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Abstract
Graph Clustering is required for the identification of communities and groups
within a given network. In recent years, various attempts have been made to
develop tools suitable for this purpose. Most recently, these attempts are based
on the latest advancements in deep learning and especially in Graph Neural
Networks (GNN). While some methods take into account the graph intrinsic
topological structure throughout, surprisingly, the leading clustering methods
ignore this during the final cluster assignment stage, which leads to sub-optimal
results. In this paper, we propose GSCAN: a Graph Stability Clustering for
Applications with Noise, which is based both on node features and on the graph
structure. We base our approach on the celebrated method of Exess-of-Mass
(EoM), which is based the principle of maximizing cluster stability. This method
has additional desirable properties like resilience to outliers and the fact it doesn’t
require an a-priory definition of the number of clusters. We extend EoM to work
on the intrinsic graph structure and propose two possible post-processes to deal
with one of EoM’s shortcomings - its tendency to over-flagging data-points as
outliers. These post processes harness the graph topology and lead to superior
performance, even compared to leading clustering approaches that are trained
end-to-end. We show that the proposed approach can be implemented in a fast
and scalable manner. Our claims are backed on three well-known benchmark
datasets. Our code is available here: https://github.com/GraphEoM/GSCAN
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Figure 1: Two dimensional embeddings of the Cora dataset [1] using PCA, colored by clustering results
of the three flavours of GSCAN. (a) GSCAN without a post process; One can notice the abundance of black
points, which indicate data points that are flagged as outliers. (b) GSCAN with intrinsic diffusion post-process
(see Section 3.2.1); Here, the only remaining outliers are the ones that have no connectivity to any of the clusters.
(c) GSCAN with GNN-expansion post-process (see Section 3.2.2); This result has no outliers remaining.

1 Introduction
Clustering is the task of grouping a set of data points in such a way that points in the same group
(called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).

E. Harari et al., GSCAN: Graph Stability Clustering Using Edge-Aware Excess-of-Mass. Proceedings of the
Second Learning on Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November 27–30, 2023.

https://github.com/GraphEoM/GSCAN


GSCAN: Graph Stability Clustering Using Edge-Aware Excess-of-Mass

The goal of Graph Clustering is to divide graph nodes into sub-graphs, or ‘communities’, where
similar nodes will belong to the same subgroup. This task has many applications, such as in the fields
of social sciences [2], biology [3], and citation networks research [4].

As in the case of tabular data clustering, similarity between graph nodes is measured using some
mathematical function (for example Euclidean distance, or cosine-similarity), which is based on the
vectors of feature values describing data points (i.e. data-points representations, or embeddings); this
is called the extrinsic distance. However, uniquely for graphs, similarity between nodes can also be
measured by the distance between them within the graph - the intrinsic distance. Moreover, based
on the assumption that graphs have high homophily [5, 6], the existence of an edge between two
nodes indicates also a similarity between their features. Therefore, edge information can be extremely
valuable when we come to determine whether two nodes should belong to the same cluster or not.

Graph clustering is a well-studied topic and there are many methods that harness the structure
of the graph to improve clustering. Typically, when machine learning approaches are applied to
improve clustering performance, they are used to yield better features of the data points, which in
turn should improve similarity measurements. To illustrate this point, Figure 2 depicts an example of
the dichotomy between extrinsic distances, which ignore the connectivity information, and intrinsic
distances. However, to the best of our knowledge, some of the leading graph clustering methods use
the graph structure only during the creation of node features and perform the subsequent clustering
phase based on extrinsic distances [7]. This is illustrated in Table 1. By ignoring the intrinsic structure
of the graph in the clustering phase, these methods implicitly assume that this information is fully
captured in the node features. However, we show that this assumption does not hold in practice, as
using our EoM edge-aware clustering, over the learned features improves the performance of most
existing clustering methods, including ones that are trained end-to-end.

Figure 2: Examples of the difference between intrinsic and extrinsic
definition of distances. The green point is to be added one of two clus-
ters, red or blue, according to the one it is more similar to. Measuring
the extrinsic two dimensional Euclidean distance, the green point should
probably be part of the cluster of red cluster, while if we limit the distances
to be measured only between points with edges between them, then it must
belong to the blue cluster.

To address the aforementioned gap, we present GSCAN, an edge aware clustering algorithm. We pro-
pose to divide the full graph clustering procedure into two logical steps - a representation generation
step, followed by a clustering step - and to use a clustering method that is edge-aware, regardless
of the underlying representation. To this end we present an edge-aware version of the Excess of
Mass (EoM) [8] method. However, since EoM might leave nodes unassigned, we introduce two label
expansion methods, as a post process, which also leverage graph connectivity to effectively expand
EoM clusters to unassigned nodes.

To compare our method to existing literature, we artificially break down previous methods into the
aforementioned two steps (see Table 1) - representation generation and clustering - and show that
edge-aware clustering can improve results when using different representations, even representations
that are learned in an end-to-end fashion.

In summary, our study makes the following key contributions. First, we show that EoM yields
competitive results when used on the intrinsic graph topology rather than the (commonly used)
extrinsic feature space. Second, we provide two optional approaches to address unlabeled nodes in
the EoM output, for cases these are undefined or undesirable. Finally, we show SOTA clustering
results on diverse datasets.

2 Related Work
We now provide a short background for the task of graph clustering, which is by no means exhaustive,
and the reader may turn to recent surveys in this area such as [7].

