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ABSTRACT

Detecting successful behaviour is crucial for training intelligent agents. As such, generalisable re-
ward models are a prerequisite for agents that can learn to generalise their behaviour. In this work we
focus on developing robust success detectors that leverage large, pretrained vision-language models
(Flamingo, Alayrac et al. (2022)) and human reward annotations. Concretely, we treat success de-
tection as a visual question answering (VQA) problem, denoted SuccessVQA. We study three vastly
different domains: (i) interactive language-conditioned agents in a simulated household, (ii) real
world robotic manipulation, and (iii) “in-the-wild” human egocentric videos. We investigate the
generalisation properties of a Flamingo-based success detection model across unseen language and
visual changes in the first two domains, and find that the proposed method is able to outperform
bespoke reward models in out-of-distribution test scenarios with either variation. In the last domain
of “in-the-wild” human videos, we show that success detection on unseen real videos presents an
even more challenging generalisation task warranting future work. We hope our results encourage
further work in real world success and reward modelling with pretrained vision-language models.

1 INTRODUCTION

Being able to detect successful (i.e., preferred) behaviour is a crucial prerequisite for training intelligent agents. For
example, a signal of successful behaviour is necessary as a reward for policy learning, or as an evaluation metric for
identifying performant policies. As such, in this work we are concerned with developing accurate and generalisable
success detectors, which classify if a behaviour is successful or not. While it is possible to engineer success detectors
in specific domains, such as games (Mnih et al., 2013) or control tasks (Tunyasuvunakool et al., 2020), they are often
challenging to specify for real-world settings. Success detection in realistic settings can be difficult not only due to
challenges with identifying the environment state (e.g., detecting a particular object configuration from pixels), but
also due to ambiguities about what a successful state is (e.g., subjective goals, “generate an entertaining story”). One
possible approach for developing success detectors is through reward modelling with human preference annotations
(Christiano et al., 2017; Ouyang et al., 2022; Cabi et al., 2020; Abbeel and Ng, 2004; Ng et al., 2000). However,
the trained reward models are often accurate only for the fixed set of tasks and narrow environment conditions ob-
served in the preference-annotated training data, and thus they require extensive further labour-intensive annotations
for increased coverage. This presents a significant bottleneck, as we would like success detectors to be able to gen-
eralise broadly – for instance, once a success detector learns what “successfully picking up a block” looks like, it
should be able to detect this behaviour regardless of background or agent morphology changes thanks to a semantic
understanding of what “picking up a block” means.

Consider success detection in robotic manipulation, where tasks are specified with language instructions and obser-
vations consist of images. We posit that generalisable success detection is useful for learning generalisable policies
in this domain. Here, effective success detectors should generalise to task variations along two axes. Firstly, they
should generalise to language variations in the task specification. A model that is trained on detecting success for the
instruction “lift a rubber duck” should also accurately measure success for “lift a toy duck object”. Secondly, success
detectors should generalise to visual variations. If a camera moves or additional objects are introduced in the scene,
the model should still reliably detect success on accomplishing a known task. Standard reward models are typically

∗ Work done during internship at Google DeepMind.
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Q: Did the robot successfully insert a medium gear?

yes.

Q: Did the agent successfully place the cactus left of the sofa?

Q: Did the person successfully dip the sponge?

Answer:_

no.

yes.

no.

yes.

no.

Answer:_

Answer:_

Figure 1: SuccessVQA: Success detection tasks can be formulated as visual question answering (VQA) problems.
Large multimodal language models, such as Flamingo, offer the opportunity to learn a generalisable success detector,
which can act either as a reward model or agent evaluator across a broad range of domains.

trained for fixed conditions and tasks, and are thus unable to generalise well to such variations. As such, adapting
success detectors to new conditions typically requires collecting new annotations and re-training.

In this work, we aim to train success detectors that are robust with respect to variations in both language specifica-
tions and perceptual conditions. To this end, we leverage large pretrained vision-language models (VLMs), such as
Flamingo (Alayrac et al., 2022), as a foundation for learning success detectors. We hypothesize that Flamingo’s pre-
training on vast amounts of diverse language and visual data will enable learning more robust success detectors. In
particular, we show that the same simple approach of finetuning Flamingo with human annotations leads to general-
isable success detection across vastly different domains. This simple approach allows us to use a unified architecture
and training scheme, where we require only 1) videos describing the world state, and 2) text describing the desired
behaviour or task. We reframe the problem of success detection as a visual question answering (VQA) task and refer
to this formulation as SuccessVQA (Figure 1).

Concretely, we finetune Flamingo for success detection on three diverse domains: a simulated household (Abramson
et al., 2021), real-world robotic manipulation, and in-the-wild egocentric human videos (Grauman et al., 2022). The
universality of the SuccessVQA task formulation is instrumental in enabling use of the same training architecture in
a wide range of tasks and environments. We demonstrate that the resulting success detectors are capable of zero-shot
generalisation to unseen conditions (both in language and vision) where bespoke learned reward models fail.

