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Abstract
Disentanglement aims to recover meaningful latent ground-truth factors from the observed distribu-
tion solely, and is formalized through the theory of identifiability. The identifiability of independent
latent factors has been proven to be impossible in the unsupervised i.i.d. setting under a general
nonlinear map from factors to observations. In this work, however, we demonstrate that it is possible
to recover quantized latent factors under a generic nonlinear diffeomorphism. We only assume that
the latent factors have independent discontinuities in their density, without requiring the factors to
be statistically independent. We introduce this novel form of identifiability, termed quantized factor
identifiability, and provide a comprehensive proof of the recovery of the quantized factors.
Keywords: identifiability, disentanglement, causal representation learning, quantized representa-
tions, discrete representations

1. Introduction

A large part of intelligence is based on the ability to make sense of observed sensory data without
explicit supervision. The goal of representation learning is, thus, to detect and model relevant
structure in the distribution of observed data, and expose it into useful compact representations, to
facilitate generalization and sample-efficient learning of subsequent tasks. One long-standing goal in
that respect has been that of structuring the representation into disentangled factors (Bengio et al.,
2013). These may be conceived of as “natural” ground truth, descriptive, or causal variables that
underlie the observations. A vector representation consisting of recovered disentangled factors may
be viewed as corresponding to a natural Cartesian coordinate system for the observations, whereby
each varying factor is associated with an axis.

Identifiability theory formalizes the foundations of disentanglement by precisely delimiting the
conditions under which it is possible. Unsupervised disentanglement of latent factors has been
found impossible in the general nonlinear setting in the absence of further inductive bias (Locatello
et al., 2019). This result echoes an older identification impossibility result on nonlinear Independent
Component Analysis (Hyvärinen and Pajunen, 1999). As a result, much subsequent work has
sidestepped the issue either via stronger inductive biases, such as more restrictive assumptions on the
function that maps latent factors to observations (Buchholz et al., 2022; Kivva et al., 2022; Ahuja
et al., 2022c; Brady et al., 2023; Lachapelle et al., 2023), for instance sparsity of its Jacobian (Moran
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et al., 2022; Zheng et al., 2022; Zheng and Zhang, 2023), or by turning to weakly supervised
disentanglement, using some form of additional information (see related works in Appendix A).

Provided that they corresponds to valid assumptions, inductive biases should undoubtedly be used
in practice whenever available, as well as any additional supervisory signals. However, in the present
theoretical work, we revisit and tackle the problem of fully unsupervised identifiability of latent
factors, the most challenging setting. We assume a generic smooth invertible nonlinear mapping: a
diffeomorphism. No additional assumptions are made on the mapping, and the assumption of the
factors being mutually independent is also discarded.

Given the previous theoretical impossibility results for unsupervised identifiability under a
diffeomorphism, a shift in our approach was necessary. We relax the notion of identifiability of
continuous factors to that of identifiability of quantized continuous factors.

The promise of quantized, grid-like representations has been argued empirically in both machine
learning and neuroscience. It has been suggested that the brain of humans and other animals
organizes spatial knowledge and relational concepts into codes that have an hexagonal grid-like
pattern (Constantinescu et al., 2016; Whittington et al., 2020). In representation learning, vector
quantization has shown enormous success in image generation (van den Oord et al., 2017). Concurrent
studies investigate empirically this explicit relationship with disentanglement (Hsu et al., 2023), and
further explore quantization in grid-structured representations (Mentzer et al., 2024; Irie et al., 2023;
Friede et al., 2023).

However, none of these provide a supporting identifiability theory for quantized factors. In the
present work, we first formalize this novel relaxed form of identifiability. We, then, provide a full
proof of the identifiability of quantized factors under a general diffeomorphism. This is achieved by
assuming, rather than the mutual independence of factors, the presence of independent discontinuities
in the joint probability density 1 of the latent factors.