2.1 Problem definition

A graph G = {V,E} consists of a set of N vertices V = {vi}i=1,...,N (where N = |V |) and a set of
edges E = {eij = (i, j) : if i & j connected }. The edges can also be represented by an adjacency
matrix A where A ∈ RN×N and Aij ̸= 0 if there exists an edge between nodes i and j and Aij = 0
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Table 1: Usage of graph data in different approaches. This table is a non-exhaustive list of possible graph
clustering approaches, aimed to highlight how each is utilizing the graph data. For each method we indicate
whether it is using the original node features and/or the graph structure, for either feature learning and/or the
subsequent clustering phase. It is clear to see that the top four approaches do not use the graph structure for
clustering. Below them, two end-to-end methods that are aware of the intrinsic structure, but do not outperform
methods like [9]. ∗ indicates the clustering method that each approach used, which we replace with GSCAN in
this paper in some of our experiments.

Representation uses... Clustering uses...
Representation Clustering node features structure node features structure
Original KMeans ✓ ✗ ✓ ✗
node2vec [10] KMeans ✗ ✓ ✓ ✗
DCN [11] KMeans∗ ✓ ✗ ✓ ✗
DAEGC [9] KMeans∗ ✓ ✓ ✓ ✗
DMoN [12] pooling∗ ✓ ✓ ✓ ✓
TVGNN [13] argmax∗ ✓ ✓ ✓ ✓
Original GSCAN ✓ ✗ ✓ ✓
node2vec [10] GSCAN ✗ ✓ ✓ ✓
DCN [11] GSCAN ✓ ✗ ✓ ✓
DAEGC [9] GSCAN ✓ ✓ ✓ ✓
DMoN [12] GSCAN ✓ ✓ ✓ ✓
TVGNN [13] GSCAN ✓ ✓ ✓ ✓

otherwise. An attributed graph also has a matrix X ∈ RN×d representing the d features of each
node vi in vector xi. These features may be given, or can be the output of a learned model. The
task of graph clustering is to assign each node vi to a single cluster label yi ∈ {1, . . . ,K}, and
C = {ck}k=1,...,K is the set of clusters. Dij = ∥xi − xj∥ represents the distance metric between
nodes vi and vj in the feature space.

2.2 Classic clustering methods

Kmeans. [14, 15] is the de-facto gold standard for clustering. KMeans is an iterative clustering al-
gorithm that aims to partition a dataset into K distinct clusters. It minimizes the within-cluster sum of
squares (WCSS) of the distances between each sample and the closest centroid, by iteratively assign-
ing samples to the nearest centroid µk ∈ Rd and updating the centroids until convergence. The label
yi of node vi is calculated by minimizing the expression yi = argmink||xi· − µk||2, and the d coor-
dinates of µk are calculated in each iteration as follows: µk =

∑N
i=1 xiI{yi==k}/

∑N
i=1 I{yi==k}.

Even though the KMeans algorithm is widely used, it has several disadvantages: It is sensitive to
outliers, it is highly influenced by the K parameter selection, and it relies on the assumption that
the underlying distribution of the data is distributed as K compact hyper-spheres [16]. In addition,
common KMeans implementations are not naturally adapted to running on the intrinsic structure of
the graph - because KMeans’s cluster centers µk may not necessarily lay on data points.

HDBSCAN. [17–19] is a hierarchical clustering algorithm that identifies clusters based on density
estimation, specifically addresses outlier samples, and handles arbitrarily shapes clusters. To deter-
mine the density of samples, the algorithm employs a density value, denoted as λ = 1

Dij
, which is

inversely proportional to the distance Dij Next, the algorithm constructs a Single-Linkage hierarchy
[20] of clusters using a minimum spanning tree (MST) algorithm. This condensed tree [19] (also
known as a density-contour tree [17, 18], component tree [21] or level-set tree [22]) represents the
set of clusters for each density value λ, where each branch of the tree represents a cluster split into
two child clusters as the density increases. Clusters must have a minimal size, m, which is an input
parameter of the method.

To determine the optimal set of clusters, HDBSCAN uses the concept of Excess of Mass (EoM) [8],
which enables it to quantify cluster stability which is defined as follows:

S(ck) =
∑
vj∈ck

(λmax(vj , ck)− λmin(ck)) =
∑

xj∈ck

(
1

Dmin(xj , ck)
− 1

Dmax(ck)
), (1)

where λmin(ck) = minvi,vj∈ck 1/Dij marks the smallest density in the cluster ck, and λmax is
defined similarly on the maximal density. Using S(ck), we can compare each cluster in this binary
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tree hierarchy, and select the cluster set with the highest stability:

C = {ck : max(S(ck), S(c
(right)
k ) + S(c

(left)
k ))}, (2)

where c(right)k and c
(left)
k refer to the two children clusters of the cluster ck. The recursive expression

in Equation 2 compares the stability of each cluster with the combined stability of its children. It then
selects only the clusters that maximize the stability within the hierarchy.

2.3 Deep clustering

Deep tabular clustering. In recent years, Deep Neural Networks (DNN) have made significant
advancements in supervised learning tasks. Deep learning has also been applied to clustering
[23], particularly in the context of dimensionality reduction (DR) as a preprocessing step before
applying a clustering algorithm. Typically this approach involves training a Deep Autoencoder (DAE)
with a reconstruction loss, where the model learns to reconstruct the original data from its latent
representation. Subsequently, clustering algorithms are applied to the resulting latent embeddings
[24–26]. Various methods have been proposed to learn low-dimensional latent space embeddings
that are suitable for clustering tasks. However, since the DNN and clustering objectives are trained
separately, the output results may not always be well-suited for clustering data samples.

