated
the training of SinDDM on a few (2-3) LUS images.
For simplicity, this modified version of SinDDM will
be referred as FewDDM in the rest of the paper.

4.2.2. SinGAN training

For the training of SinGAN, we employed the default
configuration in the original paper (Shaham et al.,
2019). The SinGAN model was trained sequentially
from the coarsest to the finest scale. Once each GAN
is trained, it is fixed. The training loss for each indi-
vidual GAN is comprised of an adversarial loss and
a reconstruction term. Models in each scale were
trained for 2000 epochs.

4.2.3. Task-based evaluation using
POCOVID-Net

Starting with the pre-trained POCOVID-Net (Born
et al., 2021), we fine-tuned only the weights of the last
three layers, resulting in a total of ∼2.4 M training
parameters and ∼12.4 M non-trainable parameters.
The model was trained to minimize cross-entropy loss
by using Adam optimizer (Kingma and Ba, 2014).
Each model was trained for 40 epochs with a batch
size of 8 and early stopping strategy was enabled. In
the default training scheme (Born et al., 2021), data
augmentation transformations such as rotations (up

to 10°), translations (up to 10%), and horizontal and
vertical flips were used.

5. Results

5.1. Quantitative evaluation of synthetic
images from SinDDM

Figure 2: Novel variants of two different LUS pneu-
monia images generated by SinDDM and
SinGAN.

Examples of novel syntehtic LUS images of pneumo-
nia generated by SinDDM and SinGAN are shown
in Figure 2. Close inspection reveals that images
generated by SinGAN are dominated by artifacts,
while SinDDM successfully captures the pathological
features related to the diagnosis of pneumonia such
as consolidation and air bronchograms. The global
structure of the original LUS images is well-preserved
and reasonable variations in the local structures can
be observed as well.

Frechet Inception Distance (Heusel et al., 2017), a
popular metric used to evaluate synthetic images pro-
duced by generative models, measures the difference
between the distributions of activation vectors after
the last pooling layer in the ImageNet-trained Incep-
tion v3 network for the generated and real images.
For evaluating the images generated by SinDDM and
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for comparing SinDDM against SinGAN, we use the
Single Image Frechet Inception Distance (SIFID) pro-
posed by Shaham et al. (2019), which uses the inter-
nal distribution of deep features generated by a real
and fake image pair at the convolutional layer before
the second pooling layer. Table 2 reports the average
SIFID for images generated by SinGAN and SinDDM
from the same set of real images. It can be seen that
SinDDM achieves a considerably lower SIFID score
on lung ultrasound images. We further computed the
average structural similarity (SSIM) between pairs of
real and synthetic images to provide a comparison
of luminance, contrast and structure in the images
generated by different models relative to the real im-
ages. As seen from Table 2, SinDDM variants have a
much higher structural similarity to the real images
in general. We also include results from a qualita-
tive evaluation of the synthetic images by an expert
sonographer in the Discussion section.

Table 2: Average SIFID and SSIM for images gener-
ated by SinGAN and SinDDM

Model SIFID SSIM
SinGAN 1.16 0.23
SinDDM 0.38 0.43

5.2. Task-based evaluation of synthetic
images from SinDDM

In order to investigate the effectiveness of SinDDM-
based data augmentation, we consider a three-
class classification task of detecting lung ultrasound
pathologies with artificially introduced class imbal-
ance in the training data. Specifically, we compare
the classification performance of the POCOVID-Nets
that are trained on datasets consisting of only 25%
of the pneumonia data available in each training
fold. Before augmenting the pneumonia data using
SinDDM, we first investigate the effectiveness of reg-
ular data augmentation techniques (rotation, transla-
tion etc.) which were used in a previous study (Born
et al., 2021). It can be observed from Table 3 that
while mild improvement was shown in both the ac-
curacy and balanced accuracy with regular data aug-
mentation, there is no improvement in term of the
evaluation metrics reported for the minority class of
pneumonia.

