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Abstract
Our study reveals new theoretical insights into over-smoothing and feature over-
correlation in graph neural networks. Specifically, we demonstrate that with
increased depth, node representations become dominated by a low-dimensional
subspace that depends on the aggregation function but not on the feature trans-
formations. For all aggregation functions, the rank of the node representations
collapses, resulting in over-smoothing for particular aggregation functions. Our
study emphasizes the importance for future research to focus on rank collapse
rather than over-smoothing. Guided by our theory, we propose a sum of Kro-
necker products as a beneficial property that provably prevents over-smoothing,
over-correlation, and rank collapse. We empirically demonstrate the shortcom-
ings of existing models in fitting target functions of node classification tasks.

1 Introduction
Despite the great success of Graph Neural Networks (GNNs) for homophilic tasks [1–4], their
performance for more complex and heterophilic tasks is largely unsatisfying [5]. Two leading causes
are over-smoothing [6, 7] and feature over-correlation [8].The conditions under which over-smoothing
and over-correlation occur and in which cases they can be prevented are not well-understood in
the general case. Some works argue that all node representations converge to a constant state
and have discarded the interaction with feature transformations in their analysis [9–11]. Other
works have proven that over-smoothing only occurs when the feature transformations satisfy some
constraints [6, 12, 13], and choosing suitable parameters can even cause an over-separation of node
representations [6, 12, 13]. Over-correlation refers to all feature columns becoming overly correlated,
which was only recently empirically observed [8]. While Jin et al. [8] highlighted the occurrence
even when over-smoothing is prevented, its theoretical understanding is limited.

This work clears up different views on over-smoothing and provides a theoretical investigation of the
underlying reason behind both over-smoothing and over-correlation. We show that common graph
convolutions induce invariant subspaces, each demonstrating distinct predefined behaviors. Critically,
this behavior only depends on the spectrum of the aggregation function and not on the learnable
feature transformations or the initial node features. When considering the limit in the linear case,
a low-dimensional subspace dominates the results, leading to over-smoothing when this subspace
aligns with smooth signals. More importantly, node representations suffer from rank collapse for all
aggregation functions, explaining the effect of over-correlation. This severely limits the expressivity
of deep GNNs, as these models cannot fit target functions that require multiple signals to be amplified,
which we empirically confirm also for the non-linear case. We propose a simple but provably more
expressive family of models based on the sum of Kronecker products (SKP) that can maintain the
rank of its features. We summarize our key contributions as follows:

• We provide a shared theoretical background of over-smoothing and over-correlation by showing
the dominance of a fixed subspace induced by the aggregation function, allowing us to provide
general proofs for both phenomena.
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of the Second Learning on Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November 27–30, 2023.
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• While our insights confirm that over-smoothing can be solved by choosing an appropriate
aggregation function, we identify the phenomenon of a rank collapse of node representations as
the crucial challenge for GNNs going forward.

• To counteract this limited expressivity, we propose the utilization of a sum of Kronecker products
(SKP) as a general property that provably solves rank collapse, which we empirically confirm.

2 Preliminaries
Notation. We consider a graph G = (V, E) consisting of a set of n nodes V = {v1, . . . , vn} and
a set of edges E . The adjacency matrix A ∈ {0, 1}n×n has binary entries indicating whether an
edge between two nodes exists or not. We assume graphs to be irreducible and aperiodic. We denote
the set of nodes neighboring node vi as Ni = {vj |aij = 1}. The degree matrix D ∈ Nn×n is a
diagonal matrix with each entry dii = |Ni| representing the number of neighboring nodes. For a
given matrix M, we denote its eigenvalues with λM

1 , . . . , λM
n that are sorted with decreasing absolute

value |λM
1 | ≥ · · · ≥ |λM

n |. A matrix is vectorized vec(M) by stacking its columns into a single
vector. The identity with d dimensions is denoted by Id ∈ Rd×d.

Graph neural networks. Given a graph G and a graph signal X ∈ Rn×d representing d features
at each node, the goal of a graph neural network (GNN) is to find node representations that can be
used effectively within node classification, edge prediction or various other challenges. Within these,
graph convolutional operations repeatedly update the state of each node by combining the state of all
nodes with the states from their neighbors [14].

We consider graph convolutions that iteratively transform the previous node states of the form

X(k+1) = ÃX(k)W(k) . (1)

At each iteration k, we consider distinct feature transformations W(k) ∈ Rd×d of the node represen-
tations and a homogeneous neighbor aggregation represented by Ã ∈ Rn×n. Popular instantiations
covered by this notation include the graph convolutional network (GCN) [15], the graph isomorphism
network (GIN) [16], and the graph attention network (GAT) [17] with a single head.

3 Related Work
Over-smoothing in GNNs. Over-smoothing arises when node representations X(k) exhibit ex-
cessive similarity to one another as the number of layers k increases. As our study extends prior
analyses, we first outline the presently available theoretical insights concerning over-smoothing when
considering the linear case. Li et al. [9] connected over-smoothing in GCNs to a special form of
Laplacian smoothing when ignoring the feature transformation. While some methods similarly ignore
the feature transformation [10, 11], its role is more complicated. The pioneering work of Oono and
Suzuki [6] showed that the feature transformation must not be ignored by bounding the distance

dM(AXW) ≤ λA
2 σW

1 dM(X) (2)

of the representations to a smooth subspace M that is induced by the dominant eigenvector v1. The
bound uses the second largest eigenvalue λA

2 and the largest singular value σW
1 of W. Intuitively, each

aggregation step A reduces this distance, while W can increase the distance arbitrarily. Thus, they
consequently claim potential over-separation when σW

1 > 1
λA
2

, which refers to node representations
differing strongly. As an interpretable metric to determine the smoothness of a graph signal, Cai and
Wang [12] introduced the Dirichlet energy

E(X) = tr(XT∆X) =
1

2

∑
(i,j)∈E

∥∥∥ xi√
di

− xj√
dj

∥∥∥2
2

(3)

using the symmetrically normalized graph Laplacian ∆ = In −D− 1
2AD− 1

2 . A low energy value
corresponds to similar node states. Similarly to Oono and Suzuki [6], they provided the bound

E(AXW) ≤
(
λA
2

)2 (
σW
1

)2
E(X) (4)

for each convolution and prove an exponential convergence in the limit. As their proof again only
holds in case σW

1 ≤ 1/λA
2 , they similarly claim potential over-separation. Zhou et al. [13] provide
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(a) Dirichlet energy converges to zero. (b) Dirichlet energy does not converge.

Figure 1: Comparison of the Dirichlet energy Erw(X
(l)) and the norm ||X(l)||2F of the represen-

tations after l layers for three commonly used models (Graph Convolutional Network (GCN) [15],
Graph Attention Network (GAT) [17], GraphSAGE [33]) on the Cora dataset [34]. For (a), we used
random weights, for (b), we scaled these weights by a factor of 2.

a lower bound on the energy to show that the Dirichlet energy can go to infinite. All of these
works conclude that over-smoothing only occurs with high probability and propose to find suitable
feature transformations W to trade-off between over-smoothing and over-separation [6, 12, 13, 18].
Di Giovanni et al. [19] and Maskey et al. [20] studied the case when all feature transformations
are restricted to be the same symmetric matrix. It remains unclear which feature transformations
reduce or increase the Dirichlet energy in the unconstrained case. Another line of work found node
representations to converge to a constant state [11, 21–23], though it remains unclear for which
aggregation functions and feature transformations this holds. While various methods to mitigate
over-smoothing have been proposed, the underlying issue persists [24–27].

