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ABSTRACT

Despite the advances made in visual object recognition, state-of-the-art deep learning models strug-
gle to effectively recognize novel objects in a few-shot setting where only a limited number of
examples are provided. Unlike humans who excel at such tasks, these models often fail to leverage
known relationships between entities in order to draw conclusions about such objects. In this work,
we show that incorporating a symbolic knowledge graph into a state-of-the-art recognition model
enables a new approach for effective few-shot classification. In our proposed neuro-symbolic archi-
tecture and training methodology, the knowledge graph is augmented with additional relationships
extracted from a small set of examples, improving its ability to recognize novel objects by con-
sidering the presence of interconnected entities. Unlike existing few-shot classifiers, we show that
this enables our model to incorporate not only objects but also abstract concepts and affordances.
The existence of the knowledge graph also makes this approach amenable to interpretability through
analysis of the relationships contained within it. We empirically show that our approach outper-
forms current state-of-the-art few-shot multi-label classification methods on the COCO dataset and
evaluate the addition of abstract concepts and affordances on the Visual Genome dataset.

1 INTRODUCTION

The ability to recognize objects from visual inputs (Zhao et al., 2018) is crucial for the success of agents that interact
in real or simulated environments (Bai et al., 2020; Stepputtis et al., 2020; Shahria et al., 2022). Beyond applications
in agent development, object recognition is also vital for image captioning (Stefanini et al., 2022), scene understand-
ing (Xie et al., 2020), vision-language understanding (Uppal et al., 2022), and many other domains. Recent contribu-
tions to foundational vision models (Dosovitskiy et al., 2021; He et al., 2022) and a wider availability of computational
resources has enabled many of these applications. One benefit of such models is their ability to drastically reduce the
amount of training data needed when utilizing them as priors to train new visual tasks, e.g. in the domain of object
recognition. However, while very capable, these pre-trained models often fail to perform well in few-shot learning set-
tings that require them to recognize novel objects from a small set of sample images (Wang et al., 2023). Beyond object
recognition, assigning abstract concepts and affordances is an even more challenging task as concepts such as wear-
able are only indirectly related to a visual representation. Inspired by how humans learn to utilize few-shot learning
by connecting novel concepts to their prior domain knowledge and experience, neuro-symbolic architectures (Hassan
et al., 2022) can address some of these shortcomings by imbuing neural networks with symbolic knowledge graphs
(KG) (Abu-Salih, 2020). Utilizing the interconnected domain knowledge of the graph, novel concepts can be added
in a few-shot manner by augmenting the graph with the new nodes and thus, also limiting the need to re-train large
parts of the neural architecture. Depending on the representation of novel nodes, such approaches are largely invariant
to the topology of the graph, only requiring the final neural outputs to be expanded and trained while intermediate
components may be able to only require little fine-tuning. The availability of interconnected domain knowledge also
allows easy integration of non-visual abstract concepts and affordances as relationships can be formed between such
concepts and existing entities.

In the spirit of Marino et al. (2016), our approach utilizes a neural network approach in conjunction with an optimized
KG constructed from the Visual Genome Multi-Label (VGML) (Marino et al., 2016) dataset. In this work, we improve
and extend this setup to few-shot multi-label classification (FS-MLC) by proposing a pipeline that adds new informa-
tion to existing domain knowledge via RelaTe : a multimodal relationship prediction transformer that, given a small
set of images and a latent representation of the linguistic concept, automatically connects novel objects, abstract con-
cepts, and affordances to existing domain knowledge. In particular, RelaTe will evaluate the information propagated
through the KG that is relevant to these images in the context of a latent concept representation from GloVe (Penning-
ton et al., 2014) and determine which nodes are applicable to be connected to the novel target concepts. Subsequently,
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we propose to extend the capacity of the final multi-label classifier by adding an output neuron associated with the new
concept. The related weights of this extra neuron as well as the graph neural network are then trained and fine-tuned,
respectively, to learn how to incorporate the new information. Thus, our approach utilizes a dynamically changing
neuro-symbolic architecture that efficiently incorporates additional concepts in a sample-efficient manner.

Our proposed method provides improvements over existing work in two categories: 1) with the help of our proposed
RelaTe module and training methodology, we show that it outperforms current state-of-the-art FS-MLC models on
COCO and 2) our approach goes beyond object recognition by being able to also learn how abstract concepts and
affordances can be incorporated in a few-shot manner, thus, continuously updating the neuro-symbolic architecture to
accommodate the new concepts.

The availability of a KG also makes this approach amenable to interpretability as the propagations throughout the
graph can be reviewed after the classification is made (Tiddi & Schlobach, 2022). The example in Figure 1 indicates
that the motorcycle concept caused the attribute two-wheeled, red, and the affordance transport. In summary, our main
contributions are as follows: (a) We propose a sample-efficient few-shot methodology to recognize novel concepts
from a small set of images by utilizing a knowledge graph that is amenable to interpretability, showing that it out-
performs current state-of-the-art few-shot methods on the COCO dataset. (b) We introduce RelaTe – a multimodal
approach that predicts the existence of edges in the knowledge graph between novel concepts and existing nodes,
allowing efficient integration of domain knowledge. (c) We also show the utility of having access to interconnected
domain knowledge to effectively add abstract concepts, affordances, and scene summaries.

2 RELATED WORKS

Few-shot multi-label classification (FS-MLC) remains a challenging problem despite some recent advances (Alfassy
et al., 2019; Chen et al., 2020; Yan et al., 2022). On its own, few-shot classification is difficult due to various factors
like catastrophic forgetting (Goodfellow et al., 2013) and limited data sets; however, these problems are amplified
in the multi-label case when novel target classes occur in conjunction with already existing concepts, making their
identification and training even more challenging. One avenue of addressing this issue is the utilization of domain
knowledge, which can reduce the complexity of this problem by reducing the reliance on labeled data (Wang et al.,
2020; Chen et al., 2021) and instead, drawing from the encoded knowledge. Such domain knowledge can be acquired
in multiple ways, either by explicitly formulating and utilizing a data structure or by utilizing a foundational neural
network that is “large enough” to encode the general knowledge. Examples of such large models are GPT (OpenAI,
2023), particularly MiniGPT-4 (Zhu et al., 2023), CLIP (Radford et al., 2021), and Flamingo (Alayrac et al., 2022).
However, in this work, we focus on imbuing neural networks with symbolic knowledge in the form of a Knowledge
Graph as such data structure is amenable to human interpretation (Guo et al., 2022) and quick augmentation in order
to address the FS-MLC problem. Nevertheless, we will compare our approach to publicly available large-language
models (LLMs).