To improve the clustering results, recent architectures propose training the DNN with a specific focus
on clustering. One such architecture is the Deep Embedded Clustering model (DEC) [27], which
utilizes the Kullback-Leibler (KL) divergence loss. This loss is inspired by the KMeans [14, 15]
clustering approach. Another improvement comes from the end-to-end architecture of the Deep
Clustering Network (DCN) [11]. This model combines both the reconstruction loss and the clustering
KL loss in its objective. By doing so, it learns a ‘KMeans Friendly’ representation for each sample
and extracts suitable clusters within a single framework.

Deep graph clustering. When attempting to cluster nodes in a given graph, traditional methods
often struggle to capture and represent the underlying topological structure of the graph in a reduced
latent representation. Previous works have primarily focused on representing the topology alone. For
example, architectures like DeepWalk [28] and Node2Vec [10] (N2V) utilize deep learning models to
assign each node a representation based on its neighboring nodes. However, these models do not take
advantage of node attributes during the learning process, resulting in embeddings that are limited to
capturing only the topological features of the graph.

The emergence of Graph Convolutional Networks (GCN) [29] has paved the way for the development
of new architectures such as Graph Autoencoders (GAE) and Variational Graph Autoencoders
(VGAE) [30]. These models encode node features into a latent space combined with graph edges
and then decode the latent representation back into the graph adjacency matrix: Â = sigmoid(zzT ),
where z represents the latent representation in the GAE’s bottleneck. This approach enables the
model to learn a lower-dimensional representation for each node in the graph by leveraging both the
node attributes X and the graph edges E. To obtain clustering results using GAE, all that is left is to
apply some classical clustering algorithms to the output embedding.

In order to enhance the clustering results obtained after applying GAE, Zhang et al. [9] propose
a novel architecture called Deep Attentional Embedded Graph Clustering (DAEGC). This model
follows an end-to-end approach, similar to DCN [11] for tabular data. DAEGC combines the use of
GAE composed of Graph Attention Network (GAT) layers [31], and incorporates a KL clustering
loss in addition to the reconstruction loss objective. The learned output embedding is optimized for
reconstructing the adjacency matrix A of the graph and is suited for KMeans clustering as well.

While approaches like DAEGC and other end-to-end graph clustering methods [32–34] enjoy the
benefits of optimizing the clustering objective in an end-to-end manner, they still have certain
limitations due to their reliance on KMeans [16]. Importantly, KMeans disregards the underlying
graph structure, and therefore these models may assign two nodes to the same cluster based on
representations similarity, even if there is no existing path connecting them.

Recent methods employ end-to-end training strategies that consider the graph structure while as-
signing clusters. DMoN [12] is a pooling-based method that employs a regularized modularity loss
to appropriately allocate nodes to clusters. Another method, TVGNN [13], utilizes total-variation
(TV) loss to promote smooth (piece-wise constant) predictions across the graph, which are easier to
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cluster by. Both approaches leverage graph topology within an end-to-end framework to learn cluster
assignments. However, empirical experiments underscore that methods like the aforementioned
[12, 13] do not yield improved results compared to KMeans-based approaches like DAEGC [9] (see
Table 3). This gap emphasizes the necessity for alternative graph clustering methods that can harness
the performance of methods like [9], while leveraging graph topology in the clustering process.

3 GSCAN Algorithm
In this section, we introduce our approach GSCAN, which utilizes a graph-adapted clustering
algorithm provided node representations and, of course, topology. Our method incorporates a
hierarchical clustering algorithm that leverages the Excess-of-Mass stability optimizer with an Edge-
Aware approach. We also describe two post-processing steps to assign unlabeled nodes to existing
clusters. These components have enabled our method to achieve superior results compared to the
current state-of-the-art methods. See Section A in the appendix for a flow diagram of GSCAN.

3.1 Edge aware EoM clustering

We propose utilizing the EoM stability optimizer on the MST Hierarchy derived from the graph
edges. This approach ensures that nodes lacking connecting paths between them are not assigned
to the same cluster. The given edges in the graph allow us to construct a condensed tree[19], which
represents the hierarchical structure of graph clusters. The length of each edge in this MST is used as
an estimator for the density between two nodes in the graph. Short edges indicate high density, while
long edges indicate sparsity. A separate tree will be constructed for each connected component of the
graph. By leveraging this principle, we can identify sets of nodes with high density between them
and treat them as clusters.

To accomplish this, we define a sparse distance matrix D ∈ R|V |×|V |, which is derived from the
distance function ∆(·). Any conventional non-negative distance function (e.g. Euclidean or cosine
similarity) can be used to calculate the weight (or length) Dij , of the edge eij = (i, j) ∈ E:

Dij =

{
∆(xi, xj) (i, j) ∈ E
∞ otherwise

(3)

The representation vector of node vi is denoted as xi. During the actual calculation, we utilize the
provided edge set, eliminating the need to compute the entire matrix D. Using D, we construct the
MST with the Kruskal Algorithm [35]. This algorithm generates the MST E(mst) by sorting the edges
E based on their D values and connecting only those edges that link disjoint sets of nodes. The length
Dij of each edge in the MST is used as an estimator for the density λij , where λij = 1/(Dij + ϵ).
The inclusion of ϵ ensures a non-zero denominator, in cases where Dij = 0.

It should be mentioned that the scalable version of HDBSCAN [19] utilizes the Boruvka algorithm
[36] to construct the MST. By combining Boruvka with an approximate nearest neighbor algorithm,
the runtime of HDBSCAN is substantially improved. However, since our method relies on the given
graph edges, we can employ the Kruskal algorithm instead.