A total of 8 SinDDMs and SinGANs were trained
corresponding to the 8 single pneumonia LUS im-

ages referred to in Table 1, respectively. After SinD-
DMs were trained on individual pneumonia images,
32 novel image samples were generated from each of
the models respectively. These synthetic pneumo-
nia images were added to the corresponding training
folds. As reported in Table 3, by synthetically in-
creasing the total number of pneumonia images, the
accuracy and balanced accuracy metrics greatly im-
proved in comparison to the ones without any data
augmentation. It is worth noting that metrics such as
precision, recall and F1-score of the pneumonia class
improved significantly as well. These results demon-
strate the effectiveness of data augmentation by using
SinDDM in the LUS pathology classification task. On
the other hand, while SinGAN does not outperform
SinDDM in term of visual quality as shown in Ta-
ble 2, increasing the number of available pneumonia
images for training by adding the synthetic images
from SinGAN still provides significant improvements
in the classification performance.

Figure 3: Balanced accuracies without and with
SinDDM data augmentation for varying
percentages of pneumonia data in training.

In addition, we compare the balanced accuracy val-
ues without and with SinDDM data augmentation
when different percentages of pneumonia data (split
at patient-level) are used in the training. As before,
for each training fold, each trained SinDDM gener-
ated 32 synthetic images to augment the dataset.
POCOVID-Nets were retrained and evaluated for
each dataset variation. Here, the task performance
of four comparisons using 25%, 50%, 75% and 100%
of the available training data are presented in Fig.
3. The results confirm that the task performance
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can be improved with SinDDM data augmentation on
the minority class. It can be seen that the improve-
ment of balanced accuracy is most significant when
the number of real pneumonia images is severely lim-
ited, and there is some improvement even when more
patient data becomes available for training.

5.3. Task-based evaluation of synthetic
images from FewDDM

In addition to using one single image for training
SinDDM, it is also of our interest to investigate the
image generation capability of SinDDM when trained
on a limited number of samples. In each training
iteration, we sample a batch of noisy variants of a
randomly chosen input image among a few training
images instead of sampling noisy variants of a single
image. Therefore, for 3 out of the 5 training folds
where more than one single pneumonia images exist,
three FewDDMs were trained on all such pneumo-
nia images within the training fold. Figure 4 shows
novel pneumonia LUS image samples generated by
FewDDM trained on all 3 of the images in the top
row. It can be seen that the predictive characteris-
tics of pneumonia in LUS such as consolidation and
fluid bronchogram are learned by the FewDDM and
preserved well in the generated image variants.

Figure 4: Novel variants of the pneumonia LUS im-
ages generated by FewDDM.

After the FewDDMs were trained, the same num-
ber of synthetic pneumonia images were added to
each training fold for consistent comparison of the
classification task with Section 5.2. As reported in
Table 3, both the overall accuracy and balanced ac-
curacy metrics improve compared to those of either
SinDDM or SinGAN. Specifically, the F1-score of the
pneumonia class is considerably increased when reg-
ular data augmentation is added to the training data
along with synthetic images from FewDDM. This
could be interpreted as more data variety captured
by FewDDM when trained on more than one image,
enabling the POCOVID-Net to be more robust in dif-
ferentiating between different pathologies.

6. Discussion

Class imbalance is a commonly observed issue for rare
pathologies or abnormalities in medical imaging data.
Additionally, the small scale of dataset acquired in
medical imaging due to the complexity, high cost and
privacy concerns of patient data collection poses sig-
nificant challenges when researchers design and de-
ploy deep learning-based models for downstream clin-
ical tasks such as disease detection and lesion segmen-
tation (Willemink et al., 2020). In the cirsumstances
where both extremely severe class imbalance and lim-
ited number of samples exist, we showed that tradi-
tional data augmentation techniques such as transla-
tion and rotation may not be effective to improve the
downstream task performance.

In this study, we investigated the applicability of
the recently proposed single-image denoising diffusion
model, SinDDM, to synthesize lung ultrasound im-
ages for data augmentation. Built on a multi-scale
diffusion process, each SinDDM model was trained
on a single pneumonia lung ultrasound image to gen-
erate diverse novel samples. When compared with
SinGAN, SinDDM demonstrated high sample qual-
ity in terms of producing sufficient varieties in the
pulmonary details of LUS images while preserving
pathological features related to the diagnosis of pneu-
monia as well as the global structure of the original
image.