Few-Shot Multi-Label Classification Utilizing concepts has shown to be an efficient approach to learning inter-
pretable policies (Zabounidis et al., 2023). One approach to learning the FS-MLC task is to define novel objects as
the sum of their parts, allowing such approaches to learning how to recombine known, simpler concepts that represent
the target class (Lake et al., 2011; Jia et al., 2013). However, the addition of novel fundamental concepts remains an
active field of research. Several approaches have addressed the problem of adding new concepts from a small number
of samples by utilizing additional modalities (Mao et al., 2015; Mei et al., 2022), structured primitives (Qian et al.,
2019), generative modeling (Rostami et al., 2019; Bhagat et al., 2020), and meta-learning methods (Cao et al., 2021).
However, these approaches are usually limited to simulated (Mordatch (2018); Qian et al. (2019)) or less demanding
datasets (Rostami et al. (2019); Mao et al. (2019); Cao et al. (2021); Mei et al. (2022)) that do not reflect the richness
and intricacy of real-world concepts that we encounter in our daily lives. One of the first papers addressing the problem
of FS-MLC in great detail is Alfassy et al. (2019), which tackled the problem of limited data by representing sample
images and their labels in a latent space and defining various set operations over these representations to synthesize
additional samples through the combination of latent image features. Similarly, the work presented in Yan et al. (2022)
proposed a multimodal approach that utilized word embeddings to align verbal and visual representations in a latent
feature space, allowing the creation of a mechanism that obtains visual prototypes for unseen labels by sampling an
image from the latent space pinpointed by a language description of the novel entity. In our work, we propose a
framework for extracting abstract concepts from complex real-world images and demonstrate enhanced performance
over current few-shot learners by utilizing the connection between linguistic and visual concept representations.

Neuro-Symbolic Few-Shot Learning In addition to the techniques discussed above, incorporating domain-specific
knowledge shows great potential as it can assist in recognizing and adding new concepts in a more sample-efficient

2



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Importance Estim
atio

n

Propagation

Region
Proposals

Image
Embedding

Modified Graph Search

C
la
ss
ifi
ca
tio
n

Final Result
person
• helmet
• jacket
motorcycle
• two-wheeled
• transport
• red
road
visible

Motorcycle Person

V
is
io
n
Pr
e-
Pr
oc
es
si
ng

Figure 1: Example inference explaining our general inference pipeline, inspired by Marino et al. (2016). Given a novel
image, we utilize ViT and Faster R-CNN to extract an image embedding (blue) and a set of initial object proposals
(red). The initial proposals initialize our knowledge graph (red nodes) while the Modified Graph-Search identifies
additional nodes (orange) conditioned on the overall image embedding (blue). Finally, our classifier evaluates the
active nodes and produces a list of detected objects (green) in addition to the already detected nodes from the graph.

manner, especially in scenarios with limited data. A commonly used approach to utilize symbolic KGs in deep learning
is graph neural networks (Xie et al., 2019; Wan et al., 2019; Lamb et al., 2020), providing a multitude of benefits from
interpretability (Tiddi & Schlobach, 2022) to the utilization of interconnected information. The hierarchy and structure
present in KGs have resulted in their use as priors for neuro-symbolic vision systems (Jiao et al., 2023) for a number of
applications ranging from transfer learning (Alam et al., 2022) to vision-language pre-training (Alberts et al., 2021).
Chen et al. (2020) introduced a static knowledge-guided graph routing framework consisting of two graph propagation
frameworks to transfer both visual and semantic features, enabling information transfer between correlated features
to train a better classifier with limited samples. Marino et al. (2016) and Fang et al. (2017) utilized this structured
knowledge to identify the underlying concepts present in the image. With a comprehensive graph, the structured
knowledge embedded in it can even be used to extract critical information about previously unseen classes in either
a few- (Chen et al., 2019; Peng et al., 2019) or zero-shot (Kampffmeyer et al., 2018; Wang et al., 2018; Huang et al.,
2020; Wang & Jiang, 2021; Wei et al., 2022; Lee et al., 2017) manner. However, a limitation of these approaches
is the use of a static KG. The work presented in Wang et al. (2021) and Kim et al. (2020) partially addressed this
problem by dynamically changing edge weights and re-computing latent node representations respectively, but the
graph’s structure and encoded knowledge fundamentally remain the same. In this work, we propose a mechanism to
update both aspects of the neuro-symbolic architecture by dynamically extending the KG with novel nodes, computing
representations that are conditioned on the target images, and updating the neural components of our classification
approach both structurally and in regards to its trained weights. This also allows our approach to incorporate novel
objects that go beyond the visual domain, including abstract concepts and affordances while alleviating the assumption,
as in prior work (Zhu et al., 2014; Szedmak et al., 2014; Chuang et al., 2017; Ardón et al., 2019; Gretkowski et al.,
2022) that an exhaustive KG has to exist.

3 FEW-SHOT OBJECT RECOGNITION WITH NEURO-SYMBOLIC ARCHITECTURES

In this work, we propose a twofold approach. Firstly, we employ a neuro-symbolic object recognition approach called
Graph Search Neural Networks (GSNN), as originally introduced by Marino et al. (2016). To enhance the performance
of this pipeline, we propose multiple modifications, namely adding image conditioning and incorporating node types
(see Section 3.1). Secondly, we introduce a novel approach called RelaTe , which automatically extends the KG to
integrate new concepts while, simultaneously, extending the neural components of the system to incorporate them (see
Section 3.2). In the following sections, we provide detailed explanations of each component.

3.1 NEURO-SYMBOLIC OBJECT RECOGNITION

At its core, our work considers the problem of detecting a set C of concepts in a given image I , while affording
the ability for a human Subject Matter Expert (SME) to extend the system’s capability by detecting additional, novel
concepts in a sample efficient manner from a small set of images. In this section, we first describe our inference
pipeline, inspired by Marino et al. (2016) before discussing novel concept addition in Section 3.2. Figure 1 describes
the three main steps of the inference pipeline: First, we extract a set of candidate objects FI that initialize our KG G
and extract a global image embedding eI (see Section 3.1.1); Second, we utilize the GSNN to propagate information
through the graph while extending the prior work to also condition on the global image embedding eI , alleviating the
need for edge types, and utilizing semantic node types; Third, the final classifier evaluates all active nodes of graph
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Figure 2: Overview of the Modified Graph Search Neural Network (GSNN). In contrast to prior work, we condition
the propagation network on the global image embedding eI and introduce a node type dn while dropping edge types.

G (where PI is the sub-graph of G containing the active nodes for a particular image I) in order to provide a holistic
view of the input image and predict the final set of concepts CI .

3.1.1 EXTRACTING CANDIDATE OBJECTS

In the first step, we employ a pre-trained object detection pipeline, namely Faster R-CNN (Ren et al., 2015) to extract
the initial set FI of candidate objects from image I . Faster R-CNN is pre-trained on the COCO (Lin et al., 2014)
dataset to predict the 80 concepts of COCO, but omit the 16 classes designated for our FS-MLC experiments as
defined in Alfassy et al. (2019) for a total of 64 trained concepts CCOCO. For this approach, we did not conduct
any further fine-tuning on other datasets, nor did we change the outputs of Faster R-CNN. The initial set of objects
F ⊂ CCOCO is then utilized to activate the initial set of nodes NF in graph G. In contrast to the prior work that uses
VGG (Simonyan & Zisserman, 2014), we use a pre-trained ViT (Dosovitskiy et al., 2021) model to calculate an overall
image embedding eI ∈ Rv with feature size v that is utilized to provide a global context for our modified graph-search
approach as well as the final classifier. ViT is pre-trained on the ImageNet-21k (Deng et al., 2009) dataset and then
fine-tuned on the ImageNet-10k dataset without any further modifications.