Our method solely relies on the existing graph edges, allowing us to leverage the inherent homophily
within the original graph, which serves the clustering of similar nodes. The resulting tree E(MST )

represents the hierarchical clustering dendrogram. By selecting a specific λ value, we can extract the
corresponding cluster set C. As mentioned in Section 2.2, different clusters may exhibit varying den-
sity values λ, and thus, selecting a single-fixed λ value could lead to suboptimal clusters. Following
the approach of Sander et al. [17, 18], we propose the use of an EoM stability optimizer.

By employing the stability measure outlined in Equation 1, we are able to compute the stability
S(c) for each cluster in the hierarchical tree structure. Utilizing these stability values, the optimizer
identifies the optimal λ value for each branch in E(MST ) that maximizes the overall stability. As
explained in Equation 2, the subsequent process extracts the clusters set C, which represents the
selection of a cluster that maximizes the stability within the hierarchical tree.

3.2 Label expansion

Our method utilizes the stability optimizer to assign labels by identifying the optimal clusters in
the hierarchy. By preventing merging of two clusters, the optimizer ensures high stability values.
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Figure 3: Illustration of GSCAN output and the two label expansion methods

This high-density criterion prevents the inclusion of low-density samples into the original clusters,
as described in Figure 3 (a). These excluded samples can be considered as non-core objects which
do not belong to any stable cluster, as opposed to core objects who do. Although these samples are
not be classified as core objects, on some occasion it is desirable to assign them to some cluster
nevertheless. A similar approach can be observed in tabular clustering methods such as HDBSCAN
[17] and DBSCAN [37] which extend the assigned cluster labels also to non-core objects. In the
context of graph clustering, this task becomes even simpler since some of these non-core nodes are
connected to the core objects through the given edges set. We emphasize that the decision whether to
expand the labels to non-core objects at all stems from the nature of the specific problem at hand.

Expanding the labels to these non-core objects on a graph clustering requires an adapted approach
tailored to its unique nature. To achieve this, the method should leverage both the graph structure and
the node representations. In the following sections, we propose two methods to accomplish this.

3.2.1 Intrinsic diffusion:

This simple approach assigns labels to the remaining nodes by leveraging the graph structure. The
label diffusion method computes the closest labeled node for each unlabeled node. To accomplish
this, we utilize the graph structure to calculate the intrinsic distance between node vi and vj . Using
that distance, we assign each remaining node the corresponding label: ŷi = ŷj∗ , where j∗ represents
the closest intrinsically labeled node j∗ = argminj∆(vi, vj), where ∆ denotes the intrinsic dis-
tance calculated over the graph. Finding the closest-intrinsic node for each remaining node can be
computationally expensive. Inspired by Dijkstra’s algorithm [38], we propose a simple algorithm to
efficiently assign each remaining node to its closest intrinsic node, as illustrated in Figure 3 (b).

Our method comprises of the following two steps 1 First, we construct a Priority Queue that contains
only edges connecting labeled nodes to unlabeled nodes. The edges are sorted based on their length
Dij , where Dij = ∆(vi, vj). This distance indicates the dissimilarity between two given samples.
Second, we begin by extracting edges from the queue. The queue ensures that in each iteration, we
obtain the shortest edge. Similar to the Dijkstra algorithm [38], we update the distances between
labeled and unlabeled nodes in each iteration. This process guarantees that each unlabeled node is
assigned its closest label in the graph. We assign the unlabeled node ŷi the value of the labeled node
ŷj∗ . For each assigned node vj , we add its unlabeled neighbors to the queue. We repeat these two
stages process until the queue is empty.

Note that the latter process can be performed using the MST instead of the entire graph. Our
experiments have shown that there is no significant performance difference (less than 0.1%) between
the two options. However, the tests do show that using only E(mst) improves the run time by a factor
of more than two.

It should be noted that our method relies solely on the intrinsic distances between nodes. As a
result, graph components without any labeled nodes will remain completely unlabeled. However,
the following post-processing method addresses this issue by ensuring that every node in the graph
receives a label.

3.2.2 Label expansion using GNN

To address the limitations of the previous method, we can employ a straightforward GNN classification
model. This model learns the missing labels by leveraging both the graph structure and node

1A more detailed description of this algorithm is included in Section C of the appendix
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attributes. We can utilize GNN architectures composed of layers such as Graph Convolutional
Networks (GCN)[29] or Graph Attention Networks (GAT)[31]. The training process involves using
our core nodes as classification labels to train the GNN model. GNN layers such GCN and GAT
based on Message passing [39, 40] mechanism and operates as follows:

H
(ℓ+1)
i· = σ(

∑
j∈Ni

1

γij
H

(ℓ)
j· W (ℓ)), (4)

where H
(ℓ)
j is the representation of node vj in specific layer ℓ (where H(0) = X), and W (ℓ) denote

the learnable weights of the layer, Ni is the set of neighbors of node vi (including vi itself) and γij is
the weight of the edge (i, j). In GCN layers γij is determined and fixed: γij =

√
|Ni| · |Nj |, and for

GAT γij calculating using learnable weights.

Once the network training is completed, we can use it for inference on our non-core nodes. This
ensures that the expansion learning process takes into account both the features and the structure of
the graph when assigning each non-core node to its appropriate cluster.