Qualitatively, 32 randomly sampled synthetic im-
ages produced by each of SinGAN, SinDDM and
FewDDM were assessed by a trained sonographer
tasked with labeling them as real or synthetic. The
qualitative evaluation results are given in Table 4,
where a lower fake detection rate indicates that the
model can generate more realistic-looking synthetic

670



DDM for LUS data augmentation

Table 3: Comparison of the tested classification models on 5-fold cross validation for each class. In the
training dataset, only 25% of the pneumonia data is used. Precision abbreviated to Prec., recall
to Rec., accuracy to Acc., balanced accuracy to Bal. Acc. Results are compared among models
trained with or without regular data augmentation, and with or without data augmented by using
SinGAN, SinDDM and FewDDM.

Class Prec. Rec. F1-score Acc. Bal. Acc.

w/o data aug.
COVID-19 0.76± 0.19 0.91± 0.14 0.80± 0.13

0.82± 0.14 0.77± 0.20Pneumonia 0.79± 0.40 0.67± 0.35 0.72± 0.37
Healthy 0.94± 0.08 0.73± 0.33 0.76± 0.25

w/ regular aug.
COVID-19 0.81± 0.14 0.93± 0.07 0.86± 0.09

0.86± 0.13 0.80± 0.19Pneumonia 0.73± 0.37 0.66± 0.34 0.69± 0.35
Healthy 0.96± 0.04 0.79± 0.28 0.83± 0.21

w/ SinGAN aug.
COVID-19 0.76± 0.19 0.91± 0.14 0.81± 0.12

0.82± 0.15 0.78± 0.82Pneumonia 0.98± 0.03 0.69± 0.32 0.75± 0.32
Healthy 0.94± 0.07 0.72± 0.34 0.75± 0.28

w/ SinGAN aug.
and regular aug.

COVID-19 0.90± 0.10 0.83± 0.16 0.85± 0.10
0.86± 0.12 0.86± 0.09Pneumonia 0.84± 0.29 0.86± 0.15 0.79± 0.21

Healthy 0.90± 0.07 0.90± 0.13 0.90± 0.09

w/ SinDDM aug.
COVID-19 0.81± 0.16 0.86± 0.12 0.82± 0.11

0.85± 0.09 0.80± 0.14Pneumonia 0.98± 0.03 0.67± 0.34 0.72± 0.34
Healthy 0.87± 0.07 0.87± 0.18 0.86± 0.11

w/ SinDDM aug.
and regular aug.

COVID-19 0.87± 0.08 0.87± 0.11 0.87± 0.08
0.88± 0.08 0.84± 0.13Pneumonia 0.99± 0.02 0.68± 0.32 0.75± 0.29

Healthy 0.88± 0.12 0.96± 0.06 0.91± 0.06

w/ FewDDM aug.
COVID-19 0.83± 0.16 0.85± 0.12 0.83± 0.12

0.87± 0.09 0.85± 0.08Pneumonia 0.95± 0.06 0.82± 0.11 0.87± 0.08
Healthy 0.89± 0.09 0.89± 0.18 0.87± 0.11

w/ FewDDM aug.
and regular aug.

COVID-19 0.90± 0.08 0.88± 0.07 0.89± 0.05
0.91± 0.03 0.90± 0.05Pneumonia 0.98± 0.03 0.85± 0.12 0.91± 0.07

Healthy 0.91± 0.08 0.96± 0.06 0.93± 0.03

samples. None of the synthetic images produced by
SinGAN were able to evade detection, mostly due to
over-saturated white regions and non-uniform gains
according to the sonographer’s notes. SinDDM had
the lowest fake detection rate out of the 3 mod-
els, which could be attributed to realistic-looking rib
shadows and the random nature of tissue patterns as
noted by the sonographer. FewDDM fared somewhat
worse in comparison to SinDDM due to the absence
of pleural lines or chest walls in some images, but
were noted to have a random nature of tissue pattern
as seen in real images.