Our contributions are the following:
• We introduce and formalize a novel relaxed form of representation identifiability: quantized

factor identifiability.
• We provide the first proof of representation identifiability under a general diffeomorphic map,

which sets itself apart from the impossibility results that dominate the field.
We hope that this novel theoretical foundation may provide useful insights to develop algorithms

of practical relevance for robustly learning disentangled representations.

2. From precise factor identifiability to quantized factor identifiability

In this section, we define and contrast the standard form of factor identifiability, which we term
“precise factor identifiability”, with our new relaxed “quantized factor identifiability” paradigm.

2.1. Setup

We suppose that we have access to observations in X ⊂ RD. They are realizations of the vector
random variable X = (X1, . . . , XD), which is assumed to be a transformation of a real vector of
unobserved latent factors Z = (Z1, . . . , Zd), i.e. X = f(Z), via a bijective mapping f : Z → X
where Z ⊂ Rd. The mapping f is called the mixing map, which is unknown but is assumed to belong
to a broad function class. The latent factors Z follow a distribution represented by the probability

1. More precisely, these are non-removable discontinuities in the PDF, as will be elaborated in Section 5.1.
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Figure 1: Recovery of quantized factors. Left: The true (continuous) latent factors Z1 and Z2

are not independent, but their joint probability density pZ has independent discontinuities:
sharp changes in the density that are aligned with the axes and form a grid. Middle:
The factors get warped and entangled by the diffeomorphism f into observations X , but
the discontinuities in their density survive in the observed space. Right: We can learn
a diffeomorphism g that yields a density pZ′ having axis-aligned discontinuities. This
suffices to recover a grid whose cells match the initial grid’s cells (up to possible permu-
tation and axis reversal). Pink cell example: the points Z ′ in cell (3, 2) originated from
the points Z in cell (3, 2). To construct these cells, the quantization of each continuous
factor to an integer depends on thresholds based on the location of the discontinuities. The
quantizations of Z ′

1 and Z ′
2 match precisely the quantizations of Z1 and Z2, up to possible

permutation and axis reversal. This summarizes the identifiability of quantized factors
under diffeomorphisms.

density function (PDF) pZ , which is also unknown but is typically subject to assumptions. This
induces a distribution for X whose PDF is denoted by pX . The mapping g : X → Z approximates
f−1 at the optimum.

The setup is summarized in the following diagram.

h=g◦f

Z︸︷︷︸
⊂Rd

true factors

∼ pZ

−−−−−−−−−−−−−−−−−→
f−−−−−→

unknown
X︸︷︷︸

⊂RD

observed data

g≈f−1

−−−−→
learned

Z ′︸︷︷︸
⊂Rd

recovered factors

In identifiability theory, the distribution of observations pX is supposedly known. Alternatively,
for this level of precision, observed samples from pX can be considered with the sample size
approaching infinity. Identifiability theorems also need to make clear assumptions on the mixing
map f and on the density of factors pX .

In the remainder of this section, we first formalize the usual factor identifiability as well as our
proposed relaxation to quantized factor identifiability in the general case. Subsequently, we focus on
the case where f is a diffeomorphism.

2.2. Precise Factor Identifiability

The usual, precise factor identifiability theorems amount to statements of the following form:
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Precise Identifiability of Factors: Knowledge of pX is sufficient to determine a reverse
mapping g : RD → Rd that will yield recovered factors (Z ′

1, . . . , Z
′
d) = g(X) that correspond

one-to-one to the ground-truth factors (Z1, . . . , Zd), up to permutation and component-wise
invertible transformations (ideally monotonic).

Formally: there exists an indices permutation function σ and invertible scalar functions γi such
that ∀i ∈ {1, . . . , d}, γi(Z ′

i) = Zj with j = σ(i). Precise factor identifiability theorems require
specifying assumptions on f and on pZ .

2.3. Quantization of factors

Let us now specify how the factors can be quantized. For simplicity, we consider that each factor is a
real-valued scalar. A real number z may be quantized to an integer based on a tuple of real thresholds
T via the following quantization operation:

Q(z;T ) =

|T |∑
k=1

1z≥Tk
. (1)

For example, consider z ∈ [0, 4] and T = (0.5, 2.0). Then Q(z;T ) = 1z≥0.5 + 1z≥2.0. So

Q(z;T ) =


0, 0 ≤ z < 0.5

1, 0.5 ≤ z < 2

2, 2 ≤ z ≤ 4.