It should be noted that this part of the method is partially extrinsic, and can result in assigning the
same label to two nodes that are not connected to each other, based solely on their tabular features.
Examples of such errors can be observed in Figure 3(c). At a first glance, this post process seems to
negate the very essence of our contribution, as it generates features intrinsically but assigns cluster
labels extrinsically. However, is should be emphasized that this post process only applies to non-core
objects, and initial labels where set intrinsically using GSCAN. This post process offers a compromise
between the intrinsic and extrinsic approaches, and its performance compared to the previous diffusion
approach will be dictated by the homophily of the specific data at hand. Additionally, it should be
noted that the training process of the GNN is, like all deep learning cases, stochastic in nature, and
each training session might yield different outcomes for the same train labels {yi}.

4 Experiments
Benchmark datasets. The experiments were conducted using the three Planetoid citation networks
dataset: Cora, Citeseer & Pubmed [1]. The properties of each graph dataset are described in Table 2.

Table 2: Properties of the individual dataset used in our experiments.

Dataset nodes features edges classes homophily2

Cora 2708 1433 10556 7 81.0%
Citeseer 3327 3703 9104 6 73.6%
Pubmed 19717 500 88648 3 80.2%

Baseline methods & representations. We evaluate our method using the artificial division men-
tioned in the introduction and Table 1, where existing methods comprised of two phases: representa-
tion extraction and clustering. The following representation methods are included in our experiments:
DCN [11] end-to-end DAE tabular method, that learns the representation without edges. GAE [30]
Graph Autoencoder (& variational Graph Autoencoder) that learns the representation using both
structures & features using graph convolutional network layers and reconstruction loss. DAEGC [9]
end-to-end GAE that learn the representation using KL clustering loss. DMoN [12] end-to-end pool-
ing GNN that learn clustering assignment using regulized-modularity loss. TVGNN [13] end-to-end
GNN that utilizes loss function based on the graph topology using the concept of TV.

Clustering methods. The methods DCN, GAE and DAEGC use KMeans [14, 15] as the clustering
method, which will be our baseline for comparison. We use the simple extrinsic KMeans implemen-
tation, which is identical to the version used as the final step of the end-to-end clustering methods.
To compare our method to end-to-end methods, we run GSCAN on the latest node representation
in the GNN, either before pooling for [12] or before the logits for [13]. HDBSCAN (EoM)[17–19]
is included to emphasize the effect of our edge-aware adaptation thereof. We use three versions of
HDBSCAN: The first is the vanilla version of the algorithm, and additionally reports the results of
our two label expansion methods presented in Section 3.2. GSCAN indicates our edge-aware version
of EoM, and it too is presented in its ‘vanilla’ form as well as with the two label expansion methods.

2Formal definition of the formula for homophily can be found in Section B.1 of the appendix
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Table 3: Performance metrics on [1] datasets, Pubmed, Cora and Citeseer. We indicate the GNN-expansion
and intrinsic diffusion by † and ⋆ respectively. MNI values are in the range [0, 100]. Best average result for
each representation is marked in bold (even if not statistically significant), while the very best in the table is
additionally colored in blue.

Pubmed Cora Citeseer

repr. method edge
aware

F1 ARI NMI F1 ARI NMI F1 ARI NMI

D
C

N
[1

1]

KMeans No 39.9±2.2 0.9±0.6 0.9±0.6 22.5±0.7 0.2±0.4 0.8±0.5 23.7±1.1 0.4±0.2 0.7±0.2
HDBSCAN No 40.7±5.6 2.5±4.8 3.2±4.4 24.0±2.5 0.6±0.8 1.4±0.9 24.7±2.0 0.3±0.2 0.9±0.4
HDBSCAN⋆ No 40.9±6.2 2.5±4.7 3.2±4.5 24.4±2.4 0.6±0.8 1.3±0.9 24.8±2.0 0.3±0.2 0.9±0.4
HDBSCAN† No 42.7±5.5 2.8±4.8 3.5±4.5 25.1±2.0 0.7±0.8 1.4±0.8 25.5±1.7 0.4±0.3 1.0±0.5
GSCAN Yes 48.1±4.1 3.8±6.9 5.3±6.3 32.9±1.2 3.1±1.3 9.3±2.5 34.5±1.2 1.8±0.6 10.4±1.8
GSCAN⋆ Yes 50.1±3.5 5.0±6.7 6.0±6.4 38.6±1.9 8.1±1.9 16.0±3.0 38.8±0.8 10.0±1.4 13.0±1.3
GSCAN† Yes 50.1±4.1 5.9±7.6 6.6±7.5 32.1±1.9 3.6±1.8 5.7±1.6 32.3±1.0 3.0±1.1 4.0±1.2

G
A

E
[3

0]

KMeans No 58.7±2.4 16.6±2.4 20.7±2.5 60.8±2.1 35.1±1.9 45.6±1.4 45.5±2.3 16.1±2.4 21.9±1.8
HDBSCAN No 52.6±2.6 10.6±3.5 19.3±5.1 52.9±3.2 21.2±3.7 38.9±3.6 30.7±1.6 1.1±0.8 6.0±2.7
HDBSCAN⋆ No 57.1±3.1 17.5±5.6 24.2±5.9 61.9±4.9 38.3±6.0 45.8±3.5 37.1±4.4 3.5±3.0 11.4±5.1
HDBSCAN† No 54.7±4.2 13.5±7.8 20.3±6.2 54.0±4.4 24.1±6.1 38.3±3.1 38.4±4.5 4.8±3.6 13.4±5.5
GSCAN Yes 50.4±1.5 7.1±2.4 19.5±1.3 61.4±1.3 28.0±2.2 46.0±1.1 45.3±1.6 9.6±2.2 25.0±1.0
GSCAN⋆ Yes 57.8±0.9 20.1±1.0 25.2±1.6 68.1±1.4 41.9±2.7 50.6±1.1 48.7±0.9 16.2±1.1 24.8±0.9
GSCAN† Yes 57.8±1.2 20.5±1.5 25.7±2.0 65.0±1.9 38.2±3.2 47.1±2.2 57.9±1.5 29.0±2.9 33.3±1.6