3.1.2 MODIFIED GRAPH SEARCH NEURAL NETWORK

In this section, we provide a detailed explanation of the different components of the GSNN inspired by Marino et al.
(2016), as well as the proposed modification of conditioning its components on the input image, removing edge types,
and introducing node types. Figure 2 shows the modified GSNN over graph G which contains three core components:
a) the propagation network which computes an embedding for each node given its neighbors in the context of the
current image I , b) the importance network which decides which nodes are relevant and should be kept for potential
future expansion given the current image I , and c) the context network which generates final node embeddings.
The context network is dependent on both the current image and the associations derived from the KG via multiple
rounds of applying the propagation and importance network. The goal of the GSNN is to, in an iterative manner,
propagate and prepare the information encoded in the KG that is relevant to image I by alternating the propagation
and importance network over T steps. After T rounds, the context network provides the representation needed for the
final concept classifier. The selection of T is a crucial hyper-parameter of our method and Section A.6 evaluates this
choice in detail. Each of these components and the final classifier are described in the following sections along with
our proposed modifications.

Propagation Network: Given the initial set of nodes NF, the propagation network is designed to produce an output
O ∈ RN×F , where N is the number of nodes and F the feature size for the latent node embedding, encoding the
information of each node’s neighborhood. Each row of O represents a feature vector h for the respective node which
is initialized with all zeros outside of the first element, which contains the node ID, xv . We utilize the graph structure,
encoded in an adjacency matrix A ∈ RN×N to retrieve the hidden states h of active nodes based on their neighborhood
in the graph. In contrast to prior work, we also provide the propagation network with the global image encoding eI in
order to ensure that information is propagated according to the image context (Ablations are provided in Section A.7)

Initially, we calculate a vector an representing the neighbourhood of each active node at iteration t given that Ani
is

the relative adjacency matrix for node ni:

at
ni

= AT
ni

[
ht−1
1 ,ht−1

2 , . . . ,ht−1
N

]T
+ b (1)
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Given this neighbourhood vector at
ni

for each node, we calculate zt
ni

and rtni
= σ

(
Wat

ni
+Wht−1

ni

)
, where all W

are different and trainable weights of the neural network. Subsequently, we calculate the update ut
ni

for each node’s
hidden state as follows, where each W is a separately trainable weight matrix:

ut
ni

= tanh
(
Wat

ni
+W

(
rtn1

⊙ ht−1
n1

)
+ eI

)
(2)

In contrast to the work presented in Marino et al. (2016), we calculate this update conditioned on the global image
context eI , allowing the modified GSNN to incorporate image-specific information. Section 4.2.1 evaluates this
benefit in further detail. The final hidden state ht

ni
for each node in PI is subsequently calculated as a weighted sum

of the previous hidden state ht−1
ni

and the previously computed update vector ut
ni

:

ht
ni

=
(
1− zt

ni

)
⊙ ht−1

ni
+ zt

ni
⊙ ut

ni
(3)

Together with the importance network detailed in the next section, the propagation throughout the graph is done
over T iterations, thus, allowing the utilization of the interconnected knowledge provided in the knowledge graph G.
Learning to utilize the symbolic knowledge of the graph efficiently is of utmost importance for our few-shot learning
goal described in Section 3.2.

Importance Network. The importance network alternates with the propagation network over T cycles and decides
whether or not an adjacent node to a currently active node should be made active. This is an important step as purely
expanding nodes at every step has the potential to become computationally impractical if G is large. The importance
vtn of each node at timestep t is calculated as follows:

vtn = fI(h
t
n,xv, bn,dn) (4)

where, in contrast to the original GSNN, we propose the addition of dn which represents a one-hot vector describing
the node type (“object”, “affordance”, or “attribute”) instead of using an edge type and fI(. . . ) is a multi-layer per-
ceptron (MLP). Nodes above a certain threshold γ are maintained for the next propagation cycle. Additionally, we
also learn a node bias term bn for each node in the knowledge graph that intuitively captures a global meaning of the
respective node. Note that this bias is not depending on a particular image I .

Context Network. After T iterations, the final node embeddings are created via the context network. Similar to the
importance network, it is formulated as:

Ofinal = fC(h
t
n,xv, bn,dn) (5)

However, instead of predicting a scalar value indicating a node’s importance, it generates the final state representation
of the expanded nodes in G, where fC(. . . ) is another MLP.

3.1.3 FINAL CONCEPT CLASSIFIER

The third and final step is the classification of the active concepts CI ⊂ C in the input image I where C is a
set of all possible concepts. These concepts are computed from the state representations Ofinal of all the expanded
nodes in the active graph P along with the global image embedding eI and the originally detected classes FI from
Faster R-CNN. Utilizing a single fully connected layer, a probability distribution over all the concepts is predicted
c = fC(O

final, eI ,FI). In order to make the result amenable to interpretation by a human user, we also provide the
graph of active nodes P , thus providing insights into why certain classifications may have been made.

3.2 NOVEL CONCEPT LEARNING IN A DYNAMIC NEURO-SYMBOLIC ARCHITECTURE

In addition to improving the neuro-symbolic architecture of GSNN our remaining two main contributions are as fol-
lows: a) a multi-modal Relation Prediction Transformer – RelaTe , that aids a human SME when adding novel
concepts to the symbolic knowledge graph (Section 3.2.1) and b) introducing a framework to also dynamically updat-
ing neural parts of the inference pipeline described in Section 3.1.

3.2.1 EXTENDING THE KNOWLEDGE GRAPH WITH RELATION PREDICTION TRANSFORMER

Figure 3 introduces our proposed approach – RelaTe . Given a small set of SME-provided images ISME showing
a novel concept as well as the partial graphs P for each image, RelaTe predicts how this novel concept can be
incorporated into the existing knowledge graph. Thereby, RelaTe provides an efficient and intuitive way of quickly
adding new symbolic knowledge to the graph.

Multi-modal Cross-Attention Framework. While we use the image processing pipeline of Dosovitskiy et al. (2021),
we introduce a multi-modal approach to relating linguistic concept representations to images that contain a novel
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Figure 3: Given a novel concept of a stadium by a human expert along with one or more images for it, RelaTe es-
timates the optimal connectivity between the novel concept and existing nodes in the KG (i.e. person, baseball bat,
sports ball, green). Subsequent inferences on similar images will yield the novel concept and allow for generalization
through the domain knowledge encoded in the KG.

concept. In particular, we utilize GloVe (Pennington et al., 2014) word embeddings in order to retrieve a context-
invariant representation wc = fGloV e(c) ∈ RFw for any given concept c ∈ C. These representations are particularly
useful when generalizing to novel concepts due to the potential similarity of new concept embeddings to a semantically
similar word that may be known to the KG already. In order to combine the linguistic and visual representations, we
utilize a cross-attention framework in which the image is represented as a sequence of patches IP (Dosovitskiy et al.,
2021; Gan et al., 2022). We then combine both modalities as follows:

ece = fMC (IP ,wn) (6)

where, wc is the word embedding of any given concept c, and fMC is explained in detail in Section A.1.