Over-correlation in GNNs. Jin et al. [8] empirically revealed an excessive correlation among
node features with increased model depth, as measured by the Pearson correlation coefficient. This
over-correlation results in redundant information and limits the performance of deep GNNs. The
study emphasizes that over-smoothing always leads to over-correlation, but that over-correlation
also arises independently. Similarly, Guo et al. [28] empirically observed that feature columns in
GNNs and Transformers have the tendency to converge to non-smooth states characterized by low
effective rank, where most singular values are close to zero. This phenomenon, which they refer to
as dimensional collapse, has also been observed in the context of contrastive learning [29, 30]. To
address over-correlation, some works suggest incorporating it into the loss function [8, 31], while
others propose combining the results of message-passing with decorrelated signals from the previous
state [28, 32]. However, the underlying theory behind over-correlation remains largely unexplored,
especially concerning feature transformations.

4 Over-Smoothing and Convergence to a Constant State
We start by clarifying distinctions in the current comprehension of over-smoothing. Recent re-
search [11, 21–23] defines over-smoothing as the exponential convergence to a constant state using the
Dirichlet energy Erw(X) = tr(XT∆rwX) based on the random walk Laplacian ∆rw = In−D−1A
as the constant state corresponds to its nullspace. In contrast, other studies provided theoretical
insights into convergence toward the dominant eigenvector of the aggregation function [6, 12, 13],
which is not always constant, e.g., for the GCN [15]. We attribute these differences to the norm
of X(k) overshadowing insights from the Dirichlet energy. Analogous to the Dirichlet energy (see
Eq. 4), the norm is likewise bounded by the largest singular value of the feature transformation:

Proposition 4.1. (Node representations vanish.) Let Ã ∈ Rn×n = D− 1
2AD− 1

2 , W ∈ Rd×d be
any matrix with maximum singular value σW

1 , and ϕ a component-wise non-expansive mapping
satisfying ϕ(0) = 0. Then,

||ϕ(ÃXW)||F ≤ σW
1 · ||X||F . (5)

We present all proofs in Appendix A. When σW(k)

1 < 1 for all W(k) this implies convergence to the
zero matrix.With all node states close to zero, the Dirichlet energy becomes also zero.
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We compare the Dirichlet energy and the norm in Figure 1, and observe a close alignment between
both metrics. While we confirm that the Dirichlet energy converges to zero, our findings show
that this solely results from the norm converging to zero. Repeating this experiment for scaled
feature transformations to prevent vanishing norms, we observe the Dirichlet energy also avoids
convergence to zero, as shown in Figure 1. This elucidates deviations between directions claiming
either convergence of the GCN to constant columns [11, 21, 22] or values proportional to each node’s
degree [6, 12, 13].

Since the norm of the node representations overshadows the Dirichlet energy, it seems insufficient
to assess the energy of the unnormalized state. Other metrics, such as MAD [18] and SMV [35],
already incorporate feature normalization to quantify over-smoothing. Furthermore, recent studies
already consider the Dirichlet energy of the normalized state for studying over-smoothing [19,
20]. Our insights prompt a deeper exploration of over-smoothing and its interaction with feature
transformations, aiming to comprehend its causes better, mitigate its impacts, and advance the
development of more powerful GNNs.

5 Understanding Graph Convolutions using Invariant Subspaces
We delve into the underlying cause for over-smoothing and over-correlation while analyzing the role
of feature transformations in these phenomena. We consider the linearized update function from
Eq. 1 employing any symmetric aggregation function Ã ∈ Rn×n and time-inhomogeneous feature
transformations W(k) ∈ Rd×d for each layer k. Leveraging the vectorized form

vec(ÃX(k)W(k)) = (W(k)T ⊗ Ã) vec(X(k)) = T(k) vec(X(k)) (6)

allows us to combine the aggregation and transformation steps through the Kronecker product
T(k) = (W(k)T ⊗ Ã) ∈ Rnd×nd. Further information about the Kronecker product can be found in
Appendix A. For clarity, we will omit the transpose.

Initially, we demonstrate that for a fixed aggregation Ã, all transformations T(k) induce the same
invariant subspaces that only depend on the eigenvectors of Ã. Formally, the vectorization operation
enables the decomposition of vectorized node representations

T(k) vec(X(k)) = T(k)Sc =

m∑
i=1

T(k)S(i)c(i) (7)

into a linear combination c ∈ Rnd of basis vectors S ∈ Rnd×nd. We further split these into a
sum of n invariant components across disjoint subspaces Qi = span(S(i)) ⊂ Rnd with their direct
sum

⊕n
i=1 Qi = Rnd covering the entire space. The linearity of T(k) allows us to apply the

transformation on each subspace separately. We construct our bases as S(i) = Id ⊗ vi ∈ Rn×d,
utilizing the eigenvectors vi of Ã, as these are invariant to any T(k):
Lemma 5.1. (The subspaces are invariant to any T(k).) Let T = W ⊗ Ã with Ã ∈ Rn×n

symmetric with eigenvectors v1, . . . ,vn and W ∈ Rd×d any matrix. Consider the subspaces
Qi = span(Id ⊗ vi) for i ∈ [n]. Then,

∀ i ∈ [n] : z ∈ Qi ⇒ Tz ∈ Qi .

This discovery is pivotal in our investigation, enabling us to dissect each subspace individually and
relate their differences.

5.1 Relating Dynamics in Subspaces

Our investigation now delves into the effect T(k) has on each these subspaces. Previous work
considered the impact of graph convolutions on coefficients c, deriving coarse bounds based on the
singular values of W were found [6, 12, 13] (see Section 3). We instead analyze how T(k) alters the
basis vectors S(i) of each subspace while maintaining the coefficients c constant, leading to a more
streamlined analysis of the underlying process. When applying only the aggregation function Ã,
each basis S(i) gets scaled by the corresponding eigenvalue λÃ

i . By construction, all transformations
W(k) act the same on each subspace, nullifying when assessing the relative norm change amongst
pairs of subspaces:
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Theorem 5.2. (The relative behavior is fixed.) Let T = W ⊗ Ã with Ã ∈ Rn×n symmetric with
eigenvectors v1, . . . ,vn and eigenvalues λÃ

1 , . . . , λÃ
n and W ∈ Rd×d any matrix. Consider the

bases S(i) = Id ⊗ vi and S(j) = Id ⊗ vj for i, j ∈ [n]. Then,

∥TS(i)∥F
∥TS(j)∥F

=
|λÃ

i |
|λÃ

j |
. (8)

We underline the significance of this key property. As the right-hand side is independent of W with
equality, the amplification or reduction of individual subspaces cannot be affected by any feature
transformation or the graph signal. The outcome is predefined exclusively by the eigenvalues of the
aggregation function. The functions learnable by each operation are inherently restricted.

5.2 Implications in the Limit

Considering the case where graph convolutions are repeatedly applied, we extend our results directly
to the iterated case and different transformations T(k) at each layer k, yielding the dominance of
fixed subspaces:
Proposition 5.3. (Fixed subspaces dominate.) Let T(k) = W(k) ⊗ Ã with Ã ∈ Rn×n symmetric
with eigenvectors v1, . . . ,vn and eigenvalues λÃ

1 , . . . , λÃ
n and W(k) ∈ Rd×d any matrix. Consider

the bases S(i) = Id ⊗ vi for i ∈ [n]. Then,

lim
l→∞

∥T(l) . . .T(1)S(i)∥F
maxp∥T(l) . . .T(1)S(p)∥F

= lim
l→∞

|λÃ
i |l · ∥S(i)∥F

maxp |λÃ
p |l · ∥S(p)∥F

=

{
1, if|λÃ

i | = |λÃ
1 |

0, otherwise

with convergence rate |λÃ
i |

|λÃ
1 |

.