D
M

oN
[1

2]

pooling Yes 43.8±4.4 11.3±2.0 17.3±2.9 55.7±2.1 29.3±1.5 46.5±1.4 45.3±3.0 19.5±1.9 27.9±1.7
HDBSCAN No 49.8±1.1 1.3±1.0 7.1±2.9 54.2±2.6 26.8±2.2 44.4±1.5 44.9±3.0 19.0±1.9 28.1±1.7
HDBSCAN⋆ No 50.6±0.6 1.4±1.0 7.4±3.1 57.0±3.0 30.9±2.4 46.6±1.5 45.4±3.0 19.6±1.9 28.1±1.7
HDBSCAN† No 50.6±0.7 1.6±1.1 7.8±3.3 56.7±2.8 30.7±2.2 46.2±1.3 45.4±3.1 19.6±2.0 28.0±1.7
GSCAN Yes 49.1±1.8 14.4±1.2 8.2±1.6 57.1±3.7 27.4±3.5 46.0±1.7 41.3±2.5 7.6±1.3 25.2±1.9
GSCAN⋆ Yes 51.0±2.7 16.2±1.7 17.9±2.3 60.5±3.9 34.1±4.0 47.5±1.8 43.7±2.9 12.9±1.8 24.3±1.9
GSCAN† Yes 50.3±1.8 14.4±1.5 13.6±2.6 59.6±4.8 34.6±4.9 47.1±2.2 49.4±3.2 21.7±2.5 28.2±1.7

T
V

G
N

N
[1

3]

argmax Yes 58.6±3.7 18.7±1.3 21.9±1.3 57.1±5.7 31.3±6.3 41.1±5.3 57.8±5.1 31.1±4.6 33.0±3.5
HDBSCAN No 53.9±4.3 12.1±6.7 13.1±6.8 41.4±4.2 9.2±3.4 23.6±5.9 55.0±4.2 26.0±4.0 28.5±2.8
HDBSCAN⋆ No 58.9±3.4 15.6±8.1 17.7±8.7 56.3±9.1 28.2±12.5 39.2±9.7 57.0±4.5 32.0±4.3 33.2±3.5
HDBSCAN† No 58.8±3.4 15.5±8.1 17.6±8.8 56.0±8.8 28.0±11.7 38.4±9.3 58.9±4.6 32.0±4.3 33.1±3.5
GSCAN Yes 47.7±1.2 3.9±2.7 12.6±1.4 47.1±5.0 13.7±4.3 31.9±4.9 49.2±2.3 13.5±1.4 26.9±2.0
GSCAN⋆ Yes 58.3±4.8 18.5±2.0 20.5±1.5 58.8±6.7 30.6±8.8 43.5±4.9 49.0±2.2 17.6±1.6 25.5±1.9
GSCAN† Yes 59.3±4.7 20.4±2.4 23.2±1.9 58.6±6.9 32.1±9.1 42.9±5.5 58.9±4.6 32.0±4.3 33.5±3.5

D
A

E
G

C
[9

]

KMeans No 59.1±0.9 19.7±1.2 23.4±1.8 66.3±1.9 41.7±2.3 48.8±1.9 62.9±1.2 35.7±1.7 35.5±1.3
HDBSCAN No 58.1±3.9 13.8±4.2 19.7±5.1 57.5±4.4 26.7±3.8 43.8±4.8 50.7±3.9 12.1±4.1 30.7±3.2
HDBSCAN⋆ No 62.7±5.1 26.4±8.2 30.0±7.0 65.0±7.0 41.1±8.2 49.5±6.1 60.6±3.0 34.0±3.8 35.1±2.4
HDBSCAN† No 62.5±4.1 22.5±8.0 25.3±7.4 59.9±6.6 34.4±7.9 44.3±5.9 57.1±3.9 30.2±4.3 32.5±2.8
GSCAN Yes 55.8±3.0 14.2±4.5 18.3±4.1 62.9±0.7 31.2±2.6 49.9±1.2 49.6±0.7 13.6±1.2 28.0±1.0
GSCAN⋆ Yes 65.4±1.8 25.2±3.5 25.4±2.3 71.2±0.8 46.7±1.8 52.2±0.5 50.5±0.4 18.1±0.6 26.7±0.6
GSCAN† Yes 67.6±4.0 31.0±5.0 31.7±3.7 71.7±1.1 49.6±2.4 52.4±1.4 64.7±2.1 38.2±3.2 39.9±2.3

4.1 Evaluation metrics & parameter settings.

Metrics. We use three standard clustering evaluation metrics [41]: Normalized Mutual Information
(NMI), Adjusted Rand Index (ARI) & F1-Score [42]. It is common practice to also use the Accuracy
(ACC) measure. However, a drawback of ACC is that it relies on prior knowledge of the number of
clusters. This poses a problem as some of the methods being evaluated use the number of clusters as
a parameter while others do not. Hence, the use of this metric becomes problematic in such cases.
We also report the percentage of samples that are assigned to a cluster (covered). For statistical
significance, we ran each experiment 20 times, and report average values and standard-deviation.