2 RELATED WORK

Vision-Language Models (VLMs) Multimodal vision-language models (VLMs) have shown remarkable success in
recent years, where VLMs can serve as a foundation for various tasks using language, vision, or arbitrary combinations
of modalities. VLMs can be trained with contrastive objectives (Jia et al., 2021; Radford et al., 2021) and/or generative
objectives (Dai et al., 2022; Hu et al., 2021; Luo et al., 2020; Alayrac et al., 2022). In this work we rely on the Flamingo
model (Alayrac et al., 2022), which leverages a contrastive objective for pretraining the vision encoder on text-and-
image pairs. However, unlike other applications of VLMs in single-image VQA tasks (Tiong et al., 2022), we rely on
videos to specify the world state, making our work more similar to video QA tasks (Xu et al., 2016). Variants of our
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approach (e.g., by reducing the video input to a single frame) can also be applied with other image-based VLMs built
on large language models (Li et al., 2023; Koh et al., 2023).

Reward Modelling Reward modelling is often necessary when it is challenging to hard-code a reward function
for an agent to learn from. To this end, many works have studied learning reward models from human data. When
demonstrations of desirable behaviour are available, one can leverage inverse reinforcement learning (IRL), where
the key idea is to recover a reward function that best explains expert behaviour (Ng et al., 2000; Finn et al., 2016;
Ho and Ermon, 2016; Li et al., 2017; Fu et al., 2018; Merel et al., 2017; Zhu et al., 2018; Baram et al., 2017).
However, IRL relies on expert demonstrations, makes assumptions about the relationship between the expert actions
and the true reward, and can be difficult to train in practice. When demonstrations are difficult to acquire, a more
natural way of providing human feedback is through comparative preferences that indicate the degree to which certain
agent behaviour is desirable. This can be done with comparisons of whole episodes (Akrour et al., 2012; Schoenauer
et al., 2014; Brown et al., 2019; Sadigh et al., 2017), trajectory segments (Christiano et al., 2017; Ibarz et al., 2018;
Lee et al., 2021; Abramson et al., 2022a), or even synthesized hypothetical trajectories (Reddy et al., 2020). These
methods then fit a reward function as a preference-predictor, e.g., using a Bradley-Terry model (Bradley and Terry,
1952). Nevertheless, preferences are not always the most natural form of feedback from humans, and sometimes it can
be easier for a person to provide direct success labels or scalar rewards with respect to a given goal. This can be done
online in response to observed agent actions and state transitions (Knox and Stone, 2008; MacGlashan et al., 2017;
Arumugam et al., 2019). In robotics, proposed methods vary from sparse, single frame annotations (Singh et al., 2019)
to dense, whole trajectory annotations (Cabi et al., 2020). In this work we learn from reward annotations, focusing on
training success detectors which can be viewed as binary reward functions. Since collecting human annotations for
each new task and environment can be expensive, we aim to study whether pretrained, large VLMs can enable learning
more generalisable success detectors from human annotations.

Large-Scale Pretraining for Success Detectors Our work falls under the general category of using foundation
models as reward models. In language modelling, reward models are typically trained by finetuning a pretrained large
language model (LLM) with human preferences over LLM generations. This reward model can then be used to finetune
an LLM with filtered supervised finetuning or reinforcement learning from human feedback (RLHF) (Stiennon et al.,
2020; Nakano et al., 2022; Menick et al., 2022; Glaese et al., 2022; Askell et al., 2021; Bai et al., 2022). For embodied
agents, large-scale datasets of in-the-wild human videos have been used to train reward models (Ma et al., 2022; Chen
et al., 2021). Rather than using human reward annotations of agent behaviours, these methods rely on task-annotated
human videos of successful behaviours. Most similar to our work are prior approaches that propose using contrastive
VLMs as reward models. In simulated robot domains, Mahmoudieh et al. (2022); Cui et al. (2022) propose using CLIP
(Radford et al., 2021) to generate task rewards from a text-based goal description and pixel observations. Fan et al.
(2022) leverage large-scale Minecraft data to finetune a Minecraft-specific video CLIP model for detecting alignment
(i.e., reward) with text task descriptions. Beyond experimenting in different domains, we also leverage a generative
VLM built on a frozen large language model, which we hypothesize enables better language generalisation.

3 SUCCESSVQA: SUCCESS DETECTION AS A VQA TASK

Our primary contribution is SuccessVQA, a framework that allows us to train multi-task success detectors by directly
leveraging powerful pretrained VLMs, such as Flamingo. In SuccessVQA, the VLM is given a visual input repre-
senting the state of the world (e.g., a single image or a short video clip) and a question asking if the specified task is
successfully accomplished. This problem formulation has several advantages:

• It allows us to unify success detection across domains, using the same architecture and training scheme. We
consider three domains: a simulated 3D playroom used in prior research on language-conditioned interactive
agents (IA Playroom) (Abramson et al., 2021; 2020), real robotic manipulation, and “in-the-wild” human
videos from Ego4D (Grauman et al., 2022).

• Relying on a pretrained vision-language model enables us to harness advantages of pretraining on a large
multimodal dataset. We hypothesize this enables better generalisation to language and visual variations.

• The task and state specification allows us to unify treatment of success detection across tasks defined by sin-
gular successful states or target behaviours (i.e., detecting success requires reasoning across multiple frames).