Post-Attention Fusion. Given the embeddings ece for each node in each PI across all images in ISME and the novel
concept ecn , we create pairs between the novel concept embedding ecn and the existing nodes’ embeddings ece . We
calculate the likelihood of an edge being present between a source and target nodes by concatenating the embeddings
of each node pair as follows:

pcs,ct = frel([ecs , ect ]) (7)
Here, frel(. . . ) is an MLP predicting a scalar likelihood that an edge is present between the pair of nodes in the
direction from source to target. ecs and ect are populated by every combination of the novel concept node and existing
graph nodes for novel objects; however, for abstract concepts and affordances, we only calculate incoming connections
(see Section 4.1 for details). Finally, at most k nodes that are above a specified threshold pcn,co > γ are added to the
KG. We empirically choose a suitable k depending on the concept type while γ is a global hyper-parameter.

3.2.2 UPDATING THE NEURAL ARCHITECTURE

Adding the novel concept to the KG alone does not directly yield improved classification performance as the new node
does not have a trained node bias bn yet, nor does the propagation network know how to generate node embeddings hn

for the novel concept. Additionally, the final classifier needs to be extended to enable the prediction of the novel class.
In this section, we detail the process of training the node bias, fine-tuning the propagation module, and extending the
classifier in further detail (also see Figure 3, describing how we extend the neural architecture).

Fine-tuning the Node Bias and Graph Propagation. To fine-tune the propagation network and train the node bias
bn of the novel concept, we utilize a small dataset DSME generated from the images ISME given by the human SME
that demonstrate the novel concept. DSME is subsequently expanded by applying transformations to all images in
ISME. Further, we define a small curated dataset DC with the intention of preventing catastrophic forgetting that
contains ∼ 2% of the original VGML training data. The dataset DC is selected through Maximally Diverse Expansion
Sampling (MDES) which selects a representative set of inputs from the original VGML dataset that activates a diverse
set of nodes in the graph G (see Section A.9 for details). Prior to training the propagation network and node bias,
the novel node’s bias bn is initialized as the average of its adjacent nodes’ bias, and the corresponding novel node is
forcefully activated in each training sample in DSME ∪ DC that contains an image from DSME. Forcing the activation
of the novel node includes it in the downstream classification task and thus enables the fine-tuning of the propagation
network and node bias.

Extending the Classification Module After training the propagation network and node bias for a limited number
of epochs, the classification module with the novel neuron for concept cn is unfrozen and added to the fine-tuning
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process. Furthermore, we reduce the learning rate of the propagation module and freeze the node bias bn in this step
of fine-tuning. As the classifier is depending on a valid node bias and the propagation network produces meaningful
node embeddings for cn, we delay the training of the classifier; however, we allow for continuous training of the
propagation network to better capture the image-conditioned representation learning of the novel node. When training
the classifier, its training objective is reduced to a binary classification problem that predicts whether or not the novel
concept is active in DSME ∪ DC while only calculating gradients for the added neuron so as to not alter the prediction
capabilities of the existing concepts. This approach drastically reduces the number of parameters that need to be
optimized, allowing the dataset to be comparatively small.

4 EVALUATION

We evaluate the effectiveness of our proposed approach for novel concept recognition in two separate settings. First,
we compare it against current state-of-the-art FS-MLC baselines on the COCO (Lin et al., 2014) dataset, and sec-
ond, we perform a qualitative analysis of adding abstract concepts, affordances, and scene summaries to the under-
lying neuro-symbolic architecture. Particularly, we demonstrate that our method, when trained on Visual Genome,
outperforms FS-MLC baselines on COCO and even improves performance further when trained on the COCO train-
ing data. Further, we conduct an extensive ablation study analyzing the impact of the various components of the
neuro-symbolic architecture as well as our proposed RelaTe approach. Finally, we further investigate the impli-
cations of different node addition strategies, while additional experiments regarding the number of iteration step
T , curated dataset DC , the addition of node types, and further qualitative analysis including deeper analysis in re-
gards to failure cases and large language models are available in the Appendix. The source code can be found at:
https://github.com/sarthak268/sample-efficient-visual-concept-learning.

4.1 DATA AND METRICS

As our method depends on the existence of an initial knowledge graph, we initialize the graph G from the Visual
Genome Multi-Label (VGML) (Marino et al., 2016) dataset. While based on Visual Genome (Krishna et al., 2016),
VGML improves VG by drastically simplifying the graph, only using the 200 most common objects and 100 most
common attributes, plus an additional 16 nodes to completely cover all COCO classes. We subsequently modify the
graph for our FS-MLC task by removing 16 nodes that are defined as test nodes in Alfassy et al. (2019), resulting in a
total of 300 nodes while also removing all images related to these 16 FS-MLC target nodes from the training dataset
of VGML. Furthermore, we impose the requirement that all nodes representing affordances and attributes must be leaf
nodes in the graph to simplify graph structure further. Additionally, we remove edge labels and introduce a one-hot
vector indicating whether a node is an object, attribute, or affordance, and discovered that the edge types did not
impact the performance of the approach. We evaluate these changes in comparison to the original knowledge graph
from Marino et al. (2016) in Section A.8.

The coverage of all COCO classes is allowing us to compare novel object recognition performance between multiple
COCO baselines and our approach. Particularly, the 16 FS-MLC test classes include bicycle, boat, stop sign, bird,
backpack, frisbee, snowboard, surfboard, cup, fork, spoon, broccoli, chair, keyboard, microwave, and vase. In our
additional evaluation of novel abstract concepts, affordance, and scenes, we utilize the full knowledge graph with all
316 nodes. We utilize our modified VGML dataset to train the GSNN, classification head of ViT, and final concept
classifier in an end-to-end fashion. Further, RelaTe is trained on the entire Visual Genome dataset after removing
the 16 test classes from it. The training for RelaTe includes concepts that are not present in VGML.

Evaluation Metric. In order to compare the efficacy of our approach in the FC-MLC task, we utilize mean average
precision (mAP), macro average precision (Macro AP), and the top-K score. mAP is computed by taking the mean
of the AP scores computed for each label, where AP is the area under the precision-recall curve plotted for each label.
Similarly, Macro AP is computed by averaging the AP scores for each label across all instances and then averaging the
results across all classes. To compute the top-K score, we compute the percentage of K most confident predictions of
our model that are correctly predicted, i.e. precision of K most confident predictions.

4.2 NOVEL CONCEPT RECOGNITION

In this section, we detail our comparison of utilizing RelaTe with our updated neuro-symbolic architecture to add
novel concepts. Particularly, we compare against multiple state-of-the-art baselines on FS-MLC tasks over the COCO
dataset while training our model on VGML and later fine-tuning on COCO. Further, we demonstrate the utility of
adding scene summaries, e.g. kitchen from kitchen appliances, abstract concepts, and affordances in a comprehensive
ablation study on the VGML dataset.
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4.2.1 COCO NOVEL MULTI-OBJECT RECOGNITION

We evaluate the efficacy of adding novel visual objects in a sample-efficient manner using our approach by comparing
it against current state-of-the-art baselines in FC-MLC applications. As defined in Alfassy et al. (2019), we use a set
ISME of five images per novel class and train all 16 novel classes one by one. Table 1 shows the results comparing
our method to three state-of-the-art baselines as well as four additional ablations. For each method, “Source” indicates
the training dataset for the respective model while DSME and DC indicate which dataset was used for the few-
shot learning. If both datasets are used, they are randomly interleaved. Lines 1 to 3 in Table 1 demonstrate the
performance of our three baselines. Using a naive approach to adding novel concepts to Marino et al. (2016), line 4
trains only the final classifier (by adding a novel neuron) on the same training dataset as used in lines 4 to 7 without
adding novel information to the knowledge graph altogether. In addition to training the classifier, adding the novel
node to the knowledge graph, but not training the propagation network and node bias is shown in line 5, indicating
that our modified GSNN is mostly invariant of the knowledge graph despite the lack of fine-tuning, underlining the
strength of having domain knowledge (compare line 4 and 5), yielding a 17% performance increase. However, further
improvements can be done when fine-tuning the propagation network and node bias. Compared to Yan et al. (2022)
in line 3, which achieves 68.12% (the best baseline), utilizing the neuro-symbolic architecture and our proposed
RelaTe architecture in line 6, we achieve a Macro AP score of 70.26, despite training on VGML, which is statistically
significant with a standard deviation of σ = 0.45 at p-value 1.252e−3 trained over four seeds. Further, we also fine-
tuned our method from line 6 on the training set of COCO and report the results of 70.30% with σ = 0.19, with a
p-value of 9.1e−5 over four seeds in line 7 of Table 1. In each case, we parameterize RelaTe with an unlimited k
value to add as many relations as possible. Given that our results in line 6 are resulting from a model trained on an
entirely different dataset, i.e. VGML, yet performs very similarly to being trained on COCO allows the conclusion
that our approach has the ability to transfer knowledge between datasets through the utilization of a knowledge graph.

4.2.2 RECOGNIZING AFFORDANCES, ATTRIBUTES, AND SCENES

Method Source DSME DC Macro AP

1 Alfassy et al. (2019) COCO ✓ — 58.10
2 Chen et al. (2020) COCO ✓ — 63.50
3 Yan et al. (2022) COCO ✓ — 68.12
4 Fine-tuning (classifier) VGML ✓ ✓ 52.22
5 Fine-tuning + RelaTe VGML ✓ ✓ 69.26
6 Ours VGML ✓ ✓ 70.26
7 Ours COCO ✓ ✓ 70.30

Table 1: Experimental results on COCO dataset
for five-shot multi-label classification of previ-
ously unseen concepts.

Unlike other approaches to few-shot novel concept detection that
rely on novel objects being visible in the input image, our approach
can go beyond such limitations through the utilization of intercon-
nected information in the knowledge graph. In addition to adding
visual concepts as shown in Section 4.2.1, we demonstrate how non-
visible concepts like abstract concepts, attributes, and scene sum-
maries can be added. While the borders between what is visual and
what is not are sometimes blurry, particularly in the case of scenes,
utilizing the knowledge graph highlight the ability to draw conclu-
sions from a set of partial observations. E.g., given that refrigerator,
oven, and microwave were detected, we can conclude that the input
image likely shows the kitchen concept, which can subsequently be
added to the knowledge graph as a novel concept. In the following
two sections, we discuss the addition of abstract concepts and scene summaries.

Scene Concept
Model stadium kitchen zoo school bedroom Avg.

8 CLIP (0-shot) 16 100 100 56 72 68.8
9 Flamingo (0-shot) 20 4 40 24 28 23.2

10 Mini-GPT (0-shot) 24 96 64 24 96 60.8
11 Flamingo (5-shot) 68 36 40 72 80 59.2
12 Ours (5-shot) 90 84 84 72 92 84.4

Table 2: Novel scene prediction in comparison to
free-form text generation models.

Adding Non-Visual Concepts. We conduct further exper-
iments to assess the ability of RelaTe to incorporate non-
visual concepts into the knowledge graph by relating it to rel-
evant existing domain knowledge. In contrast to novel object
recognition, we parameterize RelaTe with a threshold k = 3
in order to enforce a sparser connection of affordances and
attributes to existing nodes. Figure 4 shows our experiments
on adding novel affordances (Figure 4a) and attributes (Fig-
ure 4b). In each case, we selected a set ISME with five and
fifteen sample images containing three separate concepts that
should be assigned to the novel concept. Subsequently, we
evaluate the performance of the resulting model on 50 test im-
ages from within the same concept classes as well as 50 test images that do not show any of the trained targets. Our
results show that added non-visual concepts have an average Macro AP of 66.7% given five sample images and 75.1%
given fifteen images. Recall that for novel object detection as shown in Table 1, the Macro AP score is 70.26%. We
hypothesize that the slightly lower performance on abstract concepts roots from the difficulty of not having a clear
visual representation for such concepts. However, when increasing the training samples to fifteen, we outperform the
object detection reported in Table 1, which, in the context of deep learning, is still a relatively small sample size.
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(a) Novel affordances learning given a set of five images.
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(b) Novel attribute learning, given a set of five images.

Figure 4: Analysis of the performance when adding novel affordances and attributes to the knowledge graph. We
evaluate the performance on five-shot (dark colors) and fifteen-shot (bright colors) learning.

Novel Scene Recognition: In addition to adding novel objects and abstract concepts, RelaTe can also assist in
the addition of compound concepts. For example, the existence of a oven, microwave and refrigerator implies a
scene that can be defined as a kitchen that is the sum of the underlying parts. Encoding such knowledge poses a
slightly different problem as compound concepts require reasoning over multiple adjacent concepts. This ability can
be imbued by our KG, but can also be found in large foundational neural networks, particularly LLMs. Table 2
demonstrates the ability of three LLM baselines, MiniGPT-4 (Zhu et al., 2023), CLIP (Radford et al., 2021), and
Flamingo (Alayrac et al., 2022), to draw higher-level conclusions about the general scene shown in an image to our
method, attempting the same task. We evaluate each scene on 25 test images of previously unseen samples and
report the existence of the compound concept within the estimated concepts. For the LLMs, particularly the free-form
response models, we queried the models if the image shows any of the five target scenes. With an average accuracy of
84.4%, this experiment underlines the utility of having interconnected knowledge that augments our few-shot detection
pipeline, allowing the GSNN to successfully draw high-level conclusions from a set of basic concepts. While LLMs
demonstrate partial success in identifying the high-level scenes, explicitly modeling the symbolic knowledge provides
significant improvements despite the LLM’s large general knowledge encoded within their trained model architecture.
In additional experiments for the kitchen example, we showed that the likelihood of classifying the kitchen scene from
a refrigerator or microwave alone is 24% and 28% respectively while the likelihood to identify it from an image
containing both base concepts is 88%, showing that our model accurately learned that a kitchen is the sum of its parts.

4.2.3 ABLATIONS

Components Fine-tuned KG Configuration All Classes Novel Classes
ViT FRCNN KG GSNN CLF RelaTe MDES T-1 T-5 mAP T-1 T-5 mAP

1 ✓ - - - - - - 84.2 63.4 31.8 85.7 65.5 34.6
2 ✓ ✓ - - ✓ - - 84.7 64.2 33.0 86.1 67.2 37.3
3 ✓ ✓ ✓ - ✓ - - 87.4 68.8 36.5 91.8 72.8 68.0
4 ✓ ✓ ✓ - ✓ ✓ - 89.8 69.8 38.5 91.6 72.8 68.2
5 ✓ ✓ ✓ ✓ ✓ ✓ - 90.4 72.4 41.7 92.2 73.6 69.3
6 ✓ ✓ ✓ - ✓ ✓ ✓ 90.0 70.1 39.5 91.8 73.0 68.8
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 90.3 72.9 42.0 92.4 73.9 69.5

Table 3: Experimental results on Visual Genome dataset, ablating the components of our method

In this section, we ablate the different components of our FS-MLC pipeline on the VGML dataset, recognizing the
novel objects defined in Alfassy et al. (2019). Table 3 summarizes these results where lines 1 and 2 show the per-
formance on the test set across all classes and our 16 novel few-shot classes given their Top-1 (T-1) and Top-5 (T-5)
performance when using pure neural end-to-end architectures. In each case, novel classes are trained with five demon-
stration images and evaluated on the test set of VGML. Line 3 adds a KG with the GSNN approach proposed in Marino
et al. (2016) and fine-tunes the final classifier (CLF-column) on the novel classes with an ∼ 3% improvement in Top-K
score. From this, we conclude that novel classes may also need to be added to the knowledge graph. Line 4 uses our
proposed RelaTe approach to add the novel classes to the graph; however, does not tune the GSNN with respect to the
propagation network and node bias (GSNN-column). Adding nodes to the graph yields another 3− 5% improvement
over line 3. Line 5 fine-tunes the propagation network and node bias with our methodology described in Section 3.2.2,
improving performance by another ∼ 2%. Finally, lines 6 and 7 show the impact of our curated fine-tuning dataset
DC as compared to an equally sized random dataset over the original VGML dataset. This demonstrates the impor-
tance of MDES to prevent catastrophic forgetting. In summary, Table 3 highlights our approach’s ability to effectively
expand its understanding of novel concepts with limited samples by effectively utilizing the knowledge graph. Further
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experiments on the original KG are available in Section A.3 while a qualitative comparison of the ground-truth graph
connections in comparison to the ones RelaTe adds is available in Section A.4.

4.2.4 EVALUATING NODE ADDITION PROCEDURE

While RelaTe allows the addition of novel concepts individually, or as a group, we hypothesize that the node addition
strategy has an impact on the overall performance of the model. Figure 5 shows the performance on the VGML dataset
when adding the 16 nodes one-by-one (blue) or all at once (orange), omitting intermediate nodes 6-9 and 11-15 for
simplicity. The trends show that adding one concept at a time and fine-tuning the classifier as well as the GSNN for
each of them before adding the next concept yields a higher performing model. This not only facilitates the extraction
and comprehension of new concepts but also prevents the model from getting overwhelmed with multiple concepts
simultaneously, thus, minimizing the risk of forgetting previously acquired knowledge.

4.2.5 INTERPRETABILITY OF RESULTS

Our approach provides interpretability through the explicit propagation of the initially detected concepts FI through the
graph G, providing insights as to why certain final concepts have been classified. However, while these propagations
are not a direct output of the model, they provide an auxiliary insight into the internal workings of the FS-MLC
pipeline. Figure 1 shows how these propagations can be useful to interpret the concept classifier’s result.

4.3 LIMITATIONS AND FUTURE WORK
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Figure 5: Strategy for adding the 16 novel concepts:
one-by-one vs. all

While our method is capable of learning to recognize vari-
ous objects, abstract concepts, and affordances in a sample-
efficient manner, it is dependent on the comprehensiveness of
the underlying knowledge graph Additionally, the reachability
of the desired target class from the initially detected concept
FI depends on the number of propagation steps T . Further,
the accuracy of the model depends on the initial object detec-
tions of Faster R-CNN (see Appendix A.10 for a brief anal-
ysis). Another factor adding to this is that RelaTe requires
any potentially related knowledge with respect to a novel con-
cept to be expanded by ISME due to the prohibitive compu-
tational complexity of checking against every node in G. In
future work, we plan to address these issues by choosing the
number of propagation steps dynamically, allowing for further
expansions, while also exploring the options of allowing SMEs
to review proposed connections that RelaTe introduces.

5 CONCLUSION

In this work, we present a novel few-shot multi-label classification approach that uses domain knowledge in the form
of a knowledge graph to recognize novel objects, abstract concepts, and affordances. We show that this neuro-symbolic
architecture is particularly well suited for few-shot learning as novel concepts can be added to the knowledge graph,
and thus alleviates the need to re-train large neural networks, but rather, utilizes a small dataset to perform targeted
fine-tuning. As part of this methodology, we propose RelaTe , a novel approach of automatically connecting novel
concepts to the existing domain knowledge and show its utility of not only adding novel objects but also adding
non-visual concepts. Finally, we show that this approach outperforms current state-of-the-art approaches in few-shot
multi-label classification on the COCO dataset. We also show that this approach performs well when on the COCO
test classes despite being trained on the VGML dataset, demonstrating the transferability of knowledge through the
utilization of a knowledge graph.
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Approach Affordances Attributes
CLIP (0-shot) 28.4 35.0

Flamingo (0-shot) 0 0
MiniGPT (0-shot) 18.4 24.4
Flamingo (5-shot) 30.8 47.8

Ours (5-shot) 61.2 69.8

Table 4: Novel non-visual concept prediction in comparison to free-form text generation models.

A APPENDIX

A.1 CROSS-MODAL ATTENTION MECHANISM IN RELATE

In this section, we elaborate further on the cross-modal attention mechanism to fuse the linguistic concept repre-
sentation wc ∈ RFw with the image representation IP ∈ RP×F 2

PC . Fundamentally, this is a standard cross-attention
approach in which the word embedding is considered as query and image patch embedding as key and value. However,
for completeness, we outline the process as follows. Particularly, we define

ec = fMC (IP ,wn) (8)

The transformer encoder architecture is built as L sequential layers each composed of a multi-head cross-attention
and multi-layer perceptron block where each block is preceded by layer normalization and followed by a residual
connection.

The initial input to the encoder is a sequence Z0 of length P where each element zp ∈ RFl of size Fl is the computed
as follows for each patch in IP [i,:]:

z0
i = IP [i,:]E[i,:] + P[i+1,:] (9)

where E ∈ R(F 2
pC)×Fl is a learnable projection matrix and P ∈ R(P+1)×Fl is a learnable positional embedding for

each patch in IP . Further, we insert a CLS token at the beginning of the list Z0
1 = P[0,:]. Provided that the word

embedding wc for the concept c, for each layer l ∈ [1, . . . , L], the embedding zi is given by the following equations:

zl′

i = fCA

(
layernorm(zl−1

i ),wc

)
+ zl−1

i (10)

zl
i = MLP

(
layernorm(zl′

i )
)
+ zl′

i (11)

In the above equation, the cross-attention is computed by querying the concept embedding wc against the patchwise
encoding of the previous layer, initialized by the patches from image IP . The cross-attention module, fCA(. . . ), is a
multi-head approach encompassing h heads. Following the standard transformer architecture, we compute fCA(. . . )
as follows:

fCA(k,v, q) = softmax
( qkT

√
DA

)
v (12)

The key k, query q, and value v for the individual cross-attention heads are given by:

[k v] = layernorm(zl−1
i )Wkv, q = wcWq (13)

where Wkv and Wq are trainable weights and DA = Fl

β , where β is a hyper-parameter. The final embedding for
concept ecn is obtained by extracting the representation corresponding to the 1st element in sequence Z after all L
layers.

ec = fMC (IP ,wc) = layernorm(ZL
0 ) (14)

A.2 EVALUATION OF NOVEL NON-VISUAL CONCEPT EXTRACTION

Our model was assessed for its ability to predict non-visual concepts such as affordances and attributes, in comparison
to the free-form language generation baselines, namely MiniGPT-4 (Zhu et al., 2023), Flamingo (Alayrac et al., 2022),
and CLIP (Radford et al., 2021), explained in Section 4.2.2. The methodology we utilize to obtain the predictions for
each baseline is mentioned below:
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• CLIP (0-shot) (Radford et al., 2021): We evaluated a standard CLIP model by tasking it with a multi-label
classification task over our concepts. The language prompt for CLIP is the list of all 316 nodes plus the novel
concept node and we considered the detection to be successful if the targeted concept was part of the N most
confident classes, where N is the number of the respective image’s ground-truth classes plus one. As CLIP
does not provide an easy few-shot learning opportunity, we only evaluated the zero-shot case.

• Open-Flaming (0-shot) (Alayrac et al., 2022): We utilize Open-Flamingo in lieu of the official Flamingo, as
official models are not publicly available. However, in the zero-shot case, we provided our test images and
prompted Flamingo with the following query: “Does the image show an item that can contain, display, feed,
sit, or transport?” for the affordances and ”Does the image show an item that is edible, electric, flora, sports,
or wearable?” for the attributes. We then evaluated the generated text manually to determine whether or not
Flamingo detected the concept correctly. For example, we counted a response like “Yes, the image shows hot
dogs with cheese on them, which are edible.” as successful identification of the concept edible.

• Open-Flamingo (5-shot) (Alayrac et al., 2022): In the five-shot use-case, we provided further context to
Flamingo by providing all 25 sample images (five for each class) with their respective label to Flamingo and
then prompting for a single label for each of the novel test images.

• MiniGPT (0-shot) (Zhu et al., 2023): Finally, we also employed MiniGPT-4 in order to also utilize a multi-
modal GPT baseline. Here, we provided the image as context and asked the same question as in Open-
Flamingo while evaluating the generated response manually.

The results for the same are presented in Table 4. Our approach outperforms the best baseline by an average score
of 26.2% on the prediction of non-visual concepts. The superior performance of our model can be attributed to its
capacity to deduce non-visual concepts by connecting them with visual concepts derived from the visual inputs.

A.3 QUANTITATIVE EVALUATION OF RELATE

Fine-tuned KG Configuration All Classes Novel Classes
GSNN CLF RelaTe O-KG T-1 T-5 mAP T-1 T-5 mAP

1 - ✓ - ✓ 90.6 70.2 38.8 91.4 72.2 67.6
2 ✓ ✓ - ✓ 90.2 72.8 41.6 91.2 73.7 69.0
3 - ✓ ✓ - 89.8 69.8 38.5 91.6 72.8 68.2
4 ✓ ✓ ✓ - 90.4 72.4 41.7 92.2 73.6 69.3

Table 5: Experimental results on Visual Genome dataset.

In addition to the ablations of Table 3, we provide a quantitative evaluation regarding the ability of RelaTe to
restoring the ground-truth KG of the VGML dataset for the 16 novel classes. Recall that we intentionally removed
the test classes from the KG used in our few-shot experiments. Ideally, RelaTe would restore or create an even
better KG through the proposed edge-addition framework. Table 5 presents a quantitative comparison between our
proposed edge addition methodology, RelaTe , and using the original knowledge graph without removing nodes
corresponding to the 16 novel classes. Rows 1 and 2 demonstrate the use of the original KG (O-KG) while rows 3
and 4 denote the models that use the KG populated by our RelaTe framework. All four of these models are trained
without the use of MDES on a random selection of images from the original dataset. The results demonstrate that our
approach effectively incorporates novel concepts into the KG. In fact, our method outperforms the model that utilized
the original KG for some metrics. This is because our approach not only restores the previously removed edges but
also introduces additional connections that are observed in the SME-provided images, thus, improving performance.

A.4 QUALITATIVE EVALUATION OF RELATE

In this section, we provide examples of connections recommended by our RelaTe framework. For each novel con-
cept, we pick 4 images and pass them through our edge addition framework to demonstrate the edges that it populates
into the graph G. In Figure 6, each example starts with the concept that was removed from the knowledge graph (red)
and its initial connections (purple). The suggested connections by our RelaTe framework are shown in the green
box, which was generated when the system was given a set of 4 images. These results demonstrate the effectiveness
of our relation prediction approach in adding back relevant connections that are prominent in the provided images.
Moreover, our model suggests some additional relations that may not have been present in the original graph but are
relevant and can provide significant information about the scene content.
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Figure 6: Qualitative Evaluation of Edges added by the RelaTe approach. In each example, we include the concept
being added, the edges that were present in the knowledge graph originally, and the nodes that were suggested by
RelaTe for a set of images.

17



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Steps of
Expansion, T

Expansion % mAP

2 39.5 39.1
3 93.4 42.0
4 100.0 41.3

Table 6: Percentage of samples that required T steps of expansion and the corresponding mAP performance of our
model with that T .

A.5 COUNTERING THE CLASSIFIER BOTTLENECK

We demonstrate the crucial role of fine-tuning the propagation network and the node bias when adding novel concepts
to the graph. In Figure 7, we plot the mAP performance on the entire VGML dataset as a function of the number of
novel classes added to the system for the model where we fine-tune either only the classification or both classification
and the propagation module including the node biases. During training with five images per concept, we utilize the
one-by-one node addition strategy which showed improved performance (see Figure 5). Initially, for just a few nodes,
not training the GSNN does not have a huge influence; however, the plot shows that the model in which we only
fine-tune the classifier experiences a substantial performance drop which is proportional to the number of concepts
added compared to the model in which both the modules are fine-tuned.

A.6 ABLATION ON NUMBER OF PROPAGATION STEPS
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Figure 7: Fine-tuning GSNN + Classifier vs Classifier Only

We experiment with different values for T that define the
number of iterations between the propagation and im-
portance network during inference of the GSNN mod-
ule as described in Section 3.1.2. We aim to select the
minimum possible value of T that ensures the complete
expansion of most of the samples in our test dataset
within the first T steps. In Table 6, we report the perfor-
mance of our model on all the classes of the VGML test
dataset along with the percentage of samples that were
expanded to full capacity by varying the number of ex-
pansion steps. The results we obtained in Table 6 high-
light that 3 is the optimal value of T since we start to ob-
tain diminishing returns following steps greater than 3.
Expanding less than two steps doesn’t allow the model
to experience many relevant connections while expand-
ing beyond the third level makes it challenging for the
model to identify concepts that are related to the original concepts FI .

A.7 SIGNIFICANCE OF IMAGE CONDITIONING ON NODE EMBEDDINGS

We explicitly enforce conditioning of the image content on the embeddings generated for each of the nodes during
the graph propagation. These embeddings are utilized by both the importance and the context network and form the
backbone of the entire graph expansion procedure. Unlike Marino et al. (2016), which does not enforce this constraint,
our model prioritizes expanding nodes that are relevant to the image content rather than simply expanding nodes that
are only dependent on the initial class detection that would result in the same propagated nodes even for dissimilar
images. We demonstrate the significance of our proposed conditioning by selecting three vastly distinct images from
the dataset in Figure 8. The original GSNN fails to distinguish between these images in terms of expanded nodes in the
KG, whereas our approach expands a unique set of nodes for each image. The following are the final classifications
with and without image conditioning on the propagation network:

• Image 1:

– w/o Conditioning: person, bench, shirt, black, white, gray
– w Conditioning: person, bench, shirt, wooden, brown, black, sunglasses

• Image 2:

– w/o Conditioning: person, bench, green, sitting, shirt, white
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Figure 8: Samples from the dataset where the initial propagation begins with the concepts of person and bench.

– w Conditioning: person, bench, jacket, green, visible, sitting

• Image 3:

– w/o Conditioning: person, bench, shirt, sitting, pink, wooden, black

– w Conditioning: person, bench, shirt, black, jacket, head, wooden

While the model without image conditioning expands a generic list of nodes, our approach identifies image-specific
concepts such as sunglasses for the first image and jacket for the second image, demonstrating the improvements
imposed by this additional conditioning.

A.8 ABLATION FOR NODE TYPES AND EDGE TYPES

Edge types Node types mAP
1 ✓ - 42.3
2 - - 42.1
3 - ✓ 44.6

Table 7: Experimental results with ablations of edge and
node types.
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Figure 9: Edge type distribution of the KG used by
Marino et al. (2016).

In Section 4.1, we introduced the changes to the KG as described in Marino et al. (2016). Here, we ablate these choices
in greater detail. Table 7 shows the performance of the algorithm with the original 26 edge types in line 1, no edge
types (i.e. just a single unlabeled edge) in line 2, and our modified KG without edge types, but an additional one-hot
indicating the node-type in line 3. The results show that edge types hinder the performance of the inference pipeline
and indicating the node type improves performance. We hypothesize that this is due to the strong imbalance of the
encoded edge types, as shown in Figure 9, where the has attribute, comprising almost two-thirds of all edge types.

A.9 MAXIMALLY DIVERSE EXPANSION SAMPLING

To select a small subset of the original dataset that allows us to maximize the diversity of expanded nodes in our KG,
we adopt a binning-based approach. We begin with a single bin spanning all nodes and traverse the dataset to identify
the image that can expand a node in the largest bin. Upon finding such an image, we use each expanded node in that
image as the dividing line between the new bins. If an image does not expand a node that would divide the largest
bin, the image is not added to our curated dataset DC . We only process the dataset once until either we have a set of
images that expand all the possible nodes or all images have been either added to DC or have been discarded. Under
the assumption that rare classes are randomly distributed in the dataset, we ensure that at least some images containing
that class are added to DC . As a result, we create a dataset DC containing approximately 2% of the original VGML
dataset.
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Figure 10: Robustness to wrong graph initialization by Faster R-CNN detections.
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(a) Node Replacement: Here, we removed the sports ball
and replaced it with a dog, demonstrating how our ap-
proach does not incorporate the wrong node.
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(b) Node Replacement: Here, we replaced the sports ball
with an elephant. An interesting result here is that not only
was the wrong node not expanded, but it was also removed
from the final classification.

Figure 11: Robustness to wrong graph initializations that are manually enforced.

A.10 ANALYSIS OF DEPENDENCE ON OBJECT DETECTORS

To test the resilience of our model against inaccuracies in the object detection module, we conducted an evaluation by
replacing the detected objects with random concepts (that were not originally present in the respective example), and
observing whether our model expands upon them. We conducted a small-scale experiment on 30 test images, where
we introduced an additional random node that is unrelated to the actual image. We observed that the propagation and
importance networks ignore these wrong nodes in 63% of the cases by not expanding them any further. Further, in
16.7% of the cases, the final classifier removes these nodes altogether. In the current work, the importance network can
not remove previously added nodes; however, this capability could be explored in future work. Figure 10 demonstrates
two instances where Faster R-CNN mistakenly detects a non-existent object class in the image. Furthermore, we
provide a few instances in Figure 11 where we substitute one of the original object detections in the image with
an entirely unrelated object, and our model refrains from further propagating the modified node, demonstrating its
resistance to such potential issues.

Additionally, we also analyzed a potential failure case in which wrong edges exist in the graph. The only potential
source for such edges is if RelaTe predicts wrong edges during novel concept addition. When testing the performance
of RelaTe by removing a known node for which the desired edges are known, we observe that 84% of these edges
are restored when re-adding the target node using our approach. However, while the remaining 16% of edges are
not necessarily wrong, we analyzed the impact of potentially wrong edges by manually introducing them between the
initially detected nodes and an arbitrary, unrelated node. This was evaluated on 30 images, as for the prior experiments.
We observe that in 76.6% of the cases, the propagation and importance network ignore this wrong connection.

This highlights the robustness of our model to erroneous initialization. Moreover, we empirically observed that Faster
R-CNN rarely introduces wrong nodes, thus further mitigating this potential error source.

A.11 FAILURE ANALYSIS

As part of our failure analysis, we highlight some examples where our model hallucinates non-existent concepts in the
image. Although such misclassifications are not common, they offer valuable insights into how our approach functions
and where it may be prone to errors.
In the given scenario depicted in Figure 12a, the model has incorrectly identified the concept of a cellphone. This
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Figure 12: Failure cases of our model in which wrong nodes are integrated into the graph.

error can be attributed to the model’s tendency to associate objects with certain visual characteristics, which can result
in confusion between objects that share common properties. For instance, in this case, both the laptop and cellphone
have a screen, and therefore the affordance of being able to display something, leading to the misidentification of the
object as a cellphone. The second example in Figure 12b demonstrates another instance where our model has made an
incorrect prediction by identifying the object in the image as a sports ball. This error can be attributed to the model’s
tendency to rely on the way people interact with objects in the scene when identifying them. In this case, the child’s
hand gripping the knob of the microwave may resemble the way one would grip a ball, leading the model to mistakenly
classify it as a sports ball.

Finally, we evaluate potential failure cases in which RelaTe may be tasked to add edges between contextually unre-
lated nodes. It is a key feature of RelaTe to automatically determine the nodes that are relevant for a novel concept
while not adding edges to nodes that are contextually different. To evaluate this, we attempt to add edges between
nodes from the bedroom context and nodes from the stadium context. In this case, we observe that RelaTe only adds
an edge in 20% of the queried connections. However, it is important to note that some connections are in fact reason-
able, as connections between the person node in the stadium context have a valid connection to bed in the bedroom
context.

A.12 RUNTIME COMPLEXITY

We trained our model on a single RTX 6000 GPU for ≈ 100 hours of total training time. When adding a novel concept,
the two-staged tuning of our model takes approximately 45 minutes. Finally, during inference, it takes approximately
30 seconds per image to obtain predictions using our approach.
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