As depth increases, only signals corresponding to the largest eigenvalue of the aggregation function
significantly influence representations, while those in other subspaces become negligible. The feature
transformations only affect the scale of all subspaces by a shared scalar. As previous studies did
not have insights into this dominance of a subspace, they claimed potential over-separation of node
representations when this scalar diverges to infinity [6, 12, 13]. Contrarily, considering the normalized
representations X(l)

||X(l)||F
seems to be necessary given our insights. We now assume that |λÃ

2 | < |λÃ
1 |

is strict, so that a single subspace dominates.

While the bases in all subspaces are the same, the distribution of the signals might be heavily skewed.
For example, the signal in Q1 might align with the nullspace of W(l) . . .W(1), while the signal
in other subspaces might not. However, the probability of W(l) . . .W(1) satisfying this property
converges to zero at an exponential rate with respect to the Lebesgue measure. This allows us to
formally show the convergence of the node representations to Q1 in probability:
Theorem 5.4. (Representations converge in probability to a fixed set.) Let X(k+1) = ÃX(k)W(k)

with Ã ∈ Rn×n symmetric with eigenvectors v1, . . . ,vn and W(k) ∈ Rd×d any matrix. Consider
the subspaces Qi = span(Id ⊗ vi) for i ∈ [n]. Then,

∀ ϵ > 0.∃ N ∈ N.∀ l ∈ N with l > N.∃m(l) ∈ Q1 : P
(∥∥∥∥ X(l)

∥X(l)∥F
−m(l)

∥∥∥∥
2

> ϵ

)
= 0 .

Thus, the probability of avoiding convergence to Q1 exponentially converges to zero with increased
model depth. While the chances always remain non-zero, finding these solutions is particularly
challenging for an optimization method based on gradient descent. The heavily constrained solution
space directly limits the model’s expressivity. In addition, any slight change in the input can cause
the signal to no longer align with the null space of the feature transformations, making a method with
this property meaningless for practical applications.

We emphasize that smoothing has yet to be part of our analysis. Our analysis and proofs are more
general, relying solely on the symmetry of the aggregation function Ã. Smoothing occurs only
for specific aggregations for which Q1 consists of smooth signals. The symmetrically normalized
aggregation function D− 1

2AD− 1
2 has this property, as its dominant eigenvector is v1 = D

1
21 and
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λÃ
1 is unique [36]. These novel insights enable us to frame our findings using the well-established

Dirichlet energy of the normalized node representations, which corresponds to the Rayleigh quotient
E(X/||X||F ) = tr(XT∆X)/||X||2F [12]. The Dirichlet energy of the normalized state was also
proposed by Di Giovanni et al. [19]. The key property needed is the equivalence of the dominating
subspace Q1 and the null space of Id ⊗ ∆, allowing us to provide the novel proof for feature
transformations in probability:
Proposition 5.5. (Over-smoothing happens for all W(k) in probability.) Let X(k+1) = ÃX(k)W(k)

with Ã = D− 1
2AD− 1

2 , W(k) ∈ Rd×d, and E(X) = tr(XT∆X) for ∆ = I− Ã. Then,

plim
l→∞

E

(
X(l)

∥X(l)∥F

)
= 0 (9)

with convergence rate
(

λÃ
2

λÃ
1

)2

.

5.3 Extending the Analysis to Arbitrary Aggregations

We now drop the assumption of a symmetric graph and allow for arbitrary edge weights between any
pair of nodes, a concept recently proposed to account for attraction or repulsion between nodes [5, 37–
39]. While prior investigations (e.g., [6, 12, 13]) focused on specific types of aggregations that were
not easily generalizable, our approach provides a more versatile framework. We find that Theorem 5.2
can be extended to arbitrary aggregation matrices Ã, revealing that the dominating signal for these
graph convolutions depends solely on the dominating signal of Ã:
Proposition 5.6. (informal) For any matrices Ã ∈ Rn×n and W ∈ Rd×d, the relative amplification
of subspaces only depends on Ã and not on W.

Importantly, invariant bases always exist, as given by the Jordan normal form [40]. Over-smoothing
is prevented by selecting or learning an aggregation matrix Ã with a well-suited spectrum.

5.4 Stochastic Aggregation Functions

Our findings can be readily extended to cases where we know about the dominance of a particular
signal for the aggregation function. This applies to all row-stochastic aggregations, also referred
to as the weighted mean, where the values in each row of Ã ∈ Rn×n are non-negative and sum up
to one. This analysis covers models such as the Graph Attention Network (GAT) [17, 41] with a
single attention head. Edge weights may be dynamically computed based on their adjacent nodes,
so we consider the case of time-inhomogeneous aggregation matrices Ã(0) ̸= Ã(1) ̸= . . . ̸= Ã(l).
Assuming the underlying graph is ergodic, each Ã(k) possesses the same right-eigenvector p1 = 1

with corresponding eigenvalue λÃ(k)

1 = 1. All other eigenvalues are strictly less in absolute value as
given by the Perron-Frobenius theorem [42] and stochastic processes [43]. Given a minimum edge
weight bound ϵ > 0, we build on the insight from Wu et al. [23] that any product Π∞

k=0Ã
(k) also

converges to a matrix with constant rows. This subspace dominates the representations as given by
Proposition 5.6, and we show over-smoothing using the Dirichlet energy in probability to exclude the
cases where the nullspace of W(1) . . .W(l) aligns with the signal in the dominating subspace:
Proposition 5.7. (GAT and Graph Transformer over-smooth.) Let X(k+1) = Ã(k)X(k)W(k) where
all Ã(k) ∈ Rn×n row-stochastic, representing the same ergodic graph with minimum non-zero value
> ϵ for some ϵ > 0 and W

(k)
i ∈ Rd×d. Then,

plim
l→∞

Erw

(
X(l)

∥X(l)∥F

)
= 0 .

6 Rank Collapse and Over-Correlation
We have seen that the choice of the aggregation function leads to over-smoothing, which can, therefore,
be prevented by selecting an aggregation with a different spectrum. However, the representations are
always dominated by some low-dimensional subspace Q1 = span(Id ⊗V1) based on some matrix
V1 ∈ Rn×j and the algebraic multiplicity j of all eigenvalues with the maximal absolute value |λÃ

1 |.
Node representations in Q1 cannot exceed the rank of j:

6
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Theorem 6.1. (informal) For all Ã ∈ Rn×n and for W(l) . . .W(1) in probability, in the limit
l → ∞, the rank of X(l) is bounded the joint algebraic multiplicity of all eigenvalues of Ã with
magnitude |λ1|.

This implies that, regardless of the aggregation function chosen, the representations collapse in
probability to a low-rank state bounded by the algebraic multiplicity j of the dominant eigenvalue.
This poses a significant challenge for the expressiveness of deep graph neural networks, as node
representations can only contain, at most, j relevant features. It also leads to a perfect correlation
among features if rank(Vi) = 1, e.g., when the dominant eigenvalue is unique. Jin et al. [8]
empirically observed this phenomenon and termed it over-correlation. This study reveals that rank
collapse is the fundamental issue underlying over-smoothing and over-correlation. These findings also
establish a connection between these phenomena and recent theoretical insights on deep Transformer
models, where rank collapse was also independently observed [44, 45].

7 Preventing Rank Collapse with a Sum of Kronecker Products
The core issue leading to rank collapse is the fact that the transformation matrix T = W ⊗ A
is composed of a single Kronecker product. To counteract rank collapse and consequently over-
smoothing and over-correlation, we need to construct a T that cannot be decomposed into a single
Kronecker product. We highlight that any matrix

T = (W1 ⊗A1) + (W2 ⊗A2) + · · ·+ (Wp ⊗Ap) (10)

can be decomposed into a finite sum of Kronecker products (SKP), as concatenation is a special
case [46, 47]. As each term can amplify a different signal per feature column, we show that d terms
are sufficient to amplify arbitrary signals across d columns:
Theorem 7.1. (informal) A sum of d Kronecker products T =

∑d
1(Wi⊗Ãi) can amplify independent

signals for at least d different columns.

The crucial advantage of an SKP is that each Wi can control the degree to which that term contributes
to each feature separately for each column. The SKP does not add computational complexity, as
we would not compute Kronecker products, i.e., (W1 ⊗ Ã1) + · · · + (Wp ⊗ Ãp)) vec(X) =

vec(Ã1XW1 + · · · + ÃpXWp). It is important to note that the concept of an SKP is not tied to
a specific model but rather a guiding principle that helps design methods with favorable properties.
This understanding also provides theoretical insights into the success of many existing methods
that can be understood as SKPs, including discrete convolutions [48], residual connections [49–51],
multi-head graph attention networks [17], mixing aggregation functions [52] or transforming signals
from incoming and outgoing edges differently [53]. However, Theorem 7.1 relies on each aggregation
matrix having a different dominating eigenvector to ensure the amplification of different signals
across feature columns.

8 Empirical Validation
Our theoretical statements show that the current message-passing frameworks suffer from rank
collapse, which makes learning complex functions in deep graph neural networks challenging. To
empirically confirm this phenomenon also for the non-linear case of finite depth, we now evaluate the
ability of message-passing frameworks to fit the target function of nine common benchmark datasets
for node classification.

Datasets. Three homophilic citation networks that generally benefit from smoothing are considered,
namely the citation datasets Cora [54], Citeseer [54], and Pubmed [54]. The other six datasets are
heterophilic, of which three are webpage datasets, namely Texas [55], Wisconsin [55], Cornell [55],
two are Wikipedia networks, namely Chameleon [56], and Squirrel [56], and one is the actor co-
occurrence network Film [57]. For each dataset, we select the largest strongly connected component
and optimize the cross-entropy loss for all nodes in order to compare each model’s ability to fit the
desired function. We do not utilize self-loops.

Considered Methods. Our theory motivates us to evaluate three different message-passing frame-
works: A single Kronecker product, a softmax-activated sum of Kronecker products, and any sum of

7
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(a) Cora (b) Citeseer (c) Pubmed

(d) Texas (e) Wisconsin (f) Cornell

(g) Film (h) Chameleon (i) Squirrel

Figure 2: Mean optimization loss across 10 runs for various node classification tasks with 8 layers of
message-passing. The shaded region indicates minimum and maximum loss values.

Kronecker products. A single Kronecker product

T
(k)
KP = W

(k)
1 ⊗ Ã

(k)
1 (11)

includes most current message-passing frameworks, such as the GCN [15], mean aggregation as in
GraphSAGE [33], sum aggregation as in GIN [16], negative edge weights as in FAGCN [38] and
many more [5, 37, 39]. To cover all of these methods in our experiments, the weights of the available
edges in Ã1 are directly learned from the data. The second framework

T
(k)
softmax−SKP =

1

2
(W

(k)
1 ⊗ τ(Ã

(k)
1 )) +

1

2
(W

(k)
2 ⊗ τ(Ã

(k)
2 )) (12)

extends our proof on time-inhomogeneous softmax-activated aggregation function (Prop. 5.7) to the
multi-head case, i.e., a sum of Kronecker products for which each aggregation function is activated
by a softmax function τ over each node’s neighbors. The weights of all available edges in Ã1 and
Ã2 are learned directly before applying τ , which causes the spectrum of both matrices to align
and Theorem 7.1 on improved signal amplification to not hold for this model. This represents the
multi-head versions of GAT [17], GATv2 [41], TransformerConv [58] and other potential attention
mechanisms. Following our theoretical insights on achieving a more powerful message-passing
framework, our third approach is based on a sum of Kronecker products

T
(k)
SKP = W

(k)
1 ⊗ Ã

(k)
1 +W

(k)
2 ⊗ Ã

(k)
2 , (13)

where the edge weights are not activated to avoid matching spectra between terms. Based on
Theorem 7.1, this amplifies separate signals per channel and node.

Experimental Setup. Our full model starts by encoding the given node features into a d-dimensional
vector using a linear layer and a ReLU activation. We then apply the described message-passing
schemes vec(X(k+1)) = ϕ(T(k) vec(X(k)) for l layers, and apply the ReLU activation ϕ after each
layer to validate that non-linear models also suffer from rank collapse. After l such layers, the node
representations are mapped to class probabilities by an affine transformation and a softmax activation.
All model parameters are optimized to minimize the cross-entropy using Adam [59] for 2000 steps.
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(a) d = 16 (b) d = 64 (c) d = 128

Figure 3: Optimization loss for the Squirrel dataset when varying the feature dimension d.

(a) l = 1 (b) l = 4 (c) l = 32

Figure 4: Optimization loss for the Squirrel dataset when varying the number of layers l.

Each experiment is repeated for ten random initializations. Our reproducible implementation is based
on PyTorch [60] and PyTorch Geometric [61]1. We refer to Appendix B for all details.

Results. We report the mean, minimal, and maximal achieved loss values over ten runs for l = 8
layers, a feature dimension of d = 32, and all considered datasets in Figure 2. The SKP fits all datasets
almost perfectly within less than 250 steps and decreases almost monotonically. Contrarily, KP
and softmax-SKP require significantly more steps to converge and remain visibly unstable for most
datasets. We ascribe this to both models’ inability to amplify different signals per node and channel.
In most cases, softmax-SKP also converges to a higher loss than the SKP. To better understand the
reasons behind these shortcomings, we provide additional experiments. In Figure 3, we evaluate
the benefit of additional parameters by setting the feature dimension to d ∈ {16, 64, 128}. However,
the model size does not help to fit the data better, as the only difference we observe is an increased
instability during optimization for larger models. This strengthens our theory of a more fundamental
challenge, which the SKP is able to solve. Differences in optimization for varying model depth
of l ∈ {1, 4, 32} are displayed in Figure 4. Matching our theory, fitting the data becomes more
challenging with increased depth for both the SKP and FAGCN, while the SKP is almost unaffected
by the model depth. We provide an additional experiment in Appendix B.2.1 that confirms further
shortcomings for multi-class classification settings using a synthetic dataset. These results confirm
the severity of rank collapse for common tasks while also extending our theoretical insights to the
non-linear case with multiple heads.

9 Conclusion
Our work shows that rank collapse of node representations is the underlying cause of over-smoothing
and over-correlation in GNNs. We provided the theoretical foundation that a rank collapse of node
representations occurs independently of the chosen aggregation function and the learned feature
transformations. To mitigate these fundamental shortcomings of current message-passing frameworks,
we propose the sum of Kronecker products (SKP) as a general property that models should exhibit
to provably prevent rank collapse. We empirically confirm this behavior for non-linear GNNs on
nine node classification tasks, which currently employed message-passing frameworks struggle to fit.
The SKP easily fits the data even for 32 layers. Our insights show that future methods should aim
to avoid rank collapse instead of dealing with over-smoothing or over-correlation. Novel metrics to
quantify rank collapse in graph neural networks need to be designed, and these need to consider the
normalized feature representation, as the feature magnitude may otherwise overshadow the insights.

1Our implementation is available at https://github.com/roth-andreas/rank_collapse
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A Mathematical details
In this section, we provide the details of our approach and all of our statements.

A.1 Basic Operations

We start by listing the most important properties used throughout our formal proofs.

Kronecker Product. The Kronecker product for any two matrices A ∈ Rp×q, B ∈ Rr×s is
denoted as

A⊗B =

a11B . . . a1qB
...

. . .
...

ap1B . . . apqB

 . (14)

The importance of the Kronecker product for our work stems from its powerful properties. We briefly
present the most relevant here. First, a vectorized matrix product

vec(ÃXW) = (WT ⊗ Ã) vec(X) (15)

of any matrices Ã,X,W with matching shapes can be written using the Kronecker product. The
Kronecker product of two orthogonal matrices results in an orthogonal matrix, allowing us to rewrite
any vector as a linear combination

vec(X) = (U⊗V)c (16)

using the singular value decomposition W = UΣNT and eigendecomposition Ã = VΛVT . The
Kronecker product also satisfies the mixed-product property

(A⊗B)(C⊗D) = (AC)⊗ (BD) . (17)

Dirichlet Energy. The standard interpretation for the Dirichlet energy is the sum of differences in
representations for adjacent nodes. Another interpretation we mainly use is based on the decompo-
sition of the signal into eigenvectors of the graph Laplacian ∆ = I − Ã using Ã = D− 1

2AD− 1
2 .

Utilizing the Kronecker product, only the signals not belonging to eigenvalue λÃ
1 = 1 are summed

up and weighted by the corresponding eigenvalue of ∆:
E(X) = tr(XT∆X) (18)

= vec(X)T vec(∆X) . (19)

We then use the decomposition vec(X) = (Id ⊗ V)c based on the eigenvectors V of Ã and the
identity matrix Id, leading to

E(X) = cT (Id ⊗V)T (Id ⊗∆)(Id ⊗V)c (20)

= cT (Id ⊗VT∆V)c . (21)

As ∆ = V(In −Λ)V has the same eigenvectors and shifted eigenvalues as Ã, we then write the
statement as a sum of coefficients that are weighted by their corresponding eigenvalue of the graph
Laplacian:

E(X) = cT (Id ⊗ (In −Λ∆)c (22)

=

n,d∑
l,r=1

(1− λÃ
r )c2l,r . (23)

Frobenius Norm. The squared Frobenius norm has a similar interpretation, the coefficients are just
not weighted by eigenvalues:

||X||2F = tr(XTX)

= cT (U⊗V)T (U⊗V)c

=

n,d∑
l,r=1

c2l,r

(24)

An important property of the Frobenius norm in conjunction with the Kronecker product is the
following:

∥A⊗B∥F = ∥A∥F · ∥B∥F (25)
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A.2 Proof of Proposition 4.1

Proposition. (Node representations vanish.) Let Ã ∈ Rn×n be symmetric with maximum absolute
eigenvalue |λÃ

1 | = 1, W ∈ Rd×d be any matrix with maximum singular value σW
1 , and ϕ a

component-wise non-expansive mapping satisfying ϕ(0) = 0. Then,

||ϕ(ÃXW)||F ≤ σW
1 · ||X||F . (26)

Proof. The key property we use is that the non-expansive property of ϕ(·) implies the Lipschitz
continuity ||ϕ(X)− ϕ(Y)|| ≤ ||X−Y||:

||ϕ(ÃXW)||F = ||ϕ(ÃXW)− ϕ(0)||F (27)

≤ ||ÃXW − 0||F (28)

= ||ÃXW||F . (29)

We then use common bounds on the norm of the matrix product for symmetric matrices using the
maximum eigenvalue λÃ

1 and for an arbitrary matrix based on the maximum singular value σW
1 ,

resulting in

||ÃXW||F ≤ |λÃ
1 |σW

1 ||X||F (30)

= σW
1 ||X||F , (31)

using the assumption |λÃ
1 | = 1.

A.2.1 Proof of Lemma 5.1

Lemma. (The subspaces are invariant to any T(k).) Let T = W⊗Ã with Ã ∈ Rn×n symmetric with
eigenvectors v1, . . . ,vn and W ∈ Rd×d any matrix. Consider the subspaces Qi = span(Id ⊗ vi)
for i ∈ [n]. Then,

∀ i ∈ [n] : z ∈ Qi =⇒ Tz ∈ Qi .

Proof. We express z as a linear combination (Id ⊗ vi)c = z ∈ Qi of the given basis vectors. Then,

(W ⊗ Ã)(Id ⊗ vi)c = (WId ⊗ Ãvi)c

= (Id ⊗ vi)(W ⊗ λÃ
i In)c

= (Id ⊗ vi)c
′ ∈ Qi

(32)

using some new coefficients c′ = (W ⊗ λÃ
i In)c.

A.2.2 Proof of Theorem 5.2

Theorem. (The relative behavior is fixed.) Let T = W ⊗ Ã with Ã ∈ Rn×n symmetric with
eigenvectors v1, . . . ,vn and eigenvalues λÃ

1 , . . . , λÃ
n and W ∈ Rd×d any matrix. Consider the

bases S(i) = Id ⊗ vi and S(j) = Id ⊗ vj for i, j ∈ [n]. Then,

∥TS(i)∥F
∥TS(j)∥F

=
|λÃ

i |
|λÃ

j |
. (33)

15



Rank Collapse Causes Over-Smoothing and Over-Correlation in Graph Neural Networks

Proof.

∥TS(i)∥
∥TS(j)∥

=
∥
(
W ⊗ Ã

)
(Id ⊗ vi)∥

∥
(
W ⊗ Ã

)
(Id ⊗ vj)∥

=
∥
(
W ⊗ λÃ

i vi

)
∥

∥
(
W ⊗ λÃ

j vj

)
∥

=
|λÃ

i | · ∥W∥ · ∥vi∥
|λÃ

j | · ∥W∥ · ∥vj∥

=
|λÃ

i |
|λÃ

j |

(34)

A.2.3 Proof of Proposition 5.3

Proposition. (Fixed subspaces dominate.) Let T(k) = W(k) ⊗ Ã with Ã ∈ Rn×n symmetric with
eigenvectors v1, . . . ,vn and eigenvalues λÃ

1 , . . . , λÃ
n and W(k) ∈ Rd×d any matrix. Consider the

bases S(i) = Id ⊗ vi for i ∈ [n]. Then,

lim
l→∞

∥T(l) . . .T(1)S(i)∥F
maxp∥T(l) . . .T(1)S(p)∥F

= lim
l→∞

|λÃ
i |l · ∥S(i)∥F

maxp |λÃ
p |l · ∥S(p)∥F

=

{
1, if|λÃ

i | = |λÃ
1 |

0, otherwise

with convergence rate |λÃ
i |

|λÃ
1 |

.

Proof.

lim
l→∞

∥T(l) . . .T(1)S(i)∥
maxp∥T(l) . . .T(1)S(p)∥

= lim
l→∞

||(W(l) ⊗ Ã) . . . (W(1) ⊗ Ã)(Id ⊗ vi)||
maxp ||(W(l) ⊗ Ã) . . . (W(1) ⊗ Ã)(Id ⊗ vp)||

= lim
l→∞

||(W(l) . . .W(1) ⊗
(
λÃ
i

)l
vi)||

maxp ||(W(l) . . .W(1) ⊗
(
λÃ
p

)l
vp)||

= lim
l→∞

|λÃ
i |l · ||vi||

maxp ||λÃ
p |l| · ||vp||

=

{
1, if|λÃ

i | = |λÃ
1 |

0, otherwise

(35)

A.2.4 Proof of Theorem 5.4

Theorem. (Representations converge in probability to a fixed set.) Let X(k+1) = ÃX(k)W(k) with
Ã ∈ Rn×n symmetric with eigenvectors v1, . . . ,vn and W(k) ∈ Rd×d any matrix. Consider the
subspaces Qi = span(Id ⊗ vi) for i ∈ [n]. Then,

∀ ϵ > 0.∃ N ∈ N.∀ l ∈ N with l > N.∃m(l) ∈ Q1 : P
(∥∥∥∥ X(l)

∥X(l)∥F
−m(l)

∥∥∥∥
2

> ϵ

)
= 0 .

Proof. Let Λ be the matrix of eigenvalues of Ã and the singular value composition of
W(l) . . .W(1) = UΣNT . We decompose the initial state X(0) = (N ⊗ V)c with c =
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(N ⊗ V)TX(0). We emphasize that the coefficients, therefore, depend on both the initial state
X(0) and the feature transformations W(l) . . .W(1). Then,∥∥∥∥ X(l)

||X(l)||
−m(l)

∥∥∥∥ =

∥∥∥∥∥ (W(l) ⊗ Ã) . . . (W(1) ⊗ Ã)(N⊗V)c

||(W(l) ⊗ Ã) . . . (W(1) ⊗ Ã)(N⊗V)c||
−m(l)

∥∥∥∥∥
=

∥∥∥∥ (W(l) . . .W(1) ⊗V)(N⊗Λl)c

||(W(l) . . .W(1) ⊗V)(N⊗Λl)c||
−m(l)

∥∥∥∥
=

∥∥∥∥∥∥∥∥
(
W(l) . . .W(1) ⊗V

) (
N⊗ Λl

λÃ
1

)
c

||
(
W(l) . . .W(1) ⊗V

)(
N⊗ Λl

λÃl
1

)
c||

−m(l)

∥∥∥∥∥∥∥∥
(36)

We simplify the notation and set P(l) = W(l) . . .W(1). We now choose m(l) =

(P(l)⊗V)

(
N⊗ Λl

λÃl
1

)
c′

||(P(l)⊗V)

(
N⊗ Λl

λÃl
1

)
c||

by only replacing the c in the numerator by c′ containing the same val-

ues for coefficients corresponding to Q1 and zeros for other subspaces, i.e., c′1,r = c1,r ∀r and
c′i,r = 0∀i > 1,∀r. Continuing,

=

∥∥∥∥∥∥∥∥
(

P(l)

σP(l)

1

⊗V

)
||
(

P(l)

σP(l)

1

⊗V

)(
N⊗ Λl

λÃl
1

)
c||

((
N⊗ Λl

λÃl

1

)
c− c′

)∥∥∥∥∥∥∥∥
≤

∥∥∥∥ P(l)

σP(l)

1

⊗V

∥∥∥∥∥∥∥∥( P(l)

σP(l)

1

⊗V

)(
Nd ⊗ Λl

λÃl
1

)
c

∥∥∥∥
∥∥∥∥∥
(
Nd ⊗

Λl

λÃl

1

)
c− c′

∥∥∥∥∥
≤

√
nd

c1,1

(
λ2

λ1

)l

max
r,i

cr,i
√

(n− 1) · d < ϵ

⇐⇒
√
nd

ϵ

(
λ2

λ1

)l√
(n− 1) · d <

c1,1
maxr,i cr,i

(37)

The left-hand side converges to zero for l → ∞, so the constraint on the coefficients becomes weaker
with increased depth. As the volume of the critical solution space around solutions satisfying c1,1 = 0
reduces to zero, our state converges in probability.

We now provide the details for the upper bounds in the last step separately for each term:

∥∥∥∥ P(l)

σP(l)

1

⊗V

∥∥∥∥ =

√√√√tr

((
P(l)

σP(l)

1

⊗V

)T (
W(l) . . .W(1)

σP(l)

1

⊗V

))

=

√√√√√√tr

(P(l)
)T

P(l)(
σP(l)

1

)2 ⊗ In


=

√√√√∑
l,r

σ2
l

σ2
1

≤
√
nd

(38)

Next, we provide a lower bound on the denominator:
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∥∥∥∥∥∥
(

P(l)

σP(l)

1

⊗V

)Nd ⊗

(
Λ

λÃ
1

)l
 c

∥∥∥∥∥∥ =

√√√√√(( P(l)

σP(l)

1

⊗V

)(
Nd ⊗

Λl

λÃl

1

)
c

)T (
P(l)

σP(l)

1

⊗V

)Nd ⊗

(
Λ

λÃ
1

)l
 c

=

√√√√√√cT

N

(
P(l)

)T
P(l)(

σP(l)

1

)2 N⊗

(
Λ

λÃ
1

)2l
 c

=

√√√√∑
l,r

(
σP(l)

l

σP(l)

1

)2

c2l,r

(
λr

λ1

)2l

≥ c1,1
(39)

∥∥∥∥∥
(
Nd ⊗

ΛAl

λA
1

)
c− c′

∥∥∥∥∥ =

√√√√∑
r,i

((
λi

λ1

)l

cr,i −
(
λi

λ1

)l

c′r,i

)2

≤

√√√√ d,n∑
r=1,i=2

((
λi

λ1

)l

cr,i

)2

≤
(
λ2

λ1

)l

√√√√ n,d∑
r=1,i=2

c2r,i

≤
(
λ2

λ1

)l√
(n− 1) · d ·max

r,i
c2r,i =

(
λ2

λ1

)l

max
r,i

cr,i
√

(n− 1) · d

(40)

A.2.5 Proof of Proposition 5.5

Proposition. (Over-smoothing happens for all W(k) in probability.) Let X(k+1) = ÃX(k)W(k)

with Ã = D− 1
2AD− 1

2 , W(k) ∈ Rd×d, and E(X) = tr(XT∆X) for ∆ = I− Ã. Then,

plim
l→∞

E

(
X(l)

∥X(l)∥F

)
= 0 (41)

with convergence rate
(

λÃ
2

λÃ
1

)2

.