SuccessVQA Datasets To create the SuccessVQA datasets, we use behaviour trajectories annotated by humans to in-
dicate whether a task is completed successfully, and if so, when success occurs. There may be multiple annotations per
trajectory from different human raters. In the cases where raters disagree, success or failure is determined by a majority
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Agent task: place a cyan pointy object on the bed

Annotated trajectory

SuccessVQA example

Did the agent 
successfully place a cyan 
pointy object on the bed?

Answer

yes

no

Question

Figure 2: SuccessVQA dataset creation: A trajectory is annotated by human raters with a point of success (denoted
by the trophy). Then the trajectory is split into subsequences and converted to multiple SuccessVQA datapoints with
corresponding questions and answers. See Appendix A for additional examples.

Question: Did the agent successfully place a cyan pointy object on the bed?

no yes

Figure 3: We compute episode-level success detection accuracy during evaluation in order to compare against bespoke
success detection models for each domain. To do this, we create subsequences and predict success on each clip
individually, then consolidate the predictions at an episode level.

vote, and the median (across the raters who annotated success) of the first annotated success frame is used as the ’point
of success’. All subsequent frames are also successful, unless the task is reversed (e.g. removing a gear after inserting
it for the robotics domain). To generate SuccessVQA examples, a trajectory is split into non-overlapping subsequences
(Figure 2). For simplicity, we make the clip lengths the same as the pretraining clip lengths used for Flamingo: by
first creating subsequences of length 211 frames, then downsampling from 30 FPS to 1 FPS to create 8-frame subse-
quences. We then generate the VQA question using one of two methods. When trajectories correspond to some known
task, we use the template: Did the robot/agent/person successfully {task}?, for example, Did
the agent successfully place the cactus left of the sofa? (see Figure 1, first and second
rows). When no task is provided but there is a narration corresponding the actions in the clip, as in Ego4D, we use
a frozen Flamingo model to rephrase the narrations into questions. For example, given a narration The person
is scooping the ice cream, we convert it to the question Did the person successfully scoop
the ice cream? (see Figure 1, last row). Finally, the answer is generated: yes if the given subsequence ends in
one or more success frames, and no otherwise.

Training and Evaluation We finetune the Flamingo (3B) vision-language model on the SuccessVQA dataset for
each domain. Specifically, we finetune all the vision layers (vision encoder, perceiver, and cross attention layers) and
keep the language layers frozen. In the experiments we refer to this model as FT Flamingo 3B. For evaluation we
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compute clip-level success detection accuracy against the ground truth human annotations on held-out trajectories. In
the simulated household and robotics domains (Sections 4 and 5) we also compute episode-level accuracy to directly
compare against baseline bespoke success detection models, denoted bespoke SD. Note that these baselines were
hand-designed independently and tuned specifically for each domain. While these models differ from Flamingo in
both pretraining schemes and architecture, they represent a best attempt at designing an accurate reward model for
in-distribution evaluations. Episode-level success detection is computed as follows: first, we generate subsequences
from the test trajectories in the same way as during training. Next, the success detection model classifies each clip
individually for success, as illustrated in Figure 3. We consolidate classifications in one of two ways. 1) When the
success is completely defined by the observed environment state (as in the robotics tasks), we only look at the first and
the last clip of an episode. Then, the entire episode as successful if the first clip is in a failure state and the last clip is
in a success state. 2) When the success is defined by a particular behaviour (as in the simulated household domain),
if any subsequence in an episode is classified as success we classify the episode as successful. We report balanced
accuracy on the test episodes, as there can be a large imbalance between the number of successful and failure episodes
in the dataset. A random model would achieve 50% balanced accuracy.

Experiments overview We use the SuccessVQA problem formulation to train success detectors across a diverse
range of tasks in vastly different domains: simulated household or IA Playroom (Section 4), robotics (Section 5),
and Ego4D videos (Section 6). We investigate whether Flamingo as a success detector model backbone enables
generalisation across the following axes:

• language generalisation (Section 4). Can we accurately detect success for novel tasks specified with lan-
guage? To answer this question, we evaluate generalisation to unseen tasks specified with language. For
example, if we train on detecting success for the task arrange objects in a row, can we accurately
detect success for the task arrange objects in a circle? For these experiments, we use simulated
tasks in the IA Playroom where the dataset contains a large and diverse set of language-specified tasks.

• visual robustness (Section 5). Can we detect success in the presence of unseen visual variations? To answer
this question, we evaluate success detection accuracy for a known semantic task, but in the presence of
naturalistic visual perturbations. In these experiments, we use real-world robotic manipulation tasks where
we introduce visual variations at test-time using different camera viewpoints and distractor objects.

We compare our model against bespoke evaluation models designed and trained specifically for each domain. Note
that we do not expect the Flamingo-based models to outperform the bespoke models in a given in-distribution scenario,
as we use bespoke baselines designed and tuned for their respective particular domain. Rather, we aim to investigate
whether the Flamingo-based models have better robustness to both aforementioned language and visual changes, while
also not requiring any domain-specific architectural or training changes. We emphasize that the benefit of SuccessVQA
is the simple task formulation that can be applied across a wide range of domains and is directly amenable for use
with large pretrained VLMs. Finally, in Section 6 we show an example of an in-the-wild SuccessVQA dataset derived
from Ego4D (Grauman et al., 2022). Initial results for success detection in this domain are promising, and we hope to
encourage further work on accurate reward modelling in unstructured real-world settings.

4 LANGUAGE ROBUSTNESS WITH INTERACTIVE AGENTS (IA PLAYROOM)

In this section we train and evaluate success detectors in the simulated IA Playroom environment, a diverse 3D house
environment designed for training language-conditioned interactive agents (Abramson et al., 2021; 2020). The en-
vironment consists of a “randomised set of rooms, with children’s toys and domestic objects, as well as containers,
shelves, furniture, windows, and doors” (see Figure 1 in Abramson et al. (2020)). The tasks are generated from
human-human interactions in the IA Playroom, where a setter is instructed to provide a task via language for a solver,
e.g., bring me the book from the living room. Success detectors in this environment can serve as au-
tomated evaluators for trained policies.

There are two properties in this environment that are particularly challenging for automated success detection: large
language variety and the environment’s multi-task nature. Large language variations are present because the tasks
were originally generated from human interactions, and people are likely to use diverse language to specify even
semantically similar tasks. For example, the task of bringing an object to the setter can be phrased in many ways:
bring a fruit from the pantry, bring me the banana which is in the pantry, bring
the yellow coloured object near me. Moreover, success detection in this environment is intrinsically
multi-task in its nature because: (1) there is a vast set of possible tasks that can be specified with different utter-
ances, and (2) the behaviour of different people and trained agents can vary greatly for the same task. For automated
evaluation, it is not scalable to train a new model for each language and task variation.
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Training Dataset We use tasks and trajectories from the Standardized Test Suite (STS), designed specifically for
evaluating learned Interactive Agents (Abramson et al., 2021; 2020). We focus on the movement-based tasks: tasks
that require the solver agent to move around and interact with the environment. The STS consists of a set of “scenarios
that typify the behaviour [the Interactive Agents team] wishes to evaluate” (Abramson et al., 2022b), and various
trained agent policies are tasked with accomplishing the given scenarios. These test episodes are then annotated by
human raters to indicate if a task is successfully completed and if so, at which frame success occurred. We use these
annotations to create a SuccessVQA dataset for FT Flamingo 3B finetuning and to train a baseline bespoke SD model
for comparison. The training set consists of STS and human interaction data collected between September 2021 to
April 2022, 546,887 trajectories in total (1,421,111 clips).

Baseline Success Detectors For the bespoke SD baseline, we use a success detection model specifically and inde-
pendently designed for the STS with the best practices we are aware of. We consider two types of baseline models:
whole episode evaluation and autoregressive evaluation. As the whole episode model consistently outperformed the
autoregressive model, in this section we only report the results from that baseline (see Appendix B for additional
results). This model creates a downsampled set of 32 frames from the entire evaluation episode and embeds the im-
ages with a ResNet-101. The agent input and output text are also embedded using a learned text embedding. All
embeddings are then concatenated together and fed to a transformer with an MLP head that predicts the likelihood the
episode was successful. An auxiliary instruction-matching contrastive loss is also applied.

Evaluation To select the best success detection model, we use the model and checkpoint with the highest balanced
accuracy on a held-out validation split from the same distribution as the training data. We then evaluate the chosen
success detector model across three different test sets:

• Test 1: unseen episodes (in distribution) – a randomly held-out 10% of training dataset trajectories, which
includes rephrasings of training tasks. This dataset contains 175,952 clips.

• Test 2: unseen behaviour (out of distribution agents) – trajectories generated by new agents on tasks seen
in the training dataset, including rephrasings of training tasks. These agents potentially demonstrate novel
behaviour, allowing us to assess success detector robustness to unseen behaviours on known tasks. This
determines if we can reuse the same models as agent behaviour evolves over time (i.e. the success detector is
accurate even when the agent solves a known task in a novel way). This dataset contains 462,061 clips.

• Test 3: unseen tasks (out of distribution agents and tasks) – the most challenging setting: trajectories
generated by new agents on new tasks not seen during training. For examples of such new tasks, see Table 1.
Note that this set comprises completely new tasks as well as rephrasings of said tasks. As the tasks are new,
the success detector models need to master a semantic understanding of language to properly generalise to
success detection in this set. This dataset contains 272,031 clips.

Property Test 3 Examples

Unseen descriptor arrange 4 pointy objects in a square shape in the bed room, where
square is not mentioned in the training set. Instead, at train time we have tasks arranging
objects in an arc or triangle.

Unseen objects push the train engine with water bird, where neither train engine nor
bird are mentioned in the training set.

Unseen actions hit the candle using the pillow which is left of airplane in
the living room, where the action hit is not mentioned in the training set.

Table 1: Examples of unseen task variants used in Test 3 (rightmost column in Table 2).

Model Test 1: unseen episodes Test 2: unseen behaviour Test 3: unseen tasks

bespoke SD 80.6% 85.4% 49.9%
FT Flamingo 3B 83.4% 85.0% 59.3%

Table 2: Zero-shot episode-level balanced accuracies for IA Playroom STS evaluation models in new conditions. For
reference, human level balanced accuracy is around 88% due to inter-rater disagreement.
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Results Table 2 presents the episode-level balanced accuracy on each test set. We find that without finetuning, the
accuracy of the Flamingo model is close to random chance (see Appendix B for details). This is unsurprising, as the IA
domain differs greatly from Flamingo’s pretraining data. When finetuning on the same data, FT Flamingo 3B matches
the performance of the bespoke models in Test 1 (unseen episodes) and Test 2 (unseen behaviour). More importantly,
in Test 3 (unseen tasks), the performance of a bespoke model drops to a random chance, while FT Flamingo 3B
outperforms it by a significant margin (10%). As the instructions in Test 3 are for novel tasks, not just rephrasings of
tasks seen during training, this experiment demonstrates that the success detector exhibits some amount of semantic
understanding of the scenes. We hypothesize that this is possible due to Flamingo’s large language model backbone
and web-scale pretraining. That said, there is still a large margin for improvement on the most challenging test set. For
future work, it would be interesting to investigate how different model scales, dataset sizes, or cross-finetuning with
different datasets can affect generalisation.

5 VISUAL ROBUSTNESS WITH ROBOTIC MANIPULATION

insert 
small gear

insert 
medium gear

insert 
large gear

remove 
small gear

remove 
medium gear

remove 
large gear

Figure 4: Successful frames for the 6 robotics gear manipulation tasks.

In this section we train and evaluate success detectors on a family of real-life robotic gear manipulation tasks with a
Panda robot arm. There are six tasks corresponding to inserting or removing a small, medium, or large gear within a
basket (Figure 4). We consider visual observations from a basket camera. Ideally, a success detector should remain
accurate under naturalistic visual changes, such as different camera view angles, lighting conditions, or background
changes. Furthermore, as the performance of learned policies improves, we may want to introduce new objects or
tasks to the environment. It quickly becomes impractical to re-annotate and re-train success detectors from previous
tasks in new conditions, thus making it important to train visually robust success detectors. For example, a model
that has learned to detect successful gear insertion should still be able to robustly detect success even if the basket has
additional task-irrelevant distractor objects or camera angle changes. To investigate this, we design our experiments
to carry out zero-shot evaluations on episodes with such visual changes.

Training dataset Human operators provide 101, 789 demonstrations for 6 tasks using a 6DoF control device. Each
episode is then annotated by humans with rewards for each task (e.g., every episode has 6 reward annotations, one
for each task). Human annotators label positive rewards for all frames with a success state (i.e., if the task is solved),
and zero rewards otherwise. Note that it is possible for a task to be accidentally undone in the same episode, at which
point the reward annotation would revert to zero. The reward annotations and corresponding episode frames are then
converted into SuccessVQA examples (see Figure 6). The ground truth VQA answer is obtained from the human
annotations: clip answers are labelled successful if they contain only a single transition from zero to positive reward
or only have positive rewards throughout, otherwise they are labelled as unsuccessful. We train a single FT Flamingo
3B success detector model for all 6 tasks.

Baseline Success Detector As a baseline, we consider a ResNet-based (He et al., 2016) per-frame success classifica-
tion model, trained and tuned specifically for this domain independently of this work. The ResNet-18 is pretrained on
ImageNet, and the classification layer is swapped out for a binary classification layer. We finetune a separate success
classification model for each of the 6 gear tasks, applying image augmentations during finetuning. This is distinct from
our method where we train a single multi-task model across all 6 tasks. We consider an episode successful if the first
and last frames1 of the episode are classified as a failure (output < 0.5) and success (output > 0.5) correspondingly.
We will further refer to the baseline model simply as bespoke success detector (bespoke SD).

Evaluation To compare against the bespoke SD, we look at episode-level balanced accuracy. Given an evaluation
episode, we consider the episode successful under FT Flamingo 3B if the first clip is classified as unsuccessful and
the last clip is classified as successful (see Figure 10 in the Appendix). This matches the episode-level classification

1We find that incorporating more frames does not improve episode-level accuracy.
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Test 2: Viewpoint variation (back camera):

Test 3: Distractor objects (pegs):

Test 1: In-domain:

Figure 5: Examples of three evaluation datasets: in-domain episodes similar to the training dataset, episodes with a
different camera viewing angle and episodes with distractor objects in the basket.

scheme of bespoke SD. We conduct the evaluation on three test sets (see Figure 5): Test 1: In-domain episodes (first
row), Test 2: Episodes with a viewpoint variation, using a different (back) camera (second row), and Test 3: Episodes
with distractor objects in the basket, but the original camera (last row). The last two settings are designed to test the
robustness of the models to naturalistic visual perturbations in the environment. The trained success detectors can then
either be used as automated evaluators or reward models for agent training.

IN-DOMAIN PERFORMANCE

In Test 1, we conduct an in-domain evaluation where the test set comes from the same visual conditions as the training
set (see Figure 5, top row). The test set includes all the training episodes and an additional held out 2076 episodes. The
results in Table 3 show that while the bespoke SD consistently outperforms the FT Flamingo 3B, the performance of
the FT Flamingo 3B model is still comparable for the insertion task. Note that the accuracy of the Flamingo model on
the remove tasks is lower, which we hypothesize is likely due to a data balancing issue. We have 5 times more training
data available for insertion than removal, and training a single model across all tasks likely led to a tradeoff in accuracy
between the insertion and removal tasks, which are temporal opposites of each other. We also conduct experiments into
the efficacy of policies trained with these success detectors in Appendix C.3, with initial proof-of-concept evaluations
suggesting that policy performance under either FT Flamingo 3B or bespoke SD are similar.

Insert Remove
Small Medium Large Small Medium Large

bespoke SD 98.0% 98.4% 99.1% 97.3% 98.7% 98.4%
FT Flamingo 3B 96.0% 94.4% 95.0% 82.1% 83.4% 87.2%

Table 3: In-Domain Episode-level Accuracy for Gear Manipulation. Balanced accuracy evaluated on 50,000-
60,000 episodes per task.

VISUAL ROBUSTNESS

Next, we focus on testing the generalisation capabilities of success detectors. We measure zero-shot accuracy on two
natural visual variations described above: Test 2 and Test 3.

In Test 2, we look at zero-shot robustness to different viewpoints (Figure 5, middle row). Given that the success
detectors were only trained on frames from the front basket camera, we evaluate robustness by measuring success
detector accuracy on episodes recorded with the back basket camera. As we can see in Table 4, changing the camera
angle drastically hurts the quality of bespoke SD (accuracy decreases of 10-50 absolute percentage points) while the
performance of FT Flamingo 3B is more stable (accuracy decreases by less than 10%). Note that in some tasks the
performance of the bespoke model drops to the level of random guess, essentially rendering the model useless for
success detection. With this, FT Flamingo 3B becomes the best performing model in 5 out of 6 tasks.
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Insert Remove
Small Medium Large Small Medium Large

bespoke SD 78.0% 53.1% 50.9% 85.8% 53.8% 72.8%
-19.9% -45.4% -48.3% -11.5% -44.9% -25.5%

FT Flamingo 3B 91.0% 89.8% 89.7% 76.7% 75.9% 79.4%
-4.0% -4.6% -5.3% -5.5% -7.5% -7.8%

Table 4: Viewpoint variation. Zero-shot success detection balanced accuracy when training on the front camera view
and evaluating on the back camera view. We show the absolute balanced accuracy and the percentage point change
compared to Test 1 from Table 3.

Insert Remove
Small Medium Large Small Medium Large

bespoke SD 88.8% 85.0% 71.8% 93.6% 93.8% 92.4%
-9.2% -13.4% -27.4% -3.8% -4.9% -6.0%

FT Flamingo 3B 96.1% 95.6% 90.6% 82.4% 83.6% 84.7%
+0.1% +1.2% -4.5% +0.3% +0.1% -2.5%

Table 5: Distractor Objects. Zero-shot success detection balanced accuracy on scenes with distractor objects. We
show the absolute balanced accuracy and the percentage point change compared to Test 1 from Table 3.

In Test 3 we look at zero-shot robustness in the setting where some distractor objects (two pegs and a board, see Figure
5, last row) are introduced. Table 5 shows that detecting success on known tasks across this novel visual setting causes
a 4-30% (absolute percentage points) drop in balanced accuracy for the bespoke model, while the accuracy mostly
stays stable for the Flamingo-based models, with a 4.5% drop in accuracy at most.

These two experiments demonstrate that Flamingo-based success detection models are robust to natural visual varia-
tions. We hypothesize that the pretrained Flamingo-based success detection model is better suited to zero-shot visual
generalisation than the bespoke baseline reward model, as Flamingo is pretrained on a diverse set of visual data with
corresponding language grounding. While the baseline model was also pretrained and used image augmentations
during task finetuning, it was not exposed to such a diverse set of visual data or language. Large-scale diverse pre-
training might contribute to better semantic tasks recognition under naturalistic visual changes. These encouraging
results suggest that pretrained VLM-based success detectors are likely better suited to the real-world tasks involving
unstructured, open, and evolving settings.

6 REAL WORLD SUCCESS DETECTION WITH EGO4D

In this section we describe creating a SuccessVQA dataset using “in-the-wild” egocentric videos of humans performing
tasks. This present a much more diverse setting than the prior two domains, in both visuals and language. We construct
this dataset using annotations from the Ego4D dataset (Grauman et al., 2022), where unlike prior benchmarks in action
recognition, the focus is on detecting a temporal point of success for a given action. It is an example of a realistic,
unstructured setting where the ground-truth success labels can be obtained only from human annotations. While the
FT Flamingo 3B success detector model shows initial promising results, our experiments show that the benchmark is
nonetheless very challenging with much room for future progress.

Ego4D is a publicly available dataset of egocentric human-in-the-wild videos. The videos show people executing
common tasks (e.g., washing dishes, cleaning cars, gardening). To generate ‘successful’ and ‘unsuccessful’ action
sequences, we make use of annotations from the Ego4D Forecasting + Hands & Objects (FHO) dataset, where cor-
responding narrations describe the actions of the camera wearer in the videos. Additionally, critical state changes
are annotated: “how the camera wearer changes the state of an object by using or manipulating it–which we call an
object state change” (Grauman et al., 2022). Each narration is centered on an 8-second clip, which is further annotated
with the critical frames PRE, Point of No Return (PNR), and POST for indicating when the narrated state change has
occurred. The PNR frame annotates the start of the state change, the PRE frame indicates a point before the state
change, and the POST frame is a point after the state change is completed.

We propose using the critical frame annotations as annotations of ‘success’ for the behaviour described in the narration.
Specifically, we treat PNR frame as a point at which ‘success’ occurs. To generate a negative example for a clip, we
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use the frames in the 8-second clip prior to the PRE frame. These frames do not contain the point of success, but they
often demonstrate the beginning of the relevant action. We then generate the questions for SuccessVQA by rephrasing
the narrations into questions using Flamingo, as shown in Figure 7.

Unlike the prior domains where there is only one relevant task per episode, a single Ego4D video can have multiple
narrations corresponding to different actions. Thus, instead of episode-level accuracy we evaluate success detection
accuracy on clips taken from held out videos. In our experiments, FT Flamingo 3B finetuned on the SuccessVQA
dataset attains 99% training accuracy and 62% test set accuracy. For reference zero shot and 4-shot Flamingo only
achieves 50% and 52% accuracy. That is, without finetuning, the Flamingo model is not capable of detecting success.
Providing a few examples with few-shot prompting improves performance, but very slightly. However, finetuning
Flamingo on the in-domain Ego4D SuccessVQA examples achieves a significant improvement over random chance.
That said, there is still a large gap between train and test performance. We find that it is currently difficult to generalise
to completely unseen videos and language tasks, so this domain provides an exciting avenue for future work.

7 CONCLUSION

In this work we propose SuccessVQA – a reformulation of success detection that is amenable to pretrained VLMs
such as Flamingo. We investigate success detection across a wide range of domains: simulated language-conditioned
interactive agents, real-world robotic manipulation, and “in-the-wild” human videos. We find that the pretrained
VLM has comparable performance on most in-distribution tasks, and increased robustness across language and visual
changes compared to task-specific reward models, and emphasize that our contribution is a more universal success
detection task formulation that can be applied easily across vastly different domains.

That said, this method has some limitations. There still exist some gaps between the Flamingo-based reward models
and the bespoke reward models in our experiments. Furthermore, inference with a larger VLM is expensive, making
online success detection challenging. Lastly, we find that finetuning on a sufficient amount of in-domain data is
necessary for robust success detection, as zero-shot or few-shot performance is not yet sufficient. Nonetheless, we are
optimistic that further progress on broadly improving VLMs will result in more accurate few-shot success detection.
VLMs are often used as policies, see e.g., Reed et al. (2022), but in this work we have demonstrated that there is also
great value in using them as reward models – in other words, VLMs as rewards focuses on the ‘what to do’ and not
on ‘how to do it’. We therefore expect such models to transfer more easily than policies when the same task can be
accomplished in many ways, and where fine visual details are not necessary (e.g., grasp angle for fine motor control).

There are also many exciting areas for future work. To address the limitations of the current approach, improving
inference speed or distillation to a smaller model can help with efficient online success detection. Before deployment
as a reward model for learning policies,further investigations into model accuracy to avoid reward hacking and more
thorough understanding of the impacts of reward model false positives and false negatives are necessary. So far we
have experimented with a Flamingo 3B, but larger models might bring further improvements in robustness and gener-
alisation. The shared SuccessVQA format can also enable shared finetuning across different datasets (e.g., combining
Ego4D SuccessVQA and VQAv2 (Goyal et al., 2017)) to study the impact of cross-task transfer. Lastly, the flexibility
in multimodal models allows us to consider success detection tasks where the task is specified visually (e.g., with a
goal image) or the state is described in language (e.g., a dialogue agent) in the same framework as the current work.
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A SUCCESSVQA EXAMPLES

Robot task: insert medium gear

Annotated trajectory

SuccessVQA example

Did the robot successfully 
insert medium gear?

Answer

yes

no
Question

Figure 6: Sample SuccessVQA example created from an annotated subsequence of a gear manipulation episode.
Success annotation is shown with the trophy.

PRE PNR POST

Narration: #C C rolls the dough

Noun (object of interest): dough

Verb: roll

Annotated trajectory

SuccessVQA example

Did the person 
successfully roll the 

dough?

Answer

yes

no

Question

Figure 7: Sample Ego4D clip converted to SuccessVQA Examples. Ego4D annotations include PRE, POST and PNR
(point of no return) annotations which are then used to generate answers in the SuccessVQA examples.

B SIMULATED HOUSEHOLD DOMAIN

To evaluate agent policies on the standardized set of scenarios (STS), each agent is first given a period of context to
replay up to a ”continuation point”, after which the agent policy is used to complete the trajectory. Each continuation
is then evaluated offline by human annotators as either successful or failure, along with the point at which success
or failure occurs. These human annotations are then used to rank agent policies, using the proportion of successful
annotations they receive. For more details on the evaluation procedure, see Abramson et al. (2022b).
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B.1 BASELINE EVALUATION MODELS

While human evaluations provide the ground truth signal for assessing agent capabilities, the cost of annotations scales
directly with the number of evaluations for each new task and agent. Thus, there has been interest in automating the
evaluation protocol to enable evaluation to scale over time. Ideally, an automated evaluation model will condition
on an episode of agent behaviour and the input task utterance, and output a classification whether or not the task is
successful.

Currently two baseline evaluation models have been developed for the STS: whole-episode and autoregressive models.
In both cases, the reward annotations for a particular episode are aggregated using majority voting.

Whole episode evaluation models.

Figure 8: Whole Episode Bespoke Evaluation Model

For these models, we first preprocess an STS episode by downsampling it to 32 frames and tokenizing the text instruc-
tion and agent responses. The images are then embedded with a ResNet-101, the input and output text are embedded,
and these embeddings are concatenated together and fed to a transformer with 16 layers and 16 attention heads.
The transformer output is fed through two MLP heads: one to predict the likelihood of the episode being success-
ful, P(success), and an auxiliary contrastive loss, P(matching). P(success) is supervised with the aggregated reward
annotations, and P(matching) is trained to predict whether an instruction matches the episode or has been shuffled.

Autoregressive evaluation models. The autoregressive evaluation models use the same architecture as the agents,
which takes inputs on a per-frame basis, rather than at the episode level. The model embeds the images and language
for each frame, passes the embeddings to a multimodal transformer followed by an LSTM, and is asked to predict
success or no-success on a per frame basis. The success of an entire episode is then determined by whether or not any
single frame was predicted to be successful.
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Figure 9: Autoregressive Bespoke Evaluation Model

Model Test 1: Test 2: Test 3:
unseen episodes unseen behaviour unseen language

Baseline Whole Episode Model 80.6% 85.4% 49.9%
Baseline Autoregressive Model 71.7% 70.4% (not tested)

Flamingo 3B 50% 50% 50%
FT Flamingo 3B 83.4% 85.0% 59.3%

Table 6: Zero-shot episode-level balanced accuracies for IA Playroom STS evaluation models. For reference, human
level balanced accuracy is around 88%.

C ROBOTICS DOMAIN

C.1 GROUND TRUTH IN ROBOTICS DOMAIN

Figure 10 shows how the ground truth success and failure labels are assigned to the full episodes. For an episode to be
successful, it must start in a failure state and terminate in a success state.

failure state success state

success state failure state

success state success state

failure state failure state

Start state End state Ground truth label

Success

Failure

Failure

Failure

Figure 10: Ground truth labels for robotics tasks. The episode is considered positive only when it starts in a failure
state and ends in a success state, all other episodes are considered as negative.
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C.2 DATA EFFICIENCY IN ROBOTICS DOMAIN

We investigate whether the pretraining used for Flamingo makes it more amenable to accurate success detection in the
lower-data regime. For this set of experiments, we train on only 100-200 episodes (100x less than the tens of thousands
of episodes used in the above experiments) per task and evaluate on the same in-domain test set. As shown in Table 7,
for five of the six tasks the Flamingo-based model is less affected by the smaller dataset than the ResNet-based model.

Balanced Accuracy Insert Small Insert Medium Insert Large

bespoke SD 68.7% (-29.2%) 70.2% (-28.3%) 89.7% (-9.4%)
FT Flamingo 3B 77.6% (-18.3) 85.3% (-9.1%) 93.2% (-1.8%)

Remove Small Remove Medium Remove Large

bespoke SD 86.7% (-10.6%) 95.3% (-3.4%) 95.7% (-2.7%)
FT Flamingo 3B 70.5% (-11.6%) 86.7% (+3.3%) 87.1% (-0.0%)

Table 7: Data Efficiency – train on 100-200 episodes, evaluate on 50-60k episodes.

C.3 POLICY EVALUATION

We further verify that the FT Flamingo 3B success detector can be used to train useful policies using reward-filtered
behaviour cloning (BC). In filtered BC, we first use FT Flamingo 3B to classify demonstration episodes as successes
or failures for a particular task. Then, we use only the episodes classified as success for BC training. Table 8 shows
the average success rates of the policies evaluated on 20 episodes with manual resets. In manual resets no extra gears
are pre-inserted on the pegs for the insert task and only the one relevant gear is pre-inserted for the remove tasks. The
success rates vary between 50% and 75%, suggesting that the accuracy of the success detector models is sufficient
for some amount of policy training. To compare with the bespoke SD model, we also conduct filtered BC training
with the bespoke SD reward model and evaluate an insert large gear policy over 100 episodes with automated resets.
In automated resets, policies for different tasks are run in sequence one after another and any number of gears might
be already inserted at the start of the episode. In this case, the success rate with FT Flamingo 3B is 30% and with
bespoke SD it is 33%. This provides a preliminary proof-of-concept that the difference in reward model accuracy did
not lead to a large difference in policy performance. We leave more detailed policy evaluations to future work.

Small Medium Large

Insert 55% 65% 70%
Remove 60% 75% 60%

Table 8: Policy success rates. Policies are trained with filtered behaviour cloning where only successful episodes are
used for trianing and success is determined by FT Flamingo 3B.
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