We also define quantization with order reversal as Q−(z;T ) =
∑|T |

k=1 1z≤Tk
. For convenience,

we will use the notation Q(s) to mean Q if s = +1 and Q− if s = −1.
The set of specific thresholds used for quantizing a random variable Zi is typically derived from

some properties of its distribution pZi (e.g. a set of |T | specific quantiles). We will consider the more
general case, where the thresholds for quantizing Zi might be determined not only based on pZi , but
more generally, on i and on the joint probability density of all factors pZ . The operation returning a
set of thresholds to be used for a factor Zi is denoted by T (pZ , i). Thus, the quantization of Zi may
be written as: qi(Zi) = Q(Zi; T (pZ , i)).

2.4. Quantized Factor Identifiability

Quantized factor identifiability theorems will be statements of the following form:

Identifiability of Quantized Factors: Knowledge of pX is sufficient to determine a reverse
mapping g : RD → Rd that will yield recovered factors (Z ′

1, . . . , Z
′
d) = g(X) such that their

quantization (q′1(Z
′
1), . . . , q

′
d(Z

′
d)) will correspond one-to-one to the quantized ground-truth

factors (q1(Z1), . . . , qd(Zd)), up to possible permutation of indices and order reversal.

Formally, there exists an indices permutation function σ and order-reversal indicators si ∈
{−1,+1} such that: ∀i ∈ {1, . . . , d}, q′i(Z

′
i) = qj(Zj), with j = σ(i), where qj and q′i are

monotonic quantization functions. We can, more precisely, define qj as qj(Zj) = Q(Zj ; T (pZ , j)),
and q′i(Z

′
i) = Qsi(Z ′

i; T (pZ′ , i)). The precise operation T that determines how the quantization
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thresholds are obtained from properties of the distributions remain to be specified by the particular
quantized factor identifiability theorem.

Hence, quantized factor identifiability theorems require specifying assumptions on f , assumptions
on pZ , as well as a precise quantization operation. For the quantization to be meaningful, it should
produce at least two non-empty bins. That is, for any given factor, the respective factor samples will
be mapped to at least two different quantized values. Quantization to a single all-encompassing bin
is trivially identifiable and useless.

We highlight that quantized factor identifiability does not intend to prove identifiability when
the true factors take a discrete set of values. Instead, we define a relaxed form of identifiability for
continuous ground-truth factors. Quantization leads to a loss of precision/resolution, resulting in a
coarser identification.

3. What to assume on pZ whenf is a diffeomorphism

From now on, we will turn our attention to the case where the mixing map f is assumed to be a general
diffeomorphism, that is, a continuously differentiable function with a continuously differentiable
inverse. The goal is to learn the approximate inverse diffeomorphism g. First, let us discuss what
assumptions we should make on the distribution of factors pZ that may yield a positive identifiability
result.

3.1. Disentanglement, independence, and discontinuities

Disentanglement has been equated to finding statistically independent factors (Khemakhem et al.,
2020a), but statistical independence has been criticized as an unrealistic and problematic assumption
(Träuble et al., 2021; Dittadi et al., 2021; Roth et al., 2023) whose association to disentanglement is
misleading. For example, the usual descriptive factors with which we describe scenes are usually not
statistically independent. Consider the variables color, shape, and background: bananas tend to be
yellow; cows tend to be on grass backgrounds; camels tend to be on sand.

Moreover, a primary interest for learning disentangled representations is as an enabler of robust
generalization under distribution shifts. From this perspective, we should aim for factor discovery
approaches that are stable and insensitive to broad changes in the (unknown) distribution of the
factors, such as whether they happen to be independent or correlated in the data. Aiming for extracting
statistically independent factors will, by construction, be very sensitive to this, which goes contrary
to the desired robustness.

Lastly, and most importantly for our goal of characterizing what form of unsupervised identi-
fication is possible under a diffeomorphism, assuming statistical independence is insufficient, as
previous impossibility results for nonlinear ICA have shown (Hyvärinen and Pajunen, 1999). This is
fundamentally due to the extreme flexibility of diffeomorphisms. Even more discouraging, Buchholz
et al. (2022) have shown that even if we knew pZ precisely, we could not achieve precise factor
identifiability. This is because a diffeomorphism can move data points along isosurfaces of pZ while
keeping the same pZ , thus rendering entangled representations indistinguishable from disentangled
ones.

To prevent this movement along isolines of pZ from taking points from one region to another
of the factor space, there could be barriers of discontinuity separating different regions of pZ . We
develop this justification for the need for discontinuities more precisely in Appendix G, based on the
result from Buchholz et al. (2022).
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Another perspective to consider is that discontinuities are among the few characteristics of
a density that diffeomorphisms can neither erase nor create (Theorem 4). Hence, they are good
candidates for holding cues in pZ guaranteed to survive in some form when mapped to X via
any diffeomorphism. Thus, if they were indicative of coordinate axes in Z, there is a prospect of
recovering them from the resulting discontinuities in pX .

Therefore, to enable the identifiability of quantized factors under a diffeomorphism, we will
not assume that pZ implies statistically independent factors, but rather that it has independent
discontinuities, which we define precisely in the next section.

3.2. Independent discontinuities in the probability density

Here, we contrast the statistical independence of factors with our approach, the independence of
discontinuities. We will assume that there are discontinuities in the PDF of the factors, and that the
location of these discontinuities in the density of any given factor is independent of the values of all
the other factors.

Definition 1 Let S be the support of pZ . We say that pZ has an independent discontinuity at
Zi = τ when every point in the intersection of the coordinate hyperplane {zi = τ} with S is
a non-removable discontinuity of pZ . Formally, this independent discontinuity at Zi = τ is
defined as the set ΓS(i, τ) = {z ∈ S|zi = τ} under the condition that ∀z ∈ ΓS(i, τ), pZ has
a non-removable discontinuity at z.

Such discontinuities are “independent” in the sense that we have a discontinuity at Zi = τ
regardless of the values taken by the other factors. Only the locations of the discontinuities in the
density need to be independent of the other factors. This does not impose statistical independence of
the factors, nor anything else wherever the density is continuous. Thus, assuming the presence of
independent discontinuities can accommodate statistically independent factors as well as correlated
factors.

Geometrically, an independent discontinuity in pZ corresponds to a coordinate hyperplane
restricted to the support of pZ . This hyperplane is orthogonal to the Zi axis and parallel to all the
other axes. We will, thus, interchangeably call it an independent discontinuity or axis-aligned
discontinuity.

For our theorems, we will further require that the interior of the support of the density is
connected. A connected independent discontinuity that splits this support in two is said to be an
axis-separator (formally defined in Section 5.2). If the set of all non-removable discontinuities of
pZ is the union of a finite set of such axis-separators, with at least one along each axis, then we say
that they form an axis-aligned grid. Figure 1 (left) gives an example of two factors that are clearly
not statistically independent but that have independent discontinuities in their PDF, appearing to the
eye as axis-aligned discontinuities along each axis. Altogether, they from an axis-aligned grid.

Independent discontinuities are striking landmarks in the PDF landscape pZ that remain detectable
in pX and pZ′ . A diffeomorphic map, even though it can warp the space in almost arbitrary ways,
will not be able to erase such discontinuities. These are the robust cues that we can rely on to achieve
quantized factor disentanglement under a diffeomorphism.
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4. Overview of the main quantized identifiability result

In a nutshell:

Assumptions
• f is a diffeomorphism
• (Z1, . . . , Zd) ∼ pZ are d continuous random variables.
• The interior of the support of pZ is a connected set.
• The set of non-removable discontinuities of pZ is the union of a finite set of independent

discontinuities – at least one along each dimension – that together form an axis-aligned
grid. This grid must also possess a backbone (precisely defined in the next section).

Quantized factor identifiability theorem Under the above assumptions:
• It suffices to learn a diffeomorphism g yielding Z ′ = g(X) such that the PDF of pZ′

has independent discontinuities forming an axis-aligned grid.
• Then, the quantized reconstructed factors (q′1(Z

′
1), . . . , q

′
d(Z

′
d)) will correspond one-to-

one to the quantized ground-truth factors (q1(Z1), . . . , qd(Zd)), up to possible permu-
tation of indices (and order reversal).

• The quantization thresholds used for qi and q′i are obtained as the locations of the
independent discontinuities.

This result is illustrated in Figure 1. The formal Quantized factor identifiability theorem
is Theorem 17, found in section 5.3 together with its proof. It builds on two other theorems: the
Non-removable discontinuity preservation theorem (Theorem 4 in Section 5.1) and the Grid structure
recovery theorem (Theorem 15 in Section 5.2) and its corollary. The following section presents these
theorems and the required definitions in their logical order.

5. Main theorems

Most of the theory will concern the diffeomorphism h := g ◦ f that maps Z to Z ′.

5.1. Non-removable discontinuity preservation theorem

We will show that discontinuities in the PDF are preserved by a a diffeomorphism. However,
one subtlety is that the PDF corresponding to a given distribution is not unique, as elaborated in
Appendix F. The many PDFs representing the same distribution actually form an equivalence class,
whose elements may take arbitrarily different values on sets of points of measure zero. So not all the
discontinuities in a PDF are meaningful. Since we care about observable characteristics of the actual
distribution, we must focus on aspects of the PDF that are immune to erasure by changes of measure
zero. We use the following definitions:

Definition 2 Removable discontinuity: A PDF p has a removable discontinuity at z if p is discon-
tinuous at z but there exists another p′ in the same equivalence class (i.e. p and p′ yield the exact
same probability measure) that is continuous at z.
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Definition 3 Non-removable discontinuity: A PDF p has a non-removable discontinuity at z if p is
discontinuous at z but this discontinuity is not removable. Equivalently, all PDFs in the equivalence
class of p are discontinuous at z. Note that a non-removable discontinuitiy is a property of an
equivalence class of PDFs, thus of the distribution, not just of a single PDF.

Theorem 4 Non-removable discontinuity preservation theorem. Let Z be a latent random variable
with values in Z ⊂ Rd, whose distribution is represented by a PDF pZ . Let h : Z → Z ′ ⊂ Rd

be a diffeomorphism, and let Z ′ = h(Z) be a transformed random variable whose distribution is
represented by a probability density function pZ′ . Then, pZ′ has a non-removable discontinuity at a
point z′ if and only if pZ has a non-removable discontinuity at the point z = h−1(z′).

Proof: Appendix E.1.

5.2. Grid structure recovery theorem and corollary

5.2.1. DEFINITION OF GRID STRUCTURE

The notions we use to define the grid structure are related to usual hyperplanes and hypersurfaces of
Rd, but they are restricted to a connected subset S of Rd. In our setting, S will be the interior of the
support of the density on which the grids can be defined. Let S ⊂ Rd be a connected open smooth
submanifold of dimension d (S such as an open d-ball). We will use the following definitions, which
are illustrated in Appendix D.

Definition 5 The splitting of a set S by another set C, denoted split(S, C), is the set of connected
components of S \ C.

Definition 6 We say that C splits S in two to mean |split(S, C)| = 2 (we denote the cardinality of a
countable set A by |A|, and similarly for the number of elements in an ordered list or a tuple).

Definition 7 We say that C is a separator of S if C is a connected subset of S and C splits S in two.
The two connected components that result from the split are called the two halves resulting form the
split, denoted C+ and C−, i.e. {C+, C−} = split(S, C).

Definition 8 C is a smooth separator of S if C is a separator of S and is a smooth hypersurface of S
(i.e. a smooth embedded submanifold of dimension d− 1).

Definition 9 An axis-separator of S is a special case of smooth separator of S that is the intersection
of S with an axis-aligned hyperplane of Rd (a coordinate hyperplane). It can be defined as H =
ΓS(i, τ) = {z ∈ S|zi = τ} (Figure 7). Because it is a separator, it splits S in two halves
Γ+
S (i, τ) = {z ∈ S|zi > τ} and Γ−

S (i, τ) = {z ∈ S|zi < τ}, which are each nonempty and
connected (Figure 8).

Definition 10 An axis-separator-set G on S is a finite set of axis separators of S.

Definition 11 An axis-aligned grid G ⊂ S is a subset of S that can be obtained as a union of all the
separators in an axis-separator-set G. i.e. G = ∪G = ∪H∈GH .
Note the important distinction we make between a grid, which is a subset of S and hence a set of
points, and an axis-separator-set, which is a set of axis separators (which themselves are sets of
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points). An axis-separator-set thus has more explicit structure than a grid. The proof we will unroll
depends conceptually on the ability to rebuild, in several steps, the entire grid internal structure,
starting from only the unstructured grid as a set of points. The first step of this program will be the
recoverability of axis-separator-set from grid.

Definition 12 A parallel-separator-set is a set of axis-separators all defined on the same ith axis
(and are thus parallel). In particular, we denote the subset of axis-separator set G that are all defined
on the ith axis as G(i).

Definition 13 A discrete coordination A is a tuple A = (A1, . . . ,Ad) where each Ai is itself a
tuple of real numbers in increasing order Ai = (Ai,1, . . . ,Ai,ni) such that Ai,k+1 > Ai,k. These
represent the coordinates of axis-separators along each of the d coordinate axes (Figure 10).
Note: Ai contains the list of quantization thresholds to quantize the ith coordinate (or factor) as
Q(Zi;Ai), as defined in equation 1.
A discrete coordination defines the entire grid structure. One can easily obtain the various constituent
sets from it:

(a) the individual separators (≈“hyperplanes”) ΓS(i,Ai,k), and their positive and negative halves
(≈“half-spaces”) Γ+

S (i,Ai,k) and Γ−
S (i,Ai,k) respectively;

(b) the parallel-separator-sets G(1), . . . ,G(d), where G(i) = {ΓS(i,Ai,k)}
|Ai|
k=1;

(c) the axis-separator-set G = G(1) ∪ . . . ∪ G(d);
(d) the grid G = gridS(A) = ∪G.

Definition 14 A backbone H∗ of a grid is a list H∗ = (H∗
1, . . . ,H∗

d) of d separators of that grid,
each defined on the corresponding axis, that have a non-empty intersection (they meet at a single
point z∗). That is, for H∗

1 ∈ G(1), . . . ,H∗
d ∈ G(d), we must have

⋂d
i=1H∗

i = {z∗}. In addition,
for H∗ to be a backbone, it is also required that each of its separators H∗

i intersect all the other
separators H ∈ G(j) of the grid that are defined on the other axes j ̸= i (those not in the same
parallel-separator-set); namely, ∀i,∀j ̸= i,∀H ∈ G(j),H∗

i ∩H ̸= ∅ (example in Figure 11).
A backbone functions as a set of “main axes”, and we will require a proper grid to have at least one
backbone. This is a weaker requirement than requiring a “complete grid” where each separator of
the grid would be required to intersect all the separators that are not in the same parallel-separator-set.
Here, we require only that the separators of the backbone intersect all the other separators on the
other axes of the grid.

5.2.2. GRID STRUCTURE PRESERVATION AND RECOVERY THEOREM

Theorem 15 Grid structure preservation and recovery theorem. Let h : S ⊂ Rd → S ′ ⊂ Rd be
a diffeomorphism, where both S and S ′ are open connected subsets of Rd. Suppose we have an
axis-aligned grid G ⊂ S , associated with its axis-separator-set G and discrete coordination A, