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ABSTRACT

Cooperative Multi-agent Reinforcement Learning (MARL) algorithms with Zero-Shot Coordination
(ZSC) have gained significant attention in recent years. ZSC refers to the ability of agents to coordinate
with independently trained agents. While ZSC is crucial for cooperative MARL agents, it might not
be possible for complex tasks and changing environments. Agents also need to adapt and improve
their performance with minimal interaction with other agents. In this work, we show empirically that
state-of-the-art ZSC algorithms have poor performance when paired with agents trained with different
methods, and they require millions of samples to adapt to these new partners. To investigate this issue,
we formally defined a framework based on a popular cooperative multi-agent game called Hanabi to
evaluate the adaptability of MARL methods. In particular, we created a diverse set of pre-trained
agents and defined a new metric called adaptation regret that measures the agent’s ability to efficiently
adapt and improve its coordination performance when paired with some held-out pool of partners
on top of its ZSC performance. After evaluating several SOTA algorithms using our framework,
our experiments reveal that naive Independent Q-Learning (IQL) agents in most cases adapt as
quickly as the SOTA ZSC algorithm Off-Belief Learning (OBL). This finding raises an interesting
research question: How to design MARL algorithms with high ZSC performance and capability of
fast adaptation to unseen partners. As a first step, we studied the role of different hyper-parameters
and design choices on the adaptability of current MARL algorithms. Our experiments show that
two categories of hyper-parameters controlling the data diversity and optimization process have a
significant impact on the adaptability of Hanabi agents. We hope this initial analysis will inspire more
work on designing both general and adaptive MARL algorithms.

1 INTRODUCTION

Our everyday lives are filled with numerous cooperative multi-agent interactions. This includes our everyday regular
activities such as crossing a traffic light, driving, buying and selling goods and services, activities at schools, offices and
governments to name a few. Artificial Intelligence (AI) agents and systems hold great promise in assisting and helping
us with many of these day-to-day activities. It is of paramount importance for these Al agents to have the capabilities
to coordinate with multiple humans and other agents (Al or otherwise). Building such Al agents is challenging, as
successful cooperation requires an agent to be able to predict and anticipate other agents’ behaviors. Often agents have
to do this with limited information of the state of world including that of the other agents, and also while other agents’
actions being stochastic and changing over time.

Reinforcement Learning (RL) provides a general and scalable framework to model this challenging partially observable,
non-stationary, multi-agent learning problem. There has been a recent surge in interest within the Al research community
toward building cooperative Multi-Agent RL (MARL) agents. In particular, the community has focused mainly on
designing methods for the game of Hanabi (Bard et al., 2020) that enable trained RL agents to perform Zero-Shot
Coordination (ZSC) with novel unseen agents (Hu et al., 2020a; 2021; Lupu et al., 2021; Cui et al., 2021; Nekoei et al.,
2021; Lucas & Allen, 2022). Hanabi, a partially-observable cooperative multi-agent benchmark, has been a particularly
popular game in recent years to study MARL in a cooperative setting. However, most of these efforts are limited to
the case of cooperating with novel agents trained independently but with the same underlying algorithm. Nekoei et al.
(2021) and Lucas & Allen (2022) are among the few approaches trying to evaluate agents in a more general scenario of
cooperating with completely novel agents with maybe even different underlying algorithms.
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While ZSC is an important and valuable feature that we would like our cooperative MARL agents to have, just focusing
on ZSC is inherently restrictive. In complex tasks and environments (such as in the real world), it may not be possible
to learn everything relevant about the environment and the other unseen agents without ever interacting with them. It
may not be possible to learn a universal coordination strategy that works well with all novel agents zero-shot. Moreover,
the world keeps changing. The environment, including the other agents in it and the task of interest, could change over
time. We believe that along with the ability of ZSC, cooperative MARL agents should also have the ability to rapidly
adapt with minimal interactions with other agents and improve their performance on top of their ZSC performance
whenever possible. The ability to adapt is quite important even after learning to best cooperate at any given moment in
the agent’s life (Van Seijen et al., 2020). This work aims to formally define adaptation to novel partners in the context
of cooperative MARL and propose ways to measure it.

Hanabi requires the agent to possess theory of mind to understand the intent of other agents and cooperate. Bard et al.
(2020) designed the Hanabi ad-hoc team play challenge to evaluate a Hanabi agent’s ability to play and coordinate with
a wide range of teammates the agent has never encountered before.

"Good strategies are not unique, and a robust player must learn to recognize intent in other agents’
actions and adapt to a wide range of possible strategies.” (Bard et al., 2020)

In particular, during the evaluation phase, the agent’s performance is measured via the score achieved by the agent when
it is paired with teammates chosen from a held-out pool of agents. However, the details of the ad-hoc teamplay challenge
are left open for future work. Recently, there has been a transition in emphasis from addressing the ad-hoc coordination
problem to addressing the specific challenge of creating algorithms that can coordinate with independently trained
agents, while using the same high-level algorithm also known as Label Free Coordination (LBF) problem (Treutlein
et al., 2021). In this work, our goal is to bring back the focus to the ad-hoc coordination challenge which is a more
general problem. In particular, we propose to extend this evaluation to measure not just the ZSC of a Hanabi agent,
but also the Hanabi agent’s ability to efficiently adapt and improve its coordination performance when paired with a
held-out pool of agents on top of its ZSC performance. For this, we define metrics such as the adaptation regret, which
measures the sum of the difference between the best-response score and the score achieved by the RL agent over time
in the adaptation phase. Moreover, we investigate the choice of the partners which can greatly affects both zero-shot
and adaptation performance of the learner.