Quantitatively as well, it was shown through met-
rics such as SIFID and SSIM that DDM-based ap-
proaches generate more realistic images compared to
the GAN-based approaches. However, it remains
an open question in the medical imaging community

Table 4: Qualitative evaluation results for SinGAN,
SinDDM and FewDDM

Model Fake detection rate
SinGAN 100%
SinDDM 9.37%
FewDDM 34.37%

to appropriately select and define a universal image
quality metric to evaluate the performance of genera-
tive models such as GANs and diffusion models. One
reason is that quality evaluation of synthetic images
is subject to imaging modalities, the objects to be
imaged, and the downstream clinical tasks. In prac-
tice, the medical image features looked at by radiolo-
gists might not be the same as what the downstream
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network focuses on. Moreover, different radiologists
might focus on different pathological features in the
medical image as well. More recent works also high-
light the need for assessing the ability of generative
models on learning medical image statistics such as
texture and morphology features (Kelkar et al., 2023;
Deshpande et al., 2023).

One important purpose of synthetic data augmen-
tation in medical imaging is to improve the perfor-
mance of downstream diagnostic tasks. Here, aug-
menting the LUS image dataset with synthetic pneu-
monia images generated by SinDDM achieved sig-
nificant improvement on the pathology classification
performance, particularly on the minority pneumo-
nia class. While SinGAN failed to produce LUS im-
ages with high visual quality compared to SinDDM,
the task performance still benefits from the synthetic
data augmentation. This is worth noting since tradi-
tional image quality metrics may not be necessarily
correlated with the objective task-based image qual-
ity measures (Badal et al., 2019). Therefore, evaluat-
ing image quality in medical imaging in both aspects
is of great importance for developing deep learning-
based medical imaging applications (Zhang et al.,
2021; Kelkar et al., 2021; Li et al., 2021).

A practical scenario when working on a small-scale
medical image dataset is that there exist only a few
images of a particular minority class. Instead of
training different SinDDMs for each individual im-
age which could be tedious and computationally bur-
densome, we investigated the effectiveness of data
augmentation with a modified FewDDM that can be
trained with a limited number of samples. While the
visual quality of global structures of the generated im-
ages is not as satisfying as those from SinDDM, the
downstream task performance with FewDDM outper-
formed both SinDDM and SinGAN. By learning va-
rieties in local structures from multiple samples in-
stead of just one, details in diverse images generated
with FewDDM could potentially allow for a more ro-
bust and generalized downstream model. It is also
worth noting that for all three models considered, a
combination of regular and synthetic data augmenta-
tion techniques yielded the best performance for the
downstream task.

In SinDDM, the receptive field of the model is de-
signed to be small to avoid memorization of the single
training image (Kulikov et al., 2023). Receptive fields
play an important role based on the task at hand.
While larger receptive fields can capture global fea-
tures, smaller receptive fields help learn local details.

The relationship between the design of receptive fields
in SinDDM and image quality of the synthetic images
remains to be investigated in a future study.

References

W Abdalla, M Elgendy, AA Abdelaziz, and MA Am-
mar. Lung ultrasound versus chest radiography
for the diagnosis of pneumothorax in critically ill
patients: A prospective, single-blind study. Saudi
journal of anaesthesia, 10(3):265, 2016.

Mohamed Akrout, Bálint Gyepesi, Péter Holló, Adri-
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Anastasio, and Frank J Brooks. Assessing the ca-
pacity of a denoising diffusion probabilistic model
to reproduce spatial context. arXiv preprint
arXiv:2309.10817, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion
models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–
8794, 2021.

Dimitrios E Diamantis, Panagiota Gatoula, and Dim-
itris K Iakovidis. Endovae: Generating endoscopic
images with a variational autoencoder. In 2022
IEEE 14th Image, Video, and Multidimensional
Signal Processing Workshop (IVMSP), pages 1–5.
IEEE, 2022.

Julia Diaz-Escobar, Nelson E Ordonez-Guillen,
Salvador Villarreal-Reyes, Alejandro Galaviz-
Mosqueda, Vitaly Kober, Raúl Rivera-Rodriguez,
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