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ABSTRACT

Many widely used continual learning benchmarks follow a protocol that starts from an untrained,
randomly initialized model that needs to sequentially learn a number of incoming tasks. To max-
imize interpretability of the results and to keep experiment length under control, often these tasks
are formed from well-known medium to large size datasets such as CIFAR or ImageNet. Recently,
however, large-scale pretrained representations, also referred to as foundation models, have achieved
significant success across a wide range of traditional vision and language problems. Furthermore,
the availability of these pretrained models and their use as starting point for training can be seen
as a paradigm shift from the classical end-to-end learning. This raises the question: How does this
paradigm shift influence continual learning research? We attempt an answer, by firstly showing
that many existing benchmarks are ill-equipped in this setting. The use of foundation model leads
to state-of-art results on several existing and commonly used image classification continual learn-
ing benchmarks, from split CIFAR-100 to split ImageNet. Additionally, there is at best a small
gap between keeping the representations frozen versus tuning them. While this is indicative of the
overlap between pretraining distribution and the benchmark distribution, it also shows that these
benchmarks can not be used to explore how to continually learn the underlying representations.
Secondly, we examine what differentiates continually learning from scratch versus when relying on
pretrained models, where the representation is learned under a different objective. We highlight
that this brings about new challenges and research questions that cannot be studied in the sanitised
scenario of learning from scratch explored so far.

1 INTRODUCTION

Deep Learning has made significant progress in the last decades, leading to impressive results across multiple topics,
from reinforcement learning to language, vision and structured problems like protein folding. Multiple factors played
a crucial role in these success stories, among them being the emergence of powerful neural network architectures
and the reliance on gradient based learning algorithms. The latter, however, requires IID observations sampled from
a stationary distribution. While the IID assumption had proven powerful, it has been argued that it rarely reflects
the situation faced in practice. The distribution a deployed system needs to interact with changes continuously. For
example a language model trained pre-2020 might not be able to generate language about COVID meaningfully. One
can deal with distributional drift by retraining the model regularly, which often means retraining the model from
scratch, without making use of the previously trained variants.

Continual Learning has focused on how to efficiently train neural networks in non-stationary settings (e.g. Hadsell
et al., 2020; Parisi et al., 2019). Answers to this question can lead to systems that continuously adapt, even after
deployment, or at least provide an efficient mechanism for adapting the systems offline. The formulation of the
continual learning problem often assumes a piece-wise stationary distribution, where each stationary piece can be
identified as a task. A solution to this problem is meant to learn these tasks sequentially, achieving a few goals,
ranging from preserving performance on previous tasks to maximizing forward and backward transfer and controlling
the amount of memory and compute used (Hadsell et al., 2020; Schwarz et al., 2018; Rusu et al., 2016; Lopez-Paz &
Ranzato, 2017; Nguyen et al., 2018). Additional questions, like predicting boundaries between tasks or dealing with
scenarios where we can not assume piece-wise stationarity have also been studied extensively within the community
(Zeno et al., 2018; Aljundi et al., 2019; 2018).
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Most of the research done in continual learning follows the successful recipe applied generally in deep learning of
relying on established benchmarks to track progress. This allows to fix, sometimes implicitly, some of the moving
pieces of the problem definition, for example the type of distributional shift, and to fairly compare methods. In order to
improve interpretability of results, and for simplicity and maintaining fast turn around of experiments, most continual
learning benchmarks tend to be built from well established medium to large sized IID counterparts. For example,
some of the most widely used benchmarks are permuted-MNIST (Goodfellow et al., 2013) built from the well known
MNIST dataset, Split-CIFAR-100 (Mallya & Lazebnik, 2018) made out of the CIFAR-100 dataset (Krizhevsky, 2009),
split ImageNet (Mirzadeh et al., 2022), etc. This choice led to a fast growth of the field, with significant progress made
on specific aspects of the problem. (Parisi et al., 2019; Hadsell et al., 2020) provide surveys of the field, where a few
open foundational questions about the continual learning problem formulation are also discussed.

On the other hand, in the last few of years we have witnessed a proliferation of systems relying on adapting large-
scale pretrained representations, sometimes referred to as foundational models (e.g. Devlin et al., 2018; Brown et al.,
2020b; Bommasani et al., 2021; Alayrac et al., 2022), which have excellent generalization abilities. For example,
BERT (Devlin et al., 2018), DALLE (Ramesh et al., 2021), GPT-3 (Brown et al., 2020a), CLIP (Radford et al.,
2021b), ALIGN (Jia et al., 2021), SimVLM (Wang et al., 2021) or Flamingo (Alayrac et al., 2022) significantly
increased the state-of-art performances across many difficult benchmarks in computer vision and language modelling.
We regard the differentiation between pretrained models and foundation models to be in the scale of the pretraining
stage, inline with existing literature. This differentiation can be problematic, as scale can be relative concept. What
is considered large scale now might not be so in the near future. However, the the concept of foundation models is
meant to highlight the robustness of these pretrained models and representations, that had led to a change in training
paradigm within the community, moving away from end-to-end learning. In the vision context, there are at least
two important contributing factors that are needed in explaining the emergence of these systems: a) the scale and
breadth of the training data (billions of datapoints gathered from the internet spanning many different domains) and b)
a paradigm shift in representation learning towards self-supervision and contrastive learning. Specifically contrastive
losses seem to allow for learning robust, transferable and task-agnostic representations which can outperform their
supervised counterparts (Mitrovic et al., 2020; Radford et al., 2021a).

This change in protocol has significant implications for the field, where it has become more ubiquitous to rely on
composing pretrained artifacts in order to build larger systems. These artifacts, the foundational models, are seen as
general purpose and stable representations able to capture the structure of a certain type of data, e.g. generic vision
module or a generic language module. The focus of our work is to explore what this paradigm shift might imply for the
continual learning problem. In particular, given the reliance of continual learning benchmarks on sequentializing older
and well established datasets, how should we study the use of foundational models in continual learning? In Section
2, we present findings showing that pretrained models with simple finetuning strategies achieve SOTA performance
on existing continual learning benchmarks. In light of these results, we propose to focus on continual learning at
pretraining level (continual representation learning) rather than seeing continual learning as a problem when adapting
to downstream tasks. We argue that large scale deployed systems need to address this problem in order to reduce the
computational cost of keeping the system up to date while maintaining robust and generally useful representation. We
further argue that we need new benchmarks focusing on these aspects that can highlight in a tractable way the different
issues and research questions imposed by this setting. We study these questions in Section 3.

2 FOUNDATIONAL MODELS ON TYPICAL CONTINUAL LEARNING BENCHMARK

In this section, we demonstrate the performance of some foundational models on a number of commonly used con-
tinual learning benchmarks. For this purpose, we use very wide spread benchmarks, Split-CIFAR-100 (Mallya &
Lazebnik, 2018), Split-TinyImageNet (Delange et al., 2021) and Split-ImageNet1k (Mirzadeh et al., 2022). We exam-
ine the task incremental setting, where the tasks are coming with known boundaries (or task identifiers), as well as the
class incremental one, where data for new classes are introduced incrementally to the system.

Throughout the section, we assume a pretrained model backbone g(x; θ) with parameters θ. The output is given as:

f(x; θ, ϕi) = g(x; θ)Tϕi, (1)

where ϕi are (task-specific) output layer parameters. In task-incremental setting, index i is a task identifier. In the
class-incremental setting, the prediction does not depend on i, i.e., ϕi = ϕ. The continual learning problem consists
in sequentially learning both θ and ϕi, which we call Full finetuning. In case where θ is frozen, it reduces to a linear
problem, which is called Linear evaluation (Zhai et al., 2019).

We employ standard continual learning metrics to measure performance. We denote by atk - the accuracy on the task
k at time t, k = 1, . . . ,K, where K > 0 is the total number of tasks. We denote by Tk the end of the task k and the
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Table 1: Linear evaluation.
Task incremental learning on
Split CIFAR-100 with 10 and 20
tasks. All pretrained models use
the ImageNet 1k dataset for pre-
training. We show average ac-
curacy from Eq. 2. In bold we
denote the method with highest
performance. See Appendix for
more details.

Method Split CIFAR-100 10 tasks Split CIFAR-100 20 tasks

Best Reported 63.3% (Saha et al., 2021) 73.70% (Mirzadeh et al., 2022)

No pretraining 31.33 % 42.25 %
Multi-task 68.8% 79.58%

Foundational models:
Supervised 69.34% 78.1 %
BYOL 73.49% 81.96 %
ReLICv2 79.48% 86.16%
SemPPL 79.04 % 86.56%

Method Tiny ImageNet 10 tasks Split-ImageNet1k, 10 tasks

Best Reported 48.17% (Delange et al., 2021) 66.10 % (Mirzadeh et al., 2022)

No pretraining 25.38% 9.1 %
Multi-task 61.43 % —

foundational Models:
Supervised 74.68 % 85.8 %
BYOL 76.75 % 76.17 %
ReLICv2 81.85 % 75.6 %
SemPPL 82.42 % 78.87 %

Table 2: Linear evaluation.
Task incremental learning on
Split Tiny ImageNet 10 tasks
and Split-ImageNet1k 60 tasks.
All pretrained models use the
ImageNet 1k dataset for pre-
training. We show average ac-
curacy from Eq. 2. In bold we
denote the method with highest
performance. See Appendix for
more details.

total training time by T . Average accuracy, or the average accuracy at the end of the experiment is given by Aacc.
Learning accuracy, or the average accuracy at the end of each task is given by Lacc. This quantity denotes how well
each task is learned. Finally, we denote by forgetting F , the difference between final accuracy at the end of the task
and the accuracy at the end of the training:

Aacc =
1

K

K∑
k=1

aTk , Lacc =
1

K

K∑
k=1

aTk

k , F =
1

K

K∑
k=1

(aTk

k − aTk ). (2)

For each benchmark, we take foundational models pretrained on ImageNet-1k dataset (Russakovsky et al., 2015)
which gives initialisation for parameters θ in Eq. 1. In particular, we compare supervised pretraining as well as a
number of self-supervised methdos, such as BYOL (Grill et al., 2020), ReLICv2 (Tomasev et al., 2022) and SemPPL
(Bošnjak et al., 2023). For each benchmark, we report the best reported SOTA from external papers.

2.1 TASK INCREMENTAL BENCHMARKS

In the task incremental learning setting, each task Ti corresponds to a dataset Di = {(xi
k, y

i
k)}

Mi

k=1, where Mi > 0 is
the number of points in the dataset, and i is a known task identifier. The objective of continual learning in this setting
is to learn both task specific head parameters ϕi as well as shared backbone parameters θ, see equation 1. In our case,
we use a pretrained model for the backbone parameters θ.

As concrete benchmarks, we consider Split-CIFAR-100 with 10 tasks split (see Saha et al. (2021) for SOTA) as well
as with 20 tasks split (see Mirzadeh et al. (2022) for SOTA). Moreover, we consider split TinyImageNet benchmarks
with 10 tasks split (see Delange et al. (2021) for SOTA) and split-ImageNet1k benchmark with 60 tasks (see Mirzadeh
et al. (2022) for SOTA).

Linear evaluation. We first study the quality of representation of foundational models on these benchmarks. Con-
cretely, we freeze the foundational model backbone parameters θ and learn the task specific head parameters ϕi which
is a single linear layer. While this does not constitute a continual learning problem (since the heads are learned in-
dependently and the backbone is frozen), this will tell us how generic the representation learned by the foundational
model is. This could be a valid approach in practice when we need to adapt a foundational model to a specific task.

Tables 1 and 2 demonstrate that pretrained models can outperform most continual learning methods across benchmark
when simply freezing the representation and learning a specific output layer for each task. Moreover, we generally see
that models pretrained via SSL methods perform better than supervised, except for Split-ImageNet1k. We hypothesise
that this is due to the fact that Split-ImageNet1k benchmark is much closer in distribution space than others, which
favors supervised pretraining that typically leads to less general representations. While it may not be surprising
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that using ImageNet-1k pre-trained models on standard continual learning benchmarks leads to strong performance,
it does reflect the problem of using these benchmarks for continual learning research. This becomes even more
problematic due to the fact that ImgeNet-1k pre-trained models are widespread and readily available to practitioners.
However, if the distributions are sufficiently different, one could expect to require methods that will continually update
the backbone parameters θ as well, in addition to the head (see section 2.3). Additionally, we would argue that
instead of simplifying or changing the pretraining protocol, it would be more lucrative to focus on building richer
benchmarks where linear evaluation fails. This is in particular due to how computationally expensive it could be to
build these pretrained artifacts. And using small amounts of data for pretraining can lead to qualitatively different kind
of dynamics, that might not be representative to what we tend to observe from large scale models.

Full finetuning. In order to get a full picture of existing benchmarks we also study the effect of full finetuning. For all
the experiments, we used a backbone pretrained on ImageNet-1k with ReLICv2 as it seemed to provide good results
with Linear Evaluation. Moreover, we explore using different learning rates for the head compared to the backbone,
highlighting the different time scales imposed by not doing end-to-end learning. Concretely, we rescaled the gradients
of the backbone by β ∈ (0, 1], with β = 1 corresponding to ordinary finetuning. For simplicity of presentation, we
finetuned all the parameters and used linear head. We do not expect conclusions in this section change if we study
different subsets of finetuned parameters like in (Shysheya et al., 2022) and different heads like in (Panos et al., 2023).
For more details, see Appendix.

As was observed in the literature (Fini et al., 2022), continual learning with Self-Supervised Learning (SSL) losses
could outperform supervised variants. Motivated by this observation, we considered 3 options for finetuning the back-
bone of the foundational model. Supervised finetuning corresponds to using supervised objective for the backbone.
SSL finetuning corresponds to using loss from ReLICv2 method pretrained on ImageNet-1k data. We use this SSL
method because the foundational model was pretrained with the same objective. Finally, we also considered Super-
vised + SSL finetuning, where we simply sum two losses, Supervised and SSL. The head parameters in all cases were
finetuned using supervised loss.

The results for full finetuning are given in Table 3. We observe that in some cases it is beneficial to finetune the
representation in addition to the head parameters (note average accuracies relative to linear evaluation). Moreover,
for β = 1.0 we find that SSL outperforms Supervised learning which is consistent with previous findings Fini et al.
(2022). Interestingly, supervised finetuning provides the best performance at β = 0.1. That means that it is beneficial
to treat task-specific head learning vs representation learning as two separate processes having their own learning
rate scaling. Moreover, it suggests that supervised finetuning works well if we want to adapt the representation to a
down-stream tasks. Intuitively, it is what we should expect because supervised finetuning provides the strongest signal
related to a specific downstream task. Finally, for β = 1.0, we found that using both Supervised and SSL finetuning
provides the best performance. In cases when we have additional task-specific unlabelled data, we expect this method
to provide the best option.

Finetuning Method Split CIFAR-100 10 tasks Split CIFAR-100 20 tasks

Average
Accuracy

Learning
Accuracy Forgetting Average

Accuracy
Learning
Accuracy Forgetting

Linear evaluation 79.48 % 79.48 % 0 % 86.16% 86.16% 0 %

Results with β = 1.0

Supervised: 75.57 % 87.93 % 13.73 % 77.97 % 92.20 % 14.98 %
Self-supervised (SSL): 76.78 % 79.71 % 3.26 % 83.23 % 87.93 % 4.95 %
Supervised + SSL: 81.78 % 87.44 % 6.29 % 87.00 % 92.26 % 5.54 %

Results with β = 0.1

Supervised: 83.31 % 85.97 % 2.96 % 86.74 % 92.78 % 6.36 %
Self-supervised (SSL): 75.55 % 78.25 % 3.00 % 83.02 % 86.15 % 3.29 %
Supervised + SSL: 79.50 % 85.63 % 6.81 % 86.69 % 92.43 % 6.04 %

Table 3: Fine-tuning backbone on task incremental learning Split CIFAR-100 with 10 and 20 tasks using ReLICv2
pretrained model. In bold font we denote the best finetuning method in terms of average accuracy. In red font we
denote the method with highest forgetting. See Appendix for more details.
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2.2 CLASS INCREMENTAL LEARNING

In this setting, we assume a sequence of tasks T1, . . . , Tn such that each subsequent task contains new unseen classes
and there are no explicit task boundaries. The setting was studied in multiple works such as (Rebuffi et al., 2017; Wu
et al., 2019; Prabhu et al., 2020). This becomes a challenging problem even for the linear classifier, since the softmax
layer may push down the probabilities for the classes which are no longer observed in the batches. We consider
class-incremental Split-CIFAR100 as in (Wu et al., 2019) with 10 and 20 tasks, where each task has disjoint classes.

Similar to the previous section, we use pretrained foundational models and learn a linear layer on top of them. Since
even learning linear layer on top of a frozen backbone may exhibit forgetting, we employ a simple replay strategy
of sampling a small batch of data from each of the previous tasks, for each batch update. The results are given in
Table 4. We observe that without replay we already achieve strong results, which are underperforming compared to
the best reported results (Thengane et al., 2022; Yan et al., 2021). With a simple replay strategy, we immediately start
to outperform the best reported method and as well as the reported upper bound (taken from (Wu et al., 2019)) , which
corresponds to learning on the union of all the tasks together. The fact that we outperform the upper bound is not
surprising due to the use of pretrained models. We see again that using pretrained models provides a large benefit.

Method Split CIFAR-100 10 tasks Split CIFAR-100 20 tasks

- Average Learning Forgetting Average Learning Forgetting
Accuracy Accuracy Accuracy Accuracy

Best Reported 66.72% (Thengane et al., 2022) 69% (Yan et al., 2021)
Upper Bound (Wu et al., 2019) 69.5% 69.5%

Foundational Models:
BYOL 39.85 % 62.17 % 24.8% 45.57 % 66.45 % 21.96%
Supervised 43.04% 53.69% 11.9% 45.7 % 54.83 % 9.6%
ReLICv2 46.88% 68.47% 24.04% 47.75% 68.43% 21.74%
SemPPL 51.02 % 66.74% 17.45 % 50.9 % 64.38 % 14.17

foundational Models + replay:
BYOL 62.69 % 66.49 % 1.2 % 69.29 % 78.27 % 9.42 %
Supervised 59.54% 59.76 % 0.2 % 68.73 % 72.96 % 4.45 %
ReLICv2 69.56% 73.26 % 3.92 % 74.84% 82.08 % 7.63%
SemPPL 69.56 % 73.28 % 4.22 % 75.19 % 83.13 % 8.44

Table 4: Class incremental Learning.. All foundational models use the ImageNet 1k dataset for pretraining. In bold
we denote the best performing method. More details are given in Appendix.

2.3 OUT-OF-DISTRIBUTION FINETUNING

As argued above, the linear evaluation and finetuning could fail if the down-stream tasks are sufficiently out-of-
distribution compared to the pretrained dataset. To validate it, we finetuned ReLICv2 model pretrained on ImageNet-
1k on 4 VTAB (Zhai et al., 2019) tasks: Oxford IIIT Pets, DM-Lab, d-sprites position, d-sprites orientation. We used
linear evaluation as well as supervised and SSL full finetuning strategies and compared it to learning from scratch on
these tasks. The results are shown in Figure 1. While it seems that using pretrained representation is usually beneficial,
sometimes (task d-sprites position) learning from scratch performs better. This suggests that pretrained representation
might not always be useful for every down-stream tasks. Continually updating these representations to remain useful
is important as the distribution changes, and, as in the case of d-sprites position, dealing with interference from
misaligned representations can be necessary.

Figure 1: Out-of-distribution finetuning
experiments on VTAB. On the Y-axis we
report the average accuracy after finetun-
ing ReLiCv2 pretrained model. X-axis in-
dicates the task. Color indicates the fien-
tuning method. For more details see Ap-
pendix.
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2.4 CONCLUSION

We showed that using pre-trained models with simple finetuning strategies outperforms state-of-the-art continual learn-
ing methods on most of the benchmarks. Moreover, we found that overall the best finetuning method remains super-
vised. This raises a question about the usefulness of these benchmarks in continual learning research. Our findings and
conclusions here resonate with recent work (Janson et al., 2022). However these results only study continual learning
at the finetuning stage given an already pre-trained model. In the next section we advocate for studying the continual
learning at the pre-training stage instead.

We limited the investigation in this Section to task-incremental and class-incremental settings. Other settings such as
domain-incremental (Van de Ven & Tolias, 2019) and Online Continual Learning (OCL) (Mai et al., 2022; Cai et al.,
2021) could also have been the object of our study in this section. However, we do not believe that these settings, in
the context of Section 2, would offer additional insights and due to time constraints have decided not to pursue it.

3 BENCHMARKS FOR CONTINUALLY LEARNING REPRESENTATIONS

When dealing with pretraining models, multiple questions are relevant, as for example the ones studied in concurrent
works (Ostapenko et al., 2022; Cossu et al., 2022). In this work we focus on how to maintain representations relevant
by continually learning them. In particular, we assume a sequence of datasets D1, . . . ,DN which are given to the
model sequentially. Additionally, we assume a sequence of sets of down-stream tasks P1, . . . ,PN , where each set is
composed of an arbitrary number of tasks, Pi = {T1, . . . , Tki}. Our ultimate goal is to learn sequentially on datasets
D1, . . . ,DN such that underlying representation after pretraining on Di is useful for any down-stream task from

⋃
j≤i

Pj .

To evaluate the quality of the representation, we finetune independently on any of the relevant downstream tasks,
though the downstream tasks do not directly alter the representation of the backbone for other or future downstream
tasks. This separation allows for the downstream tasks to act as probes without interfering with the continual learning
of the representation. This allows us to study the representation learning part of the problem, also leading to new ways
of thinking about typical continual learning phenomena such as catastrophic forgetting.

3.1 FIRST STEP TOWARDS LEARNING SEQUENTIALLY AT PRETRAINING

The main difficulty in building such a benchmark consists in the choice of datasets Di. They need to be sufficiently
large-scale while inducing meaningful distributional drifts that can affect both past and future downstream tasks while
maintaining the computational tractability of the benchmark. We propose a simple variant of such a benchmark.

We operate on 2 datasets: DA and DB , seen sequentially by the learning algorithm. On top of that, we assume that
we have a single set of downstream tasks {T1, . . . , TK}, such that some of these tasks are associated with DA and
DB . For example, DA contains images of animals and DB contains artifacts, according to ImageNet classification of
labels. Then downstream tasks that focus on classification of natural images, would be more in-domain for DA, while
downstream tasks that focus on structured images are more aligned to DB . This allows us to test whether we manage
to preserve what is useful in the representation for both scenarios in the finetuning process of the representation.

Formally, we assume to have pretrained representation FA on the dataset DA and the aim is to finetune it dataset
DB , such that it preserves performance on downstream tasks associated with DA and improves on downstream tasks
associated with DB . We study three strategies to achieve this goal. First, we ignore the pretrained representation
FA and re-train from scratch on the union of DA ∪ DB (we will refer to this approach as from scratch). This is
commonly used strategy in practice due to its simplicity and good results. However, this strategy is wasteful since
it essentially ignores the compute spent on pre-training of FA. Second, we study a method which starts from the
representation initialized from FA which is then finetuned on the union of DA ∪DB . In the literature (Ash & Adams,
2020), this strategy is called warmstarting. Unlike learning from scratch, warmstarting allows to leverage pre-trained
model to speed up finetuning on new data. It was shown (Ash & Adams, 2020) that warmstarting leads to sub-optimal
performance due to loss of plasticity. We, however, do not observe this phenomenon in our experiments and find that
warmstarting generally leads to better than from scratch performance. Finally, we study continual finetuning strategy,
where the representation is initialized from FA and is then finetuned on DB . For all the finetuning strategies, we report
the results as function of compute spent at funetuning in order to take into account the computational constraints. In
addition to that, we study impact of learning objectives on finetuning performance of these different strategies.

6



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

3.2 CONTINUAL PRETRAINING OF IMAGENET

In this section, we present an empirical study of continual pretraining on ImageNet. We propose the following two
scenarios. In the first scenario, ImageNet: 100 to 900, the dataset DA consists of the first 100 classes of ImageNet
and the dataset DB of 900 subsequent classes. In the second scenario ImageNet: Animals to Artifacts, the dataset
DA corresponds to the first 398 classes which could be categorized as animals, whereas the dataset DB corresponds
to the subsequent classes which can be categorized as artifacts.

In both scenarios, we pretrain model FA on the dataset DA for N = 90 epochs using supervised objective or N = 1000
epochs using SSL objective. Then, we study 3 different strategies of updating the pretrained representation on the
new dataset DB mentioned in Section 3.1. When finetuning representation, we use the same learning objective as
the one used during pre-training of FA. We study the performance of finetuned representation through two angles:
in-distribution and out-of-distribution. In-distribution performance is captured by measuring ImageNet test set accu-
racy. This metric, however, has limited interpretability since it does not reflect how useful the representation is for
down-stream tasks. Out-of-distribution performance, on the other hand, is studied by taking sequentially finetuned
representation on dataset DB and performing supervised finetuning on down-stream tasks represented by VTAB (Zhai
et al., 2019). This performance is the most informative since it reflects how foundational models are used down-stream.

The results for in-distribution performance are given in Figure 2. The first immediate observation is that warmstarting
works consistently better than learning from scratch. This finding is contrary to what was observed before (Ash
& Adams, 2020). The gap between training from scratch and warm starting closes as finetuning compute budget
increases, which is intuitively expected. Next, we observe that continual finetuning is always worse than learning from
scratch or warmstarting. This is not surprising, because the ImageNet test set includes data relevant for both, DA and
DB , and continual finetuning exhibits forgetting of the dataset DA.

Figure 2: Continual pretraining of ImageNet. The
rows correspond to the pretraining/finetuning objective
(first row is SSL pretraining, second row is supervised).
The columns correspond to the scenarios (left column is
100 to 1000, right column is animals to artifacts). X-axis
corresponds to the compute budget at finetuning time. Y-
axis corresponds to the average accuracy on ImageNet
test set. For more experimental details, see Appendix.
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We now test the different approaches to continually learn representations (from scratch, warmstarting, continual fine-
tuning) by finetuning them VTAB and reporting Am−As

As
, where Am is the accuracy of the method m, and As is the

accuracy of learning on each of the VTAB task from scratch. When this quantity is positive, the model performs better
than learning from scratch. The goal is to maximize this value.

We report performance on different subsets of VTAB benchmark: All, Natural, Specialized, Structured. We consider
a variant where each task has only 1000 data points in the training set. These subsets can be found in the original
VTAB paper (Zhai et al., 2019). The results for Imagenet: 100 to 900 experiment are given in Figure 3, and the
results for ImageNet: Animals to Artifacts experiment are given in Figure 4. We observe that on specialized and
structured subsets, all the methods which used pretraining in any form, performed similarly (see the Y-axis scale).
This is most likely due to the fact that most of these tasks are out-of-distribution with respect to ImageNet. We
see most of the difference on Natural subset. In both cases, we observe that all the methods outperform learning
from scratch, however as we increase the amount of compute, the gap with learning from scratch starts closing.
Next, we see that for SSL finetuning methods (first row), there is a monotonic increase in performance when more
compute is provided. For supervised finetuning methods, the trends is down-wards and the performance degrades
when more compute is spent. This indicates a potential over-fitting of supervised finetuning at pretraining. Moreover,
we observe that supevised finetuning outperforms SSL for smaller compute and underperforms for larger compute
budgets. It indicates that supervised finetuning is a more computationally efficient way of adapting to data, though
leads to less robust representations, while SSL acts as a regularizer leading to robust representations. Moreover, we
observe that warmstarting provides generally a good method and outperforms both continual finetuning and learning
from scratch. Interestingly, the continual finetuning method provides quite a good performance compared to learning
from scratch, but seems to under-perform when learning from scratch have seen more compute. Finally, continual
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finetuning performs well for ImageNet: 100 to 900 scenario. This is due to the case that training on 900 ImageNet
classes already provides a strong representation useful for down-stream tasks. These indicate that there are trade-offs
in terms of compute and memory which can be exploited, but warm-starting seems robust across scenarios.
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Figure 3: Continual pretraining on first 100 and then next 900 classes of ImageNet. The first row indicates the
SSL objective, whereas the second row indicates supervised one. Different columns correspond to different datasets
categories from VTAB. Each dot corresponds to per-dataset finetuning of a pretrained representation which was fine-
tuned for a given on X-axis compute budget. The Y-axis indicates the relative normalized performance with respect to
training from scratch on each of VTAB tasks. We also report performance of the model trained on DA only (light blue
dots). For more experimental details, see Appendix.
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Figure 4: Continual pretraining on Animals and then Artifacts classes of ImageNet. The first row indicates the
SSL objective, whereas the second row indicates supervised one. Different columns correspond to different datasets
categories from VTAB. Each dot corresponds to per-dataset finetuning of a pretrained representation which was fine-
tuned for a given on X-axis compute budget. The Y-axis indicates the relative normalized performance with respect to
training from scratch on each of VTAB tasks. On top of finetuning methods, we also report performance for models
trained on DA – animals, and for models trained on DB – artifacts. For more experimental details, see Appendix.

In Figure 5, we take a closer look on ImageNet: Animals to Artifacts experiment and present results on PETS
and SUN397 tasks. Task PETS is more in-distribution with respect to animals subset, i.e. DA, whereas SUN397 is
more in-distribution with respect to artifacts subset, i.e. DB . We observe that continual finetuning provides more
efficient learning on SUN397, but loses performance on PETS. On the other hand, the warmstarting method provides
generally a good trade-off in performance: it learns slightly worse than continual learning on SUN397, but it does not
lose performance on PETS. Overall, warm-starting is robust across different scenarios and could be a good way to
continually adapt foundational models.

3.3 SUMMARY

Empirical results show that warm starting seems to be generally a good strategy when doing continual pretraining,
though as the number of pretraining datasets increases one might need to re-weight the frequency at which the system
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Figure 5: Continual pretraining on Animals and then
Artifacts classes of ImageNet. Evaluation on Oxford
IIIT Pets (closer to Animals) task and SUN397 (closer
to Artifacts). The first row indicates the SSL objective,
whereas the second row indicates supervised one. The
first column indicates performance on IIIT Pets task. The
second column indicates the performance on Sun 397
task. Each dot corresponds to per-dataset finetuning of
a pretrained representation which was fine-tuned for a
given on X-axis compute budget. The Y-axis indicates
the relative normalized performance with respect to train-
ing from scratch on each of the tasks.
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sees old and new data. Contrary to (Ash & Adams, 2020), we did not observe the the issues with loss of plasticity,
and particularly due to the decoupling of the representation learning from the classifier, loss of plasticity might not be
an issue that needs to be addressed in the near future. The results also indicate a significant performance gap between
continual finetuning, warm-starting and learning from scratch. Continual finetuning learns efficiently on recent data
but loses performance on the past. Moreover, it seems that learning objective has similar efficiency trade-offs. These
issues suggest that the continual learning problem is far from being solved. This opens opportunity for future research.

4 RELATED WORK

Continual learning is a fast growing field, with several surveys (e.g. Hadsell et al., 2020; Parisi et al., 2019), to which
we direct the reader for a detailed breakdown of the field. Focusing specifically on our work,similar question has been
raised in concurrent and recently published works Ostapenko et al. (2022); Cossu et al. (2022). There are however a few
differences in how we approach this question. Ostapenko et al. (2022) starts by showing that on existing benchmarks
starting from a foundational model leads to strong results. They argue that foundational models can be seen as a tool
for making continual learning less expensive. In particular they propose to use some frozen representation and focus
on learning continually the output layer, allowing for example the use of non-parametric methods to achieve this. The
work rests on the assumption that we can rely on learning a sufficiently generic representation in a non-continual way
that can be kept frozen for all future adaptation of the system. By relying on this assumption, certain challenges of the
problem can be easier addressed and new opportunities can emerge. In contrast, in our work we take the position that
such representation might not exist and focus of how the representation itself can continuously be adapted. In addition
we propose a more thorough examination of the impact of foundational models on existing benchmarks.

Cossu et al. (2022) introduces the concept of continual pretraining that is aligned with the question of tuning repre-
sentations, which we look at in this work as well. They focus on the impact of finetuning the existing architecture
on a new data, exploring the question on language and the Core50 vision dataset. In contrast to this work we addi-
tionally try to contrast the existing continual learning frameworks to this new paradigm, highlighting what are new
phenomena that emerges. We also look at the impact of using different objectives when continually learning and look
at computation-performance trade-offs.

5 CONCLUSION

Recently the emerging of large scale pretrained models led to a paradigm shift from end-to-end learning to pretraining
and finetuning. In this work, we explore the implications of this paradigm shift on continual learning. In particular, we
look at the impact of foundation models on existing benchmarks in section 2 and focus on the question of continually
learning representations in section 3. We argue that as these large systems needs to interact with an ever-changing
world, new concepts emerge that need to be properly integrated in the representation of the systems. We believe fitting
the representation to the current state of the world might be the right approach to solve this problem. However how to
continually update representations, particularly in a computational efficient way, is still an open research question.

In our work we first show that existing continual learning benchmarks are not suitable for exploring these questions,
as they tend not to be sufficiently large scale, nor do they tend to be sufficiently different from the data used typically
for pretraining these large scale models. We propose a typical layout for the kind of benchmarks we might need
to investigate continual representation learning, and take a first step in this direction constructing a limited scenario
consisting on a single step of updating the pretrained representation.
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We highlight that the separation of representation learning from the downstream tasks, leads to new research questions
and opens the door to new approaches for continual learning. Specifically, it imposes two different time scales, the
representation learning vs the downstream tasks, and the use of different objectives (e.g. contrastive learning versus
supervised signal). It also requires rethinking certain concepts or metrics widely used in the community, like forgetting.

Overall, we see our work, among other concurrent works, as pushing the community towards a reformulation of the
continual learning problem that takes into account overall trends in the larger community.
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A APPENDIX

A.1 TASK-INCREMENTAL AND CLASS INCREMENTAL EXPERIMENTS

This section covers the Section 2 in the paper. For all the experiments in Section 2, we pretrained ResNet-50 (He et al.,
2016) model on ImageNet-1k (Russakovsky et al., 2015) with different learning objectives. For supervised pretraining
on ImageNet-1k, we followed the protocol formulated in (Chen et al., 2020), which does 90 epochs of learning on
ImageNet-1k. Moreover, we also pretrained models via self-supervised objectives for 1000 epochs on ImageNet-1k.
We considered such methods as BYOL (Grill et al., 2020), ReLICv2 (Tomasev et al., 2022) and SemPPL (Bošnjak
et al., 2023).

A.1.1 TASK-INCREMENTAL EXPERIMENTS

As concrete benchmarks, we considered Split-CIFAR-100 with 10 tasks split (see Saha et al. (2021) for SOTA) as well
as with 20 tasks split (see Mirzadeh et al. (2022) for SOTA). Moreover, we considered split TinyImageNet benchmarks
with 10 tasks split (see Delange et al. (2021) for SOTA) and split-ImageNet1k benchmark with 60 tasks (see Mirzadeh
et al. (2022) for SOTA).

For linear evaluation experiments, which are presented in Tables 1 and 2, we froze the pretrained parameters θ of the
backbone g(x; θ) in equation equation 1 and only learned task-specific head parameters ϕi. We used a batch size of
1024. We used SGD optimizer with momentum of 0.1 and without any weight decay. We ran a sweep over learning
rate parameter in a range of {0.1, 0.01, 0.001, 0.0001, 0.00001} and ran each experiment for 3 seeds. For each of the
task, we had train, validation and test set. For CIFAR-100, we used random crop augmentations producing images
of size 24x24. For split-ImageNet1k, we used random crop augmentations producing images 200x200. For tiny-
ImageNet1k, we used random crop augmentations producing images 48x48. We selected the best hyperparameters
(learning rate) per experiment based on the performance on the validation set. As a selection metric, we used average
accuracy. Then, we reported the performance of the method with corresponding hyperparameter on the test set.

For full finetuning experiments, which are presented in Table 3, we took the pretrained backbone parameters θ and
do finetuning of θ as well as the task-specific head parameters ϕi. When finetuning these two sets of parameters,
we used different objectives and learning rates. We used SGD optimizer with momentum of 0.1 and without any
weight decay. For finetuning the head parameters, we used supervised learning objective with learning rate chosen
from a range {0.1, 0.01, 0.001, 0.0001, 0.00001}. For CIFAR-100, we used random crop augmentations producing
images of size 24x24. For split-ImageNet1k, we used random crop augmentations producing images 200x200. For
tiny-ImageNet1k, we used random crop augmentations producing images 48x48. We used a batch size of 1024. For
finetuning representation, we used either supervised, self-supervised (ReLICv2) or a sum of supervised and self-
supervised objectives. For finetuning representation, we took the same learning rate as for the head parameters and
multiplied it by β ∈ (0, 1]. We tried multiple values of β and saw that β = 0.1 provided the best performance.
We report the results of using β = 0.1 as well as β = 1. The latter corresponds to the common way of finetuning
pretrained models. Each experiment is run for 3 seeds. The best hyperparameters are chosen by looking at the average
accuracy on the validation set. Then, we report performance on the test set for each of the method with found best
hyperparameters.

A.1.2 CLASS-INCREMENTAL EXPERIMENTS

In this setting, we assume a sequence of tasks T1, . . . , Tn such that each subsequent task contains new unseen classes
and there are no explicit task boundaries. The setting was studied in multiple works such as (Rebuffi et al., 2017; Wu
et al., 2019; Prabhu et al., 2020). This becomes a challenging problem even for the linear classifier, since the softmax
layer may push down the probabilities for the classes which are no longer observed in the batches. We consider
class-incremental Split-CIFAR100 as in (Wu et al., 2019) with 10 and 20 tasks, where each task has disjoint classes.

We froze the pretrained parameters θ of the backbone g(x; θ) in equation equation 1 and sequentially (class-
incrementally) learned the head parameters. The head parameters are learned in a supervised way by optimizing
the cross entropy on the received data. Since the model uses softmax layer at the end, when it observes new classes, it
starts to push down the probabilities for old classes. This results in forgetting of the old classes. To address the issue,
we introduced replay strategy. For each gradient step on the batch of data for the current task, we do one gradient
update on the batch of data sampled from replay. The replay batch size is 2 multiplied by a number of previously seen
tasks, i.e. we replay 2 samples from each of the previous task, when we do a gradient update on the current task. We
used a batch size of 1024 for learning on the current task. We used SGD optimizer with momentum of 0.1 and without
any weight decay. We ran a sweep over learning rate parameter in a range of {0.1, 0.01, 0.001, 0.0001, 0.00001} and
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ran each experiment for 3 seeds. For CIFAR-100, we used random crop augmentations producing images of size
24x24. For split-ImageNet1k, we used random crop augmentations producing images 200x200. For tiny-ImageNet1k,
we used random crop augmentations producing images 48x48.

A.1.3 OUT-OF DISTRIBUTION FINETUNING EXPERIMENT

This section covers results in Section 2.3. For this experiment, we take the model pretrained on ImageNet-1k using
ReLICv2 loss. Then, for each of the considered VTAB task, we finetune the backbone parameters θ as well as the last
layer parameters. Backbone parameters are finetuned either via supervised finetuning or via self-supervised finetuning
using ReLICv2. The last layer parameters are always finetuned using supervised objective. On top of that, we report
the results of linear evaluation (learning only last layer on top of the pretrained representation) as well as the learning
from scratch, where the whole model is learned from scratch on a given VTAB task. Each of this experiment is done
independently on each of the VTAB task. We used a batch size of 1024. We used SGD optimizer with momentum of
0.1 and without any weight decay. We sweep over learning rates in a range of {0.1, 0.01, 0.001, 0.0001, 0.00001} as
well as over β in a range {0.1, 1}. For VTAB, as data augmentations, we used random crops producing images of size
200x200. Parameter β is a scalar which multiplies the gradients of the backbone parameters. We run each experiment
for 3 seeds. We consider a variant of VTAB benchmark where we have only 1000 training points in the training set
and a large test set. We split 1000 points training set into training (800 points) and validation (200 points). We select
the best hyperparameters based on the performance on the validation set. Then, we report the performance on the test
set using the best hyperparameters.

A.2 CONTINUAL REPRESENTATION LEARNING EXPERIMENTS

This section covers experiments from Section 3, i.e. ImageNet: 100 to 900 as well as ImageNet: Animals to
Artifacts. For both experiments, we split the original ImageNet-1k dataset in two subsets, DA and DB . We pretrain
models on dataset DA using supervised and SSL (ReLICv2) objectives. When we use supervised objective, we pretrain
for N = 90 epochs. When we use self-supervised objective, we pretrain for N = 1000 epochs. For each pretrained
model on the datasets DA, we do finetuning on the dataset DB for a different number of epochs. Moreover, during
finetuning, we use the same objective as used for pretraining on DA.

For finetuning we use 3 strategies. Continual finetuning initalizes the model from the pretrained one on the dataset
DA and simply finetunes it on the dataset DB . Warm starting initializes the model from the pretrained one on the
dataset DA and finetunes it on the union of DA ∪ DB . From scratch initializes the model randomly and trains on the
union DA ∪ DB.

For both of the experiments, we use VTAB benchmark to measure performance. We consider a variant of VTAB
containing only 1000 data points in the training set. We split training set into training (800 points) and validation
(200 points) subsets. For each finetuning experiment on each of the VTAB task, we always sweep over learning rates
in range of {0.1, 0.01, 0.001, 0.0001, 0.00001} as well as over β in a range {0.1, 1}. We used SGD optimizer with
momentum of 0.1 and without any weight decay. For VTAB, as data augmentations, we used random crops producing
images of size 200x200. Parameter β is a scalar which multiplies the gradients of the backbone parameters. Each
experiment is run for 3 seeds. We select the best hyperparameters based on the performance on the validation set.
We report the performance on the test set based on the best hyperparameters. As a measure of performance we use
a relative improvement in accuracy on given VTAB task of a model which is finetuned on this task from a pretrained
one, against the accuracy of the model which is trained on the VTAB task from scratch.

On top of VTAB, we also report the performance on the ImageNet test set which is shown in Figure 2.

A.2.1 IMAGENET: 100 TO 900 EXPERIMENT

In this experiment we split the ImageNet-1k dataset in two datasets DA and DB . The dataset DA contains the first 100
classes and the dataset DB contains next 900 classes. We report performance in Figure 3 which is a relative difference
in accuracy of the finetuned model against the model which was trained from random initialization on each of the
VTAB task.

A.2.2 IMAGENET: ANIMALS TO ARTIFACTS EXPERIMENT

In this experiment we split the ImageNet-1k dataset in two datasets DA and DB . The dataset DA contains the first
398 classes which correspond to a general category which we call Animals. The dataset DB contains next 602 classes
which correspond to a general category which we call Artifacts. We report performance on the whole VTAB in
Figure 4 and on Oxford IIIT Pet and SUN397 tasks in Figure 5.
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