Parameter settings. For our experiment, we employed the default parameters of the following meth-
ods: DAEGC, DMoN, TVGNN, and DCN, as described in their original papers. All Autoencoders
utilized a 16-dimensional latent space for node embedding. GAEs employed two layers of GAT [31]
layers. Whenever the number of cluster parameter K was required, we used the actual number of
classes present in each dataset. The distance function ∆(·) for our method is the cosine distance
function. The parameter m (minimum number of samples in a cluster) for EoM clustering was set 3

to be about 2% of the number of nodes N . We ran our experiments on a machine with an 8-core Intel
i7 processor with 64GB of RAM, and a GeForce RTX 3070 GPU card with 8GB of memory.
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4.2 Experiment results
The experimental results are presented in Table 3. The results show significant variations across
different representations. This finding highlights the considerable impact of representation choice
on the outcomes of clustering algorithms. Notably, at least one of our two label expansion flavours
over GSCAN consistently outperforms all other algorithms in the majority of experiments. This
observation underscores the robustness of our approach in effectively handling diverse input rep-
resentations. Additionally, our post-processing methods yield better results than the KMeans even
for end-to-end methods DAEGC and DCN, despite the fact they were trained specifically to fit the
KMeans algorithm. The improvement of our method over TVGNN, while significant, is smaller
compared to the improvement over DAEGC. We attribute this to the fact that TVGNN is already fully
edge-aware, which makes it challenging for our method to enhance results.

The representation generated by the DAEGC [9] achieves the highest performance, an observation
that highlights its expressive power. The gap in performance of GSCAN over HDBSCAN emphasizes
the importance of edge awareness for graph clustering. Finally, the performance of the DCN is
relatively low compared to GNN-based algorithms. This observation highlights the significance of
incorporating both the graph structure and node attributes in the graph clustering process.

Cover percentage. is displayed in Table 4, which is the proportion of nodes that are assigned to a
cluster. It is evident that both our method and HDBSCAN may not assign cluster labels to every node
in the graph. However, our proposed post-processing methods greatly enhance this aspect.

Table 4: Average covered percentage of each method, for each dataset

dataset KMeans HDBSCAN HDBSCAN⋆ HDBSCAN† GSCAN GSCAN⋆ GSCAN†

cora 100 70.0±14.9 100 100 41.3±20.7 91.8 100
citeseer 100 54.1±24.8 100 100 40.6±11.5 63.7 100
pubmed 100 70.6±22.5 100 100 60.0±22.9 100 100

Run time. Our clustering calculation time is influenced mainly by the number of edges |E| and
also by the dimension of node features X . We can see in Table 5 that indeed the runtime grows
proportionally with the number of edges |E|.

Table 5: Run times for some of the methods in Table 3 in seconds. See Table 3 for the meaning of † and ⋆.

dataset KMeans GSCAN GSCAN† GSCAN⋆

citeseer 0.14±0.01 0.03±0.01 0.49±0.05 0.02±0.0
cora 0.13±0.01 0.03±0.01 0.49±0.01 0.02±0.0
pubmed 0.2±0.03 0.28±0.03 0.59±0.02 0.21±0.05

5 Conclusion
In the current study we have shown that the leading recent deep graph clustering approaches use
the graph structure for feature extraction only and ignore it in the final clustering phase. We have
introduced GSCAN, a new edge-aware version of EoM, and additionally two possible label expansion
approaches to handle unassigned nodes. We show that when coupled with the expansion methods,
GSCAN consistently obtains SOTA results over several datasets.

At least one of the expansion methods consistently reaches the top results, including the vanilla
GSCAN. The reason for either expansion to yield better results depends mainly on the problem at
hand; For example, the Planetoid datsets [1] we used do not include outlier labels, which favors our
label expansion over vanilla GSCAN. In more realistic scenarios, where one might deal with many
outliers, the vanilla version might perform better.

While GSCAN indeed uses the graph structure, it is not incorporated into the feature training process.
A future stage in our work would be to show how GSCAN can be incorporated into an end-to-
end training process, i.e. to show it is differentiable, or at the very least be used in an alternating
optimization framework as was done in [9] or [13].

3see Section B.2 of the appendix for more details on the selection and stability of the value of m
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Appendix
A Flow diagram of GSCAN
For clarity, we include a high-level flow diagram 4 of the proposed method.

N
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Figure 4: Flow diagram of GSCAN, where our main contributions are marked in violet therein. For a given
graph G (with feature matrix X and edges set E), we use some method (such as DAEGC [9] or TVGNN [13])
to obtain node representation. Using this representation, we perform graph clustering using the Excess of Mass
optimizer. To handle unlabeled nodes, we optionally perform one of the two proposed post-processing stages, to
expand the labels to non-core objects in the graph.

B Additional experimental results
B.1 Effect of Homophily

Our intrinsic approach to graph clustering is based on the assumption of a highly homophilic topology.
Homophily [5] [6] is the principle that the graph’s topology reflects the similarity between pairs of
nodes. The homophily ratio quantifies this relationship and is computed using the following formula:

Homophily(G) =
1

|E|
∑

(i,j)∈E

I{Yi==Yj} (5)

where I is the indicator function. A high homophily ratio indicates a strong correlation between the
topology of the graph and the partitioning of nodes. To investigate the impact of the homophily ratio
on our method’s performance, we conducted an experiment using the MixHop dataset [43]. This
dataset consists 10 sub-datasets, all sharing the same feature matrix X but with distinct sets of edges
E. Each sub-dataset represents a different homophily value ranging from 0 to 0.9. By applying our
method to these datasets, we can assess the influence of the homophily ratio on performance, as
illustrated in Figure 5.
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Figure 5: Homophily influence on GSCAN performance The charts shows the resulting NMI, F1 score and
NMI for each homophily rate.

The results indicate a positive relationship between the homophily ratio and the performance of our
method, as stated in the main text. As the homophily ratio increases, our algorithm consistently
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delivers improved results. This property is not of GSCAN alone and is shared with most edge-aware
methods. These findings underscore the significant influence of graph homophily on the quality
of clustering outcomes. Specifically, when the intrinsic distance accurately reflects the similarity
between nodes, the resulting clusters exhibit higher quality and improved clustering performance.

B.2 Selection of the parameter m

The parameter m indicates the minimal allowed cluster size in the EoM process. In our experiments,
we use m approximately 2% of the number of nodes N . Figure 6 shows the performance of GSCAN
over the features of TVGNN [13] (arbitrarily selected, other representations behave similarly). It can
be seen that the performance stay quite constant well beyond the value we selected. We stress that
the optimal value for m depends on the data at hand, and a smaller value of m might be needed in
some cases.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
m [% of nodes]

0.0

0.2

0.4

0.6

0.8

1.0

m
e

tr
ic

 v
a

lu
e

Citeseer

ARI

F1

NMI

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
m [% of nodes]

0.0

0.2

0.4

0.6

0.8

1.0

m
e

tr
ic

 v
a

lu
e

Cora

ARI

F1

NMI

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
m [% of nodes]

0.0

0.2

0.4

0.6

0.8

1.0

m
e

tr
ic

 v
a

lu
e

Pubmed

ARI

F1

NMI

Figure 6: Sensitivity of GSCAN over the Planetoid [1] datasets to the parameter m (or lack thereof).We
used m ≈ 2% of the number of nodes N , which is well in the plateau region of the graphs.

B.3 Results using VGAE and EGAE representations

Due to space considerations, as well as architecture similarity to other methods, the results on
VGAE [30] and EGAE [34] were omitted from Table 3 in the main text. We append them here for
completeness.

Table 6: Performance metrics on [1] datasets, Pubmed, Cora and Citeseer, using representation of VGAE [30]
and EGAE [34]. See Table 3 in the main text for more details.

Pubmed Cora Citeseer

repr. method edge
aware

F1 ARI NMI F1 ARI NMI F1 ARI NMI

V
G

A
E

[3
0] KMeans No 49.5±1.2 4.0±0.8 6.5±1.4 23.2±0.5 0.4±0.3 0.9±0.5 46.0±1.7 15.0±0.9 19.8±1.3

GSCAN Yes 50.4±0.5 0 2.9±1.2 30.0 0 2.5 43.1±1.6 6.8±1.2 22.8±1.4
GSCAN⋆ Yes 57.2±2.5 10.6±4.9 11.5±4.4 30.4±2.0 0.3±2.7 3.2±3.3 48.0±0.8 15.9±1.1 24.3±1.0
GSCAN† Yes 56.6±2.5 9.7±4.6 11.0±5.0 30.1±2.2 0.6±2.7 0.9±4.1 57.1±2.1 28.3±3.4 32.9±1.8

E
G

A
E

[3
4] KMeans No 53.5±1.4 15.4±1.2 20.3±1.7 18.7±0.1 0 0.4 45.7±1.5 16.9±2.4 23.9±1.3

GSCAN Yes 61.5±1.8 19.9±2.8 20.6±2.4 31.6±0.7 1.3±0.6 7.8±2.2 44.7±0.9 9.4±1.3 26.1±0.6
GSCAN⋆ Yes 62.5±1.9 20.1±3.1 20.5±2.3 42.7±3.7 13.4±5.0 19.4±3.4 47.1±0.4 14.8±0.8 25.8±0.6
GSCAN† Yes 62.8±2.0 20.6±3.2 21.4±2.5 30.9±0.9 2.1±1.7 3.1±1.1 50.1±1.0 21.8±2.2 26.0±1.6
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C Intrinsic Diffusion Label Expansion Algorithm
In Section 3.2.1 of the main text, we described our Intrinsic Diffusion post-processing label expansion
method. This algorithm allows the expansion of GSCAN’s output labels to unlabeled nodes. The
complete description of the diffusion algorithm is presented in Algorithm 1 below.

Algorithm 1 Graph Intrinsic Diffusion. By utilizing the Priority Queue in a similar manner to Dijkstra [38],
we guarantee that each unlabeled node vi obtains the closest intrinsic label yj .

Require: Graph G with nodes V , edges E and nodes cluster labels yiNi=1, all as defined in section
2.1 in the main text.

Ensure: Diffusing graph clustering of labels onto unlabeled nodes (marked as yi = −1) that are
connected to labeled nodes.

Q← PriorityQueue()
for (i, j) ∈ E do

if (yi < 0 & yj ≥ 0) then
Dij ← ∆(vi, vj)
Q.add((i, j), by = Dij)

end if
if (yi ≥ 0 & yj < 0) then

Dij ← ∆(vi, vj)
Q.add((j, i), by = Dij)

end if
end for

▷ now the Priority Queue ready and sorted by length
R← [· · ·] ▷ |R| = |V |, distance from a labeled node
Ri =∞ if yi < 0 else 0
while Q not empty do

(i, j)← Q.pop()
if yj < 0 then

yj ← yi
Rj ← ∆(vi, vj)
for r ∈ Neighbors(vj) do

if Rr > ∆(vj , vr) +Rj then
Djr ← ∆(vj , vr)
Q.add((j, r), by = Djr +Rj)

end if
end for

end if
end while
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