We carried out extensive experiments to fine-tune Hanabi agents using various pre-trained partners, and measured
their adaptation regret, in order to better understand the current state-of-the-art (SOTA) ZSC algorithms’ adaptation
capabilities. We included various MARL algorithms from fully specialized Self-Play (SP) agents to the most generalist
ZSC algorithms. It was not surprising to find that all of the SOTA algorithms needed millions of interactions with the
partners to adapt well, as they lacked any mechanism to learn to adapt quickly during pre-training phase. However, we
also discovered that naive Independent Q-Learning (IQL)(Tan, 1993) agents adapted to various partners as quickly as
the SOTA Off-Belief Learning (OBL) (Hu et al., 2021) algorithm, which is known to be excellent at ZSC. Therefore,
a promising research direction would be to develop MARL algorithms that can perform both ZSC and Few-Shot
Coordination (FSC), i.e., minimizing adaptation regret.

Finally, we investigated several hyper-parameters and architecture choices that potentially could influence the adaptabil-
ity of the baselines. Our experiments show that two categories of hyperparameters (HPs) have a significant impact on
the adaptation regret. First, HPs that affect data diversity such as the number of distributed threads and replay buffer
size. The second type of HPs is the one influencing the optimization process directly such as finetuning learning rate
and batch size. We hope these initial investigations help to give some intuition to others who want to build both general
and adaptive agents.

Our main contributions are summarized as follows

* We conceptualize the few-shot coordination (FSC) setting for the ad-hoc teamplay challenge in multi-agent
reinforcement learning. We accordingly propose the adaptation regret metric that evaluates how fast an agent
adapts to unseen partners.

* We benchmark the adaptation performance of SOTA self-play and zero-shot coordination methods in the game
of Hanabi. We discuss the inherent flaws of existing methods when paired with unseen partners.

* We study the effects of partners’ diversity and hyper-parameters on the adaptation performance.
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2 RELATED WORK

The ad-hoc teamplay challenge in multi-agent reinforcement learning (MARL) requires agents to coordinate with
unknown partners who are capable of contributing to the task. Bowling & McCracken (2005) and Stone et al. (2000)
were among the first to propose this challenge, while the authors of the Hanabi challenge (Bard et al., 2020) explicitly
propose it as a primary benchmark for future progress in cooperative MARL. However, ad-hoc teamplay challenge’s
details are left to be defined more precisely in the future work.

Hanabi is a popular challenging cooperative game in which multiple different strategies are able to achieve strong
performance. These strategies may not be able to coordinate well when paired with each other (Hu et al., 2020a; Nekoei
et al., 2021). Since ad-hoc coordination assumes the task to be fully cooperative, and Hanabi elevates theory of mind
reasoning about beliefs and intentions of other agents (Bard et al., 2020), Hanabi becomes a highly suitable choice
for studying ad-hoc coordination. Other popular benchmark environments either do not exhibit the aforementioned
characteristics (e.g., Google football (Kurach et al., 2020), most card games), and/or they have not been evaluated from
a coordination perspective (e.g., Starcraft (Samvelyan et al., 2019), MPE (Lowe et al., 2017)), or they are not commonly
studied in the literature (e.g., small Hanabi with fewer colors/cards). Nevertheless, the concept of few-shot coordination
can be studied in other domains as well, as long as they require different strategies to adapt to novel partners.

Previous work on ad-hoc team play has involved learning diverse sets of policies and using Bayesian optimization,
such as in Canaan et al. (2019) which uses the MAP-Elites algorithm (Mouret & Clune, 2015) and an iterative
Bayesian optimization approach (Brochu et al., 2010). However, these approaches require meta-information and
human knowledge that may not generalize to other problems. Wu et al. (2021) proposes Bayesian Delegation to
perform efficient ad-hoc coordination by rapidly inferring the sub-tasks of others. Other related work includes MARL
agents with access to observed behavior (Barrett et al., 2017; Peysakhovich & Lerer, 2017; Lerer & Peysakhovich,
2019), communication conventions between agents (Sukhbaatar et al., 2016; Mordatch & Abbeel, 2018), and zero-shot
coordination (ZSC) (Hu et al., 2020a; 2021; Nekoei et al., 2021).

In particular, the zero-shot coordination (ZSC) problem has received a surge of interest. In this problem, an algorithm is
required to run independently and generate agents with high cross-play performance, i.e., the performance obtained by
coordinating with other independently trained agents. To achieve this, methods such as leveraging symmetries of the
problem (Hu et al., 2020a), training the best response to a diverse population of agents (Nekoei et al., 2021; Lupu et al.,
2021), or making assumptions about prior actions (Hu et al., 2021) have been proposed. In spite of the general definition
of ZSC, the MARL community’s focus has shifted towards designing agents to produce reproducible policies within the
same algorithm, but it does not impose any requirements on these agents to play well with unknown agents such as
humans. Despite this, ZSC methods have yielded more versatile agents that have had limited success in transferring to
the ad-hoc teamplay setting (Hu et al., 2021).

More recently, Zand et al. (2022) approaches the ad-hoc coordination challenge in the game of Hanabi by considering
the problem of selecting a strategy from a finite set of previously trained agents using a posterior belief over the other
agents’ strategy, to play with an unknown partner. This approach requires having access to a pool of pre-trained
policies and more importantly, a policy similar to the partner should be in the pool to get a good ad-hoc coordination
performance. Lifelong Hanabi (Nekoei et al., 2021) and Anyplay (Lucas & Allen, 2022) propose inter-crossplay
evaluation of hanabi agents which is similar to ad-hoc teamplay challenge. Nekoei et al. (2021) also mentions briefly
few-shot evaluation of agents to their partners while learning continually. However, none of these approaches consider
a comprehensive evaluation of the adaptation capability of pre-trained Hanabi agents. In the context of the ad-hoc
coordination in Hanabi, Canaan et al. (2019) also proposes Quality Diversity algorithms as a class of algorithms to
generate populations of diverse agents. These approaches can be complimentary to our benchmark to increase the
diversity of our held-out pool of patners.

3 BACKGROUND

Dec-POMDPs: In this paper we consider fully-cooperative Markov games. We model this setting with a Decentralized
Partially-Observable Markov Decision Process (Dec-POMDP ) (Bernstein et al., 2002; Nair et al., 2003), formally
defined as a tuple G = {S, A, P, R, 2, O, N,~}, with the set of states S, the set of actions A, the transition function P,
the reward function R, the set of observations for each agent €2, the observation function O, the number of agents N,
and +y as the discount factor. The game is partially observable, with o' ~ O(oli, s) as agent i’s observation of the global
state, sampled from the (stochastic) observation function O. The game is also fully cooperative, thus agents share

the same reward r = R(s, a), conditioned on the joint action a = [al} ,—, and the global state s. At each timestep
t, all agents are at the state s;. Each agent has an action-observation history (AOH) 7} = {0}, a§,ri, ..., ol}, and
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selects action a} using a stochastic policy of the form ) (a’|7}). The transition function P(s’|s;, a;), conditioned on
the joint action and the global state, transitions to the next state s;4;. The goal is to maximize the expected return,
J = E;[R(7)], where R(7) = >_, v'r; is the discounted cumulative reward calculated using the discount factor .

Deep RL: In single-agent deep Q-learning (Mnih et al., 2015), the agent predicts the anticipated total return for each
action based on the state information. Given the partially observable setting, the techniques utilized in this study
all utilize Recurrent Replay Distributed Deep Q-Networks (R2D2) (Kapturowski et al., 2019) as their foundation.
The Q function estimates action values based on the AOH instead: Q(7t,a;) = E, [R¢(7:)]. The R2D2 algorithm
incorporates several modern best practices on top of deep Q-learning, including double-DQN (van Hasselt et al., 2016),
dueling network architecture (Wang et al., 2016), prioritized experience replay (Schaul et al., 2016), distributed training
setup with parallel running environments (Horgan et al., 2018), and recurrent neural network for dealing with partial
observability.

Deep MARL has been successfully employed in various Dec-POMDP settings, as demonstrated by Olichoek & Amato
(2016). The conventional approach for employing deep Q-learning in Dec-POMDP settings is independent Q-learning
(IQL) (Tan, 1993). In IQL, each agent treats other agents as part of the environment and learns an independent estimate
of the expected return without incorporating the actions of other agents. For the sake of simplicity, this work uses the
IQL setup with shared neural network weights 6. We also pre-train agents with Value Decomposition Networks (VDN)
algorithm (Sunehag et al., 2017) that learns a joint-action Q-function that consists of the sum of per-agent Q-values to
allow for off-policy learning in the multi-agent setting.

ZSC: The prevalent method for learning in Dec-POMDPs is self-play (SP), which involves training RL agents with
copies of themselves. However, optimal policies learned through self-play often rely on arbitrary conventions that
are agreed upon during training, which can be problematic in real-world scenarios where agents need to coordinate
with other unknown Al agents and humans during testing. To address this issue, Treutlein et al. (2021) introduced the
Zero-Shot Coordination (ZSC) setting, which requires learning algorithms that produce robust and unique solutions
across multiple independent runs, and excludes arbitrary conventions as optimal solutions. Other-play (OP) (Hu et al.,
2020b) is a method proposed to prevent agents from learning an arbitrary joint policy out of a set of equivalent but
incompatible ones by enforcing equivariance to symmetries in the Dec-POMDP. On the other hand, Hu et al. (2021)
proposes Off-belief Learning (OBL) in the ZSC setting, which guarantees convergence to a unique policy by assuming
prior actions were taken by a fixed random policy but future actions will be taken by the policy in training. This process
can be iterated to train a new, higher-level policy using the trained policy from the previous iteration as the fixed policy.

4 FEW-SHOT COORDINATION

We start by giving the reasons why we need to focus on Few-Shot Coordination (FSC) besides Zero-Shot Coordination
(ZSC) in section 4.1. Later, in section 4.2, we formalize the FSC setting and explain adaptation regret as a metric to
capture both ZSC and FSC capabilities of MARL algorithms.

4.1 MOTIVATION

The ad-hoc teamplay setting (Bard et al., 2020) aims to perform well when the agent is paired with any other well-
performing policy. Despite its minimal assumptions, as pointed out by Cui et al. (2021), ad-hoc teamplay in Hanabi
fails in settings where there is little overlap between good SP policies and those that are suitable for coordination. It can
be unreasonable — at least in the game of Hanabi — to expect to have one single algorithm that can perform well with
any expert partner at test time as required by ad-hoc teamplay challenge.

The difficulty of coordinating with any expert partner can be supported by several ZSC works in Hanabi. In ZSC
literature, the usual intra-crossplay evaluation measures the zero-shot performance of two independent agents learned by
the same underlying algorithms. However, previous work has shown a poor zero-shot performance of ZSC algorithms in
the inter-crossplay criterion, where the agent is paired with other agents pre-trained by different underlying algorithms
(Nekoei et al., 2021; Lucas & Allen, 2022). We also confirmed this phenomenon with more diverse agents as shown in
Figure 1(a). It is therefore sensible to work beyond zero-shot coordination and aim for fast adaptation towards those
expert partners.

Our initial analysis shows that current SOTA MARL methods need an extremely large number of interactions with a
new novel partner to adapt and improve their performance on top of their ZSC performance as shown in Figure 1(b).
Recognizing the importance of the ability to adapt fast for Al agents, there have been several works recently on this
topic in the single-agent RL setting, with a majority of them using techniques of meta-learning to learn to adapt fast.
We hope this benchmark plays as a starting point to build such adaptive methods for the cooperative MARL setting.
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Figure 1: ZSC and adaptation performance of OBL algorithm with different self-play pre-trained agents. The maximum
achievable score in Hanabi is 25. (a) Each row represents an agent with specific hyperparameters/architecture choices
with high-level methods separated by black lines. Even though OBL algorithms perform well when paired with other
agents trained with OBL, it performs poorly when paired with other SP agents like IQL or VDN. (b) The adaptation
performance of an OBL agent when paired with different variants of IQL, VDN, and also an independent OBL agent. It
is clear than the OBL agent requires millions of samples to adapt to these novel partners.

Finally, excellent ZSC algorithms still are far from perfect in coordinating with humans (Cui et al., 2021; Hu et al., 2021).
Moreover, even though human players achieve the same performance with rule-based agents and ZSC learned agents,
human players still strongly prefer working with the rule-based agent (Kim et al., 2020) viewing the Other-Play agent
negatively, citing reasons such as a lack of bilateral understanding, trust, comfort, and perceived performance. Even
though there is no guarantee that FSC leads to an increase in subjective metrics without re-conducting the sentiment
surveys, intuitively adaptive agents should become more similar to human strategies over time when paired with a
human player.

Given these reasons, we believe that the community needs to focus on designing MARL algorithms that are able to
adapt quickly with a few interactions to coordinate with Al agents or humans with special strategies while having a
generalizable initial strategy capable of ZSC. Now we introduce Few-Shot Coordination (FSC) benchmark as a first
step toward designing these algorithms.

4.2 BENCHMARK SETUP

25 A

Similar to most MARL settings, our benchmark consists of two
phases: the training phase and the evaluation phase. During the
training phase, we do not pose any restrictions on the learner agent’s
learning algorithm, network architecture, or hyperparameter settings.
Any method can be used to train the learner agent, including SP, ZSC, 10

or population-based methods. —--- BR Score
. . . . 51 * ZSC Score
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Figure 3: Three sets of pre-trained Hanabi agents with high strength (S) and different levels of diversity (D). The game
score in each cell ranges from 0 to 25.

we can take an average:
Rr(i) = aggr({Rr (i, 4)}L1)

where M is the number of partners. Instead of aggr, one can use standard averaging across partners or Inter-Quantile
Mean (IQM) as suggested by Agarwal et al. (2021) to make the metric robust to outliers. We have several options for
setting the upper-bound performance C*. In our current benchmark, we use the maximum achievable score in the
game, which is 25. Alternatively, C'7 could be the best-response (BR) score of partner j, which is the highest possible
score that can be obtained by cooperating with partner j. C'7 could also be the self-play score of the partner j. It is
worth noting that the choice of C’f does not change the qualitative picture. However, it can lead to large quantitative
differences in the results. For instance, if a partner j is difficult to adapt to, using C'7 = 25 will make their contribution
to the regret dominate the total regret. The adaptation regret is illustrated in Figure 2. It is worth noting that this
metric captures both the ZSC and FSC performance of MARL methods. For each agent, we evaluate its adaptation
performance by its mean adaptation regret across a group of partners.

As the adaptation performance highly depends on the set of partners, we assume each partner meets two basic
requirements. First, each partner agent should demonstrate its capability of achieving strong cooperation with some
other agent. For instance, a SP agent can reach a high score with itself, or a ZSC agent can reach a high ZSC score with
another agent optimized with the same ZSC algorithm. This states that each partner j should have a high C7 value.
We define S; = C7/25 € [0, 1] to represent the strength of individual partner j, and S = iy ;9j to indicate the
strength of a set of partners, where n is the number of partners. This requirement is important as a random partner is
less meaningful to evaluate the learner’s adaptability. Second, in order to ensure the learner does not overfit to some
arbitrarily specialized partners, the set of partners should have diverse playing strategies. Given that a set of partners
have high strength S, intuitively they are diverse if at the same time they have low cross-play scores with each other.
We define a soft metric to represent the diversity level of partners:

1 Ci;
D=1-
n?—n Z 25’
i#]
where C}; is the cross-play score of partner 4 and partner j for a given group of partners. Figure 3 shows three example

sets of partners with different levels of diversity. Note that in the case of partners with fully diverse strategies, D = 1
and in the case of partners with fully aligned strategies, D = 0.

According to these two requirements, each partner could be an agent trained to optimize for SP or ZSC performance.
It could also be an offline-learning agent trained with human data or a rule-based agent with hardcoded strategies.
We assume each partner remains fixed throughout the evaluation. This assumption is reasonable for the FSC setting
in which the goal is to adapt to new partners in a few episodes. Nonetheless, extending our benchmark to include a
learning partner is an intriguing avenue that we will leave for future research.

5 EXPERIMENTS
In this section, we report the benchmarking results of several MARL algorithms following the setting described in
section 4.2.

First, we gathered a pool of diverse pre-trained agents including self-play agents such as IQL and VDN and agents
trained to perform well in terms of ZSC such as OBL, IQL+OP, and VDN+OP. Then for each method we chose
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Figure 4: Results on adapting 5 different agents to partners from Figure 3(b). Refer to Figure 9 in the appendix for
the adaptation results of the other two sets of partners from Figure 3. (a) Total regret shows that IQL has lower regret
initially than OBL but as OBL finds the best response to the partners, it grows slower than IQL (b) Average adaptation
regret over past episodes (c) Game score average across the partners. If zoomed in, IQL adapts faster initially but it
converges to a lower final performance. The shaded area is the standard error across 5 different partners.

randomly an agent as a learner. Finally, based on the aforementioned requirements in section 4.2, we choose the
partners as shown in Figure 3 to evaluate adaptation. More details on the agents, their network architecture, etc are
described in Table 1 in Appendix A'. During adaptation, each partner’s policy remains fixed. Moreover, regardless
of the training algorithm used to obtain the learner, each learner performs gradient updates as an IQL agent using the
same hyperparameter setting as in the pre-training phase. Each learner’s adaptation performance against each partner is
computed by averaging across 1000 independent games (i.e., seeds). Then for each learner, its adaptation performance
is aggregated by averaging the adaptation performance across 5 partners.

5.1 BENCHMARK RESULTS

Benchmarking results are summarized in Figure 4, where each curve represents the mean performance of each learner
across five partners. The left figure shows the cumulative adaptation regret of each learner over evaluation episodes, the
middle figure shows the adaptation regret averaged by the episode number at different points of evaluation, and the
right figure shows the actual game score obtained. In Appendix B we provide additional experiments on agents with
different levels of strength and diversity.

In general the results demonstrate the lack of efficient adaptability of commonly used methods. To adapt to a partner
independently trained with a different algorithm or architecture, they require millions of episodes, which is several
orders of magnitude higher than the amount of data needed for few-shot learning in supervised learning.

The SOTA ZSC algorithm OBL achieves a higher game score among the different methods eventually. Since the
partners also include an OBL agent, as a ZSC method it is normal to reach a relatively higher final score. However,
OBL has a higher average regret than IQL and VDN at least initially, despite its high performance in the ZSC problem
where both agents are trained with OBL. This result highlights the significant impact of the choices of partners on
performance. Even though the adaptation regret aims to capture both ZSC and FSC performance, looking solely at the
adaptation regret sometimes can be misleading as it can be sometimes dominated by either very small or very large ZSC
performance. Therefore, we also visualize the game score at different timesteps during adaptation that we care about in
Figure 5 for all three sets of partners with different diversity levels. When examining Figure 5(a) and Figure 5(b), we
observe that although OBL has achieved a lower game score after ¢ = 2e4 adaptation steps compared to other methods,
we should note that it has started from a much lower zero-shot performance at ¢ = 0 as indicated by the blue color. On
the other hand, in the case of high diversity partners shown in Figure 5(c), both IQL and OBL start from the same ZSC
performance. However, IQL adapts faster and achieves better performance at t = 2e4 but it is eventually outperformed
by OBL after t = 2e5. Therefore, Figure 5 alongside Figure 4 provides us with a better understanding of the adaptation
performance of various methods. Strong ZSC performance does not suffice to guarantee good results when the learner is
paired with other methods in the FSC setting. Another interesting observation is that both IQL and VDN reach a better

'All the pre-trained agents and the evaluation code are available at https:/github.com/chandar-lab/adaptive-hanabi.git.
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Figure 5: Each color represents the game score of a learner adapting to the partners from Figure 3 after different
number of episodes denoted by the legends. These plots can be complementary to adaptation regret plots with ZSC
performance included explicitly. The aggr used for this plots is IQM.

performance than their other-play counterpart. This observation additionally demonstrates that the direct application of
successful ZSC techniques may not lead to performance improvement in few-shot adaptation.

We performed an ablation study on the choice of the upper-bound performance C7 and found that it has a negligible
impact on the average adaptation regret. (Refer to appendix B.3). Nevertheless, if the SP score of each partner is
employed as C'7, the differences between algorithms become more noticeable regarding the total regret. This is due
to the fact that the average regret is already normalized, and modifying the upper-bound score only slightly shifts the
regret curves. Nonetheless, this small shift is reflected more prominently in the total regret curve.

5.2 THE ROLE OF HYPER-PARAMETERS IN ADAPTATION

We consider two primary categories of hyper-parameters (HPs) that can impact the adaptation regret. The first category
includes HPs that affect data diversity, such as the number of distributed threads and replay buffer size. The second
category includes HPs that directly influence the optimization process, such as finetuning learning rate and batch size.
We performed the hyper-parameters tuning around the original values used in Hu et al. (2021) and reported the results
in Figures 6 and 7. In particular, the effect of the aforementioned HPs on both (a) adaptation regret and (b) the perfect
score is studied. While the former measures how sensitive is the adaptability w.r.t these HPs, the latter shows what
percentage of the evaluation games are finished with a perfect 25 score for different values of each HP.

Number of threads: num_threads and num_games_per_thread are two HPs that their multiplication deter-
mines the number of parallel independent games running and generating game episodes. A lower number of threads
and number of games per thread mean more policy updates per environment step. The original values used by Hu et al.
(2021) are num_theads=80 and num_games per_thread=80. As we decrease the values of these two HPs, the
adaptation improves (20 seems to be the best) but if it’s too small (10 or 5) it starts to have an adverse effect which can
be because of the replay buffer having less diverse experience.

Replay buffer size: replay_buffer_size determines the maximum number of episodes stored in the buffer. The
original value is 1e5. From Figure 6, smaller buffer sizes seem to aid adaptation initially, but overly small sizes may
reduce data diversity and result in poor performance. The best value is around 5e4. In Figure 7 however, the smallest
buffer size tested seems to perform best.

Fine-tuning learning rate: The optimizer used throughout the experiments is Adam. We tested different values for
its learning rate (1r). The original value is 6.25e — 5. The best value seems to be a bit higher than the one used to
pre-train SP agents (1e — 4). As expected, very small 1r leads to small adaptation. However, a too large value of 1r
also might result in overshooting and slow down adaptation.

Batch size: Smaller batch size seems to have a consistent improvement in the case of adapting IQL to the OBL partner.
However, a more moderate batch size of around 256 seems to work best when adapting an OBL agent to an IQL agent.
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Figure 6: The role of different hyperparameters on adaptability and performance of an IQL agent adapting an OBL
agent. (a) Average adaptation regret that is total adaptation regret divided by the number of episodes (b) The percentage
of the games finished with a perfect score of 25. All of the HPs show a significant influence on both adaptability and the
perfect score.
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While the best-finetuned agent’s adaptation performance still falls short of a few-shot learner’s capabilities, it is
noteworthy to discover the substantial impact of these HPs on adaptation. However, a more intriguing inquiry is how to
construct resilient MARL algorithms that can adapt to a new partner without the requirement of careful HP tuning.

6 CONCLUSIONS AND FUTURE WORK

In this work, we motivate the MARL community to focus on the few-shot adaptation problem besides the well-studied
zero-shot coordination problem by giving empirical and intuitive reasons including the failure of current SOTA ZSC
algorithms in adapting to new partners. Therefore, we propose a benchmark that evaluates the adaptability of MARL
algorithms. Our benchmark targets a realistic scenario where the pre-trained agent is paired with unseen partners that
are independently trained with potentially different algorithms or architectures. We accordingly introduce adaptability
metrics that quantify agents’ performance during adaptation and perform an empirical study on a diverse of pre-trained
Hanabi agents. Besides, benchmarking several SOTA methods, we performed extensive experiments to investigate the
hyper-parameters influencing adaptability.

We believe that our work paves the way for various promising directions for further investigation in this domain.
Currently, none of the SOTA methods can adapt well to a group of partners in less than thousands of episodes even with
careful hyperparameter tuning. Therefore, developing methods that perform well on this benchmark is an important
future work for the community. It would also be valuable to include more recent SOTA methods such as K-level
reasoning to determine their impact on adaptation performance. Additionally, investigating the correlation between

o
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adaptability and partner diversity would provide insight into the generalizability of the MARL algorithms. Another
potential direction for future research is to include other rule-based and human-cloned bots to examine the algorithms’
adaptability to different types of partners. Finally, studying the case with learning partners could provide valuable
information on the adaptability of MARL algorithms to agents that are continually evolving and learning. Addressing
these areas of research could lead to significant advancements in the development of robust and adaptive MARL
algorithms.

As one of the limitations of our work, we defined adaptation regret and discussed the choice of partners only for the
case of two-player game. However, our benchmark can also be extended to more than the two-player Hanabi game. The
definition of adaptation regret remains unchanged, except that C’;' and ij represent the upper-bound performance and
the learner ¢’s current performance with a group of partners, rather than with a single partner. However, the process of
selecting partners becomes more complex as we now have a multi-dimensional cross-play matrix. For example, how to
say in a three-player game, two independent groups of partners of size two are diverse? One natural way would be to
evaluate all 2 x (”; ‘) combinations of the partners where | P| is the pool size. Then we can use the same notation of
diversity as described before. Although this approach can be extended effortlessly to games with more players, the
number of partner combinations grows exponentially with the number of players in the game. Given the popularity of
the two-player Hanabi game in the literature, we focus our attention on it in this study. Nevertheless, exploring the
setting with more than two players presents an exciting direction for future research.

ACKNOWLEDGEMENTS

This work is supported by the IBM-Mila grant. We acknowledge the computational resources provided by the Digital
Research Alliance of Canada. Janarthanan Rajendran acknowledges the support of the IVADO postdoctoral fellowship.
Sarath Chandar acknowledges the support of the Canada CIFAR Al Chair program and an NSERC Discovery Grant.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep reinforcement
learning at the edge of the statistical precipice. Advances in neural information processing systems, 34:29304-29320,
2021.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio Parisotto, Vincent
Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A new frontier for ai research. Artificial
Intelligence, 280:103216, 2020.

Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. Making friends on the fly: Cooperating with new
teammates. Artificial Intelligence, 242:132-171, 2017.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized control of
markov decision processes. Mathematics of operations research, 27(4):819-840, 2002.

Michael Bowling and Peter McCracken. Coordination and adaptation in impromptu teams. In AAAI, volume 5, pp.
53-58, 2005.

Eric Brochu, Vlad M Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

Remi Canaan, Julian Togelius, Andrew Nealen, and Stephan Menzel. Diverse agents for ad-hoc cooperation in hanabi.
In 2019 IEEE Conference on Games (CoG), pp. 1-8. IEEE, 2019.

Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. K-level reasoning for zero-shot coordination in hanabi. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 8215-8228. Curran Associates, Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/£file/4547dff5fd7604f18c8ee32cf3dadld7-Paper.pdf.

Daniel Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, and Hado Van Hasselt. Distributed
prioritized experience replay. arXiv preprint arXiv:1803.00933, 2018.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. " other-play" for zero-shot coordination. arXiv
preprint arXiv:2003.02979, 2020a.

10


https://proceedings.neurips.cc/paper/2021/file/4547dff5fd7604f18c8ee32cf3da41d7-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4547dff5fd7604f18c8ee32cf3da41d7-Paper.pdf

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “Other-play” for zero-shot coordination. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 4399-4410. PMLR, 13-18 Jul 2020b.

Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, Noam Brown, and Jakob Foerster. Off-belief learning. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 4369—4379. PMLR, 18-24 Jul 2021. URL https:
//proceedings.mlr.press/v139/hu2lc.html.

Szymon Kapturowski, Tom Schaul, Bilal Piot, Matteo Hessel, Hado van Hasselt, and Marc Lanctot. Recurrent
experience replay in distributed reinforcement learning. arXiv preprint arXiv:1910.01741, 2019.

Jinkyoo Kim, Hua Yang, Sungwook Lee, and Kyunghyun Cho. Evaluation of human-ai teams for learned and rule-based
agents in hanabi. IEEE Transactions on Games, 12(4):411-423, 2020.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michat Zajac, Olivier Bachem, Lasse Espeholt, Carlos Riquelme,
Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football: A novel reinforcement
learning environment. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 4501-4510,
2020.

Adam Lerer and Alexander Peysakhovich. Learning existing social conventions via observationally augmented self-play.
In Proceedings of the 2019 AAAI/ACM Conference on Al, Ethics, and Society, pp. 107-114, 2019.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. Advances in neural information processing systems, 30, 2017.

Keane Lucas and Ross E. Allen. Any-play: An intrinsic augmentation for zero-shot coordination, 2022. URL
https://arxiv.org/abs/2201.12436.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot coordination. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 7204-7213. PMLR, 18-24 Jul 2021. URL https:
//proceedings.mlr.press/v139/1lupu2la.html.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, ..., and Stig
Petersen. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent populations. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909,
2015.

Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella. Taming decentralized pomdps:
Towards efficient policy computation for multiagent settings. In IJCAI, volume 3, pp. 705-711, 2003.

Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous coordination as a realistic
scenario for lifelong learning. In International Conference on Machine Learning, pp. 8016—-8024. PMLR, 2021.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs. Springer, 2016.

Alexander Peysakhovich and Adam Lerer. Prosocial learning agents solve generalized stag hunts better than selfish
ones. arXiv preprint arXiv:1709.02865, 2017.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli, Tim GJ Rudner,
Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent challenge. arXiv
preprint arXiv:1902.04043, 2019.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2016.

Peter Stone, Gal A Kaminka, Sarit Kraus, and Jeffrey S Rosenschein. Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In Proceedings of the first international conference on Autonomous agents, pp. 209-216.
ACM, 2000.

11


https://proceedings.mlr.press/v139/hu21c.html
https://proceedings.mlr.press/v139/hu21c.html
https://arxiv.org/abs/2201.12436
https://proceedings.mlr.press/v139/lupu21a.html
https://proceedings.mlr.press/v139/lupu21a.html

Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropagation. Advances in
neural information processing systems, 29, 2016.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc
Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296, 2017.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the tenth
international conference on machine learning, pp. 330-337, 1993.

Johannes Treutlein, Michael Dennis, Caspar Oesterheld, and Jakob Foerster. A new formalism, method and open issues
for zero-shot coordination. In International Conference on Machine Learning, pp. 10413—10423. PMLR, 2021.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-learning. In AAAI, pp.
2094-2100, 2016.

Harm Van Seijen, Hadi Nekoei, Evan Racah, and Sarath Chandar. The loca regret: a consistent metric to evaluate
model-based behavior in reinforcement learning. Advances in Neural Information Processing Systems, 33:6562—6572,
2020.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas. Dueling network
architectures for deep reinforcement learning. In Proceedings of the 33rd International Conference on Machine
Learning (ICML-16), pp. 1995-2003, 2016.

Sarah A Wu, Rose E Wang, James A Evans, Joshua B Tenenbaum, David C Parkes, and Max Kleiman-Weiner. Too
many cooks: Bayesian inference for coordinating multi-agent collaboration. Topics in Cognitive Science, 13(2):
414432, 2021.

Jaleh Zand, Jack Parker-Holder, and Stephen J Roberts. On-the-fly strategy adaptation for ad-hoc agent coordination.
arXiv preprint arXiv:2203.08015, 2022.

12



Published at 2nd Conference on Lifelong Learning Agents (CoLLAs), 2023

A EXPERIMENTAL SETUP

In this section, we provide the details of our experimental setup including the type of pre-trained agents in the pool,
hyper-parameteres used in the experiments, etc.

A.1 PRE-TRAINED AGENTS TYPES

To create a pool of diverse agents, one way is to per-train agents with different architecture choices. We provide the list
of these choices in table 1.

Table 1: All agent types used in the pool.

AGENT RNN TYPE NUM OF FEED-FORWARD LAYERS NUM OF RNN LAYERS RNN HID DIM
TYPE-1 LSTM 1 1 256
TYPE-2 LSTM 1 1 512
TYPE-3 LSTM 1 2 256
TYPE-4 LSTM 1 2 512
TYPE-5 LSTM 2 1 256
TYPE-6 LSTM 2 1 512
TYPE-7 LSTM 2 2 256
TYPE-8 LSTM 2 2 512
TYPE-9 GRU 1 1 256
TYPE-10 GRU 1 1 512
TYPE-11 GRU 1 2 256
TYPE-12 GRU 1 2 512
TYPE-13 GRU 2 1 256
TYPE-14 GRU 2 1 512
TYPE-15 GRU 2 2 256
TYPE-16 GRU 2 2 512
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B ADDITIONAL RESULTS

In this section, we discuss the additional results supporting the claims in the main paper.

B.1

We discussed the role of HPs on both adaptivity and final performance of Hanabi agents in section 5.2. Here we report

FINETUNING CURVES OF SECTION 5.2

the adaptation curves and perfect score curves used to generate Figures 6 and 7.
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Figure 9: Results on adapting 5 different agents to partners from Figure 3(a) (top row) and Figure 3(c) (bottom row).

B.2 THE CHOICE OF PARTNERS
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B.3 THE CHOICE OF UPPER-BOUND PERFORMANCE
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Figure 10: The comparison between using different upper-bound performance C* in the adaptation regret definition on
benchmark results on adapting 5 different agents to partners from Figure 3(b). It has a negligible impact on the average
adaptation regret. Nevertheless, if the SP score of each partner is employed as C%, the differences between algorithms

become more noticeable regarding the total regret.
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B.4 THE CHOICE OF THE AGGREGATOR
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Figure 11: The comparison between mean and IQM aggregator on the benchmark results on adapting 5 different agents
to partners from Figure 3(b). While the selection of IQM instead of mean aggregator does not alter the ranking in our
particular experiments, it is reflected in the total regret chart by being more resilient to a partner like OBL, which has a
considerably low ZSC performance. Consequently, the superiority of IQL as the learner over OBL is more evident when
employing IQOM aggregator.
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