Proof. We again use the eigendecomposition Ã = VΛVT , the singular value decomposition
W(1) . . .W(l) = P = UΣNT and the coefficients c = (U ⊗V)T vec(X(0)) of our initial state.
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With this, we can simplify the Dirichlet energy

E

(
X(l)

||X(l)||

)
=

tr(X(l)∆X(l))

||X(l)||2

=
cT (UT ⊗VT )(W(1) ⊗ ÃT ) . . . (W(l) ⊗ Ã)(Id ⊗ ∆̃)(W(l)T ⊗ Ã)(W(1)T ⊗ Ã)(U⊗V)c

||X(l)||2

=
cT (UTW(1) . . .W(l)W(l)T . . .W(1)TU⊗VT Ãl∆̃ÃlV)c

||X(l)||2

=
cT (Σ2 ⊗ΛlVT ∆̃VΛl)c

cT (Σ2 ⊗ΛlVTVΛl)c

=
cT (Σ

2

σ2
1
⊗ Λl(Id−Λ)Λl

λÃ
1 λÃ

1

)c

cT (Σ
2

σ2
1
⊗ ΛlΛl

λÃ
1 λÃ

1

)c

=

∑N,d
p=1,r=1 c

2
p,r

σ2
r

σ2
1

λ2l
p (1−λp)

λ2l
1

)∑N,d
p=1,r=1 c

2
p,r

σ2
r

σ2
1

λ2l
p

λ2l
1
)

.

(42)

For convergence, we now need the last term to be smaller than any given ϵ > 0. Using the property
that (1− λÃ

1 ) = 0, we again only require a constraint on the coefficients

c21,1
maxp,r c2p,r

>
2 · λ2l

2

λ2l
1 ϵ

. (43)

Which similarly converges in probability as the right-hand side converges to zero.

A.3 Proof of Proposition 5.6

Proposition. (Signal amplification only depends on Ã.) Let two bases be S(i) = (Id ⊗ P(i)) ∈
Rnd×qd and S(j) = (Id ⊗ P(j)) ∈ Rnd×qd for any P(i) ∈ Rn×q,P(j) ∈ Rn×r with q, r ≤ n.
Further let T = W ⊗ Ã ∈ Rnd×nd consisting of any W ∈ Rd×d and any Ã ∈ Rn×n. Then,

||TS(i)||F
||TS(j)||F

=
||ÃP(i)||F
||ÃP(j)||F

.

Proof. We again use the property ||A⊗B||F = ||A||F · ||B||F and basic properties of the Kronecker
product:

||TS(i)||F
||TS(j)||F

=
||(W ⊗ Ã)(Id ⊗P(i))||F
||(W ⊗ Ã)(Id ⊗P(j))||F

(44)

=
||W||F · ||ÃP(i)||F
||W|| · ||ÃP(j)||F

(45)

=
||ÃP(i)||F
||ÃP(j)||F

(46)

A.3.1 Proof of Proposition 5.7

Proposition A.1. (GAT and Graph Transformer over-smooth.) Let X(k+1) = Ã(k)X(k)W(k)

where all Ã(k) ∈ Rn×n row-stochastic, representing the same ergodic graph, and each non-zero
entry (Ã(k))pq ≥ ϵ for some ϵ > 0 and all i ∈ [h], k ∈ N, p, q ∈ [n]. We further allow all
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W
(k)
i ∈ Rd×d to be any matrices. We consider E(X) = tr(XT∆rwX) using the random walk

Laplacian ∆rw = I−D−1A. Then,

plim
l→∞

E

(
X(l)

∥X(l)∥F

)
= 0 .

Proof. The proof is mostly analogous to our proof of Theorem 5.5 but relies on the fact that the
product of time-inhomogenous row-stochastic matrices liml→∞ Πl

i=0Ã
(i) = 1(y)T converges to

constant columns for some y ∈ Rn as established by Wu et al. [23]. The intuition behind the
statement builds on the ergodicity and minimum edge weight ϵ, that combined result in each pairwise
edge strength being larger than ϵs after a finite number of steps s. The product of two such matrices
reduces the maximum and increases the minimum, which results in constant states in the limit.

Let ∆rw = V(In − ΛÃ)VT . As the first eigenvector v1 is constant, we can write the limit

state liml→∞ Πl
i=0Ã

(i) = VQ(l)VT = V


y
(l)
1 . . . y

(l)
n

q
(l)
21 . . . q

(l)
2n

...
. . .

...
q
(l)
n2 . . . q

(l)
nn

VT using the same eigenbasis with

each q
(l)
kp converging to zero with some upper bound Cql for some C > 0 and q ∈ [0, 1], and

each y
(l)
i converges to yTvi, as given by Wu et al. [23]. For notational simplicity we define

R(l) = Π
(l)
i=0W

(i) and its singular value decomposition as R(l) = UΣNT . Decomposing the initial
state vec(X(0)) = (N⊗V)c using V and N, the Dirichlet energy then simplifies to

lim
l→∞

E

(
VQ(l)VTX(0)R

||VQ(l)VTX(0)R||F

)
= lim

l→∞

cT (Σ2 ⊗VTVQ(l)VTV(In − ΛÃ)VTVQ(l)VTV)c

c(Σ2 ⊗VTVQ(l)VTVQ(l)VTV)c

= lim
l→∞

cT (Σ2 ⊗Q(l)T (In − ΛÃ)Q(l))c

c(Σ2 ⊗Q(l)TQ(l))c

We then use the fact that liml→∞ Q(l)T (In − ΛÃ)Q(l) = 0 as the columns of Q(l) and the rows
of Q(l)T converge to zero and the corresponding eigenvalue of (In − ΛÃ) being also zero, leaving
all entries to converge to zero. We then simply need to factor out the growth of R, so that this
convergence holds:

cT (Σ2 ⊗Q(l)T (In − ΛÃ)Q(l))c

c(Σ2 ⊗Q(l)TQ(l))c
=

cT (Σ
2

σ2
1
⊗Q(l)T (In − ΛÃ)Q(l))c

c( Σ2

|σ2
1 |
⊗Q(l)TQ(l))c

(47)

≤
∑

p,r c
2
p,r

σr

σ1
(1− λp)

(48)

To ensure that the last term converges to a value below a given ϵ, we again require

c1,1
maxp,r cp,r

>
2(d− 1) · Cql

ϵ
. (49)

The right-hand side converges to zero as per assumption, so the overall convergence happens in
probability.

A.4 Over-correlation

A.4.1 Proof of Theorem 6.1

Theorem. Let Rj be the space of matrices with rank at most j. Then, for all Ã ∈ Rn×n and for
W(l) . . .W(1) in probability with respect to the Lebesgue measure, we have

∀ ϵ > 0.∃ N ∈ N.∀ l > N.L(n) ∈ Rj : P
(
||X(n) − L(n)|| > ϵ

)
= 0 . (50)
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Proof. We show that X(l) converges to a sum of a matrix with rank at most j and a matrix that
vanishes. We construct subspaces given by the Jordan blocks of the Jordan normal form Ã = PJP−1.
We merge all subspaces corresponding to an eigenvalue with magnitude |λ1| into Z = span(Id⊗P1)
with P1 ∈ Rn×j where j is the joint algebraic multiplicity of all eigenvalues with magnitude |λ1|.
Using these subspaces within Theorem 5.4, X(l) converges in probability to Z . It is then only left to
show that Z corresponds to a subspace of Rj : For every h ∈ Z with h = (Id ⊗P1)c, we have

vec−1(h) = vec−1((Id ⊗P1)c) = P1 vec
−1(cT )Id = P1 vec

−1(cT ) (51)

which has rank at most j.

A.5 Sum of Kronecker products

A.6 Proof of Theorem 7.1

Theorem. (Any subspace can get amplified.) Let ei ∈ Rd be the canonical basis with a
single 1 at position i. For any columns s1, . . . , sd ∈ Rn and the induced subspace S =

[e1 ⊗ s1 . . . ed ⊗ sd] ∈ Rnd×d, there exists an T =
∑d

1(Wi ⊗ Ãi) such that for all orthogonal
bases S′ = [e1 ⊗ s′1 . . . ed ⊗ s′d] ∈ Rnd×d

∥TS∥F
∥TS′∥F

>
∥S∥F
∥S′∥F

. (52)

Proof. We choose each Ãi = V(i)ΛV(i)T to be symmetric with dominant eigenvectors v(i)
1 = si

and shared eigenvalues |λ1| > |λÃ
2 | > |λÃ

d | > 0. Further, Wi = diag(ei) where the diag operation
creates a matrix with the entries of its arguments along the diagonal. Thus, all columns are independent
and T is a block-diagonal matrix with eigenvectors being ei ⊗ v(j) with corresponding eigenvalue
λÃ
j . The eigenspace corresponding to λÃ

1 are all ei ⊗ si for all i, i.e., span(S). Any orthogonal

column s′i =
∑d

k=2 v
(k)
2 c

(k)
2 can be written as a linear combination of the other eigenvectors. Thus,

∥TS∥F
∥TS′∥F

≥ |λ1|
|λ2|

∥S∥F
∥S′∥F

>
∥S∥F
∥S′∥F

(53)

B Experimental details
B.1 Convergence to a Constant State

For this experiment, we consider the Cora dataset provided by Pytorch-Geometric [60], consisting of
2708 nodes and 5429. For initialize 128 layers of GAT, GCN, and GraphSAGE using their default
initialization and no bias. After each layer, we use a ReLU activation. After each ReLU activation,
we track both the squared norm ||X||2F and the Dirichlet energy E(X) = tr(XT∆rwX) using the
random walk Laplacian ∆rw = In −D−1A, as the constant vector is in its nullspace, as suggested
by Rusch et al. [11].

B.2 Empirical Validation

We provide an additional experiment on synthetic data that shows that linearly independent features
are not practically achievable, even for non-linear models.

B.2.1 Synthetic Dataset

The theory states that models utilizing a single Kronecker product suffer from rank collapse, limiting
their learnability of tasks that require multiple independent features per node. Given any graph, if
the feature space collapses to two or fewer dimensions, the representations of any four nodes always
form a quadrilateral in that plane. Linear decision boundaries cannot classify points on opposite
sides together. The features extracted by SKP can be linearly independent (see Theorem 6.1), so
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(a) Accuracy: mean and standard deviation. (b) Optimization loss for 8 layers.

Figure 5: Accuracies and loss dynamics for the synthetic task.

tasks of this form are trivial when accessing another dimension. Our experimental setting follows
this idea: We randomly generate an Erdos–Rény (ER) graph, that consists of 20 nodes and an edge
probability of 0.2. We then select four its nodes at random, denoted by V = (v1, v2, v3, v4). The
3-class classification task consists of three tasks for each node, where all pairs of nodes belong to the

same class exactly once. Precisely, the target for all nodes is Y =



1 1 1
1 0 0
0 1 0
0 0 1
0 0 0
...

. . .
...

0 0 0


.

For loss, optimization, and accuracy calculation, we only consider the labels of the four nodes and
ignore all remaining outputs.

If each feature is constant across nodes, all nodes are classified the same, resulting in a 50% accuracy.
If the representations have rank one and all feature vectors are on a line, representations need to be
adjacent in order to be classified correctly, which cannot be fulfilled for all pairs simultaneously.
Since our GNNs are finite-depth, representations are not normalized, and the maximum eigenvalue
may have geometric multiplicity larger than one, the models can achieve higher accuracy.

Training details. Node representations X(0) ∈ R4×6 are randomly initialized from a normal
distribution xij ∼ N(0, 1) with 0 mean and standard deviation of 1. Aggregations and feature
transformation are randomly initialized such that the norm of resulting node representations is
typically not close to zero or to infinity so that the gradients do not vanish or explode. Precisely, for
Ã

(k)
1 ∈ R20×20, Ã(k)

2 ∈ R20×20 the weight of each generated edge (i, j) is sampled from a normal
distribution ãij ∼ N ( 1

|Nj | , 0.05) with mean as one over the number of incoming nodes and standard

deviation 0.05. Similarly, the feature transformations W
(k)
1 ∈ R6×6, W(k)

2 ∈ R6×6 are sampled
from a normal distribution w̃ij ∼ N ( 13 , 0.05) with mean as one over the number of features and
standard deviation 0.05. Using T(k) as one of the considered graph convolutions, the update function
is vec(X(k+1)) = ϕ(T(k) vec(X(k)) with ϕ as the ReLU activation function. After l iterations, we
use these node representations for our three classification tasks using the affine transformation

Ŷ = σ(X(l)Wc + b) (54)
with σ as sigmoid activation, a feature transformation Wc ∈ R6×3 and a feature-wise bias term
b ∈ R3. We evaluated all three described update functions for l ∈ [1, 2, 4, 8, 16, 32, 64, 128] layers.
For each method and each number of layers, variables are randomly initialized and optimized with
binary cross-entropy using the Adam optimizer until the loss does not decrease for 500 steps. Each
experiment is executed three times for each graph, of which the best achieved accuracy is considered.
We then repeat this process for 50 random graphs and report the mean accuracy and its standard
deviation. The reproducible experiments are added as supplementary material.

We additionally run the same experimental setting for a linearized version (ϕ as identity function) and
a version that also reuses the same aggregation across all layers Ã(1)

1 = · · · = Ã
(k)
1 , Ã(1)

2 = · · · =
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# of layers 1 2 4 8 16 32 64 128

softmax− SKPHL 100± 0 100± 0 82± 19 71± 6 72± 6 70± 6 67± 7 63± 8
softmax− SKPL 100± 0 100± 0 100± 0 70± 4 71± 6 70± 7 68± 8 65± 8

softmax-SKP 100± 0 100± 0 100± 0 70± 4 71± 6 70± 7 68± 8 65± 8
KPHL 100± 0 100± 0 83± 0 83± 0 83± 0 83± 0 83± 0 82± 4
KPL 100± 0 100± 0 83± 0 83± 0 83± 0 83± 0 83± 0 82± 4
KP 100± 0 98± 5 88± 4 85± 3 84± 2 84± 2 85± 3 82± 4

SKPHL 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0 94± 12
SKPL 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0 96± 10
SKP 100± 0 99± 3 98± 5 100± 0 100± 0 100± 0 100± 1 95± 10

Table 1: Maximum and mean±standard deviations accuracies for all considered scenarios. Subscript
L denotes the linearized version, subscript HL denotes the version that additionally uses homoge-
neous aggregation matrices.

Ã
(k)
2 . All configurations were run sequentially on a single CPU. The entire runtime was around 30

hours.

Detailed results. We provide additional numerical results in Figure 5 and Table 1, including the
standard deviation of all settings. If the representations were constant, only a 50% accuracy could
be achieved, so there is slightly more relevant information in all features, even for the softmax-SKP.
However, the representations are quickly converging to a low-rank state, so both softmax-SKP and
KP do not solve this task a single time for eight or more layers. All models are slightly more unstable
with increased depth, which is mainly a vanishing or exploding gradient issue. As this was historically
an issue in other domains, similar methods can be used to solve this, e.g., normalization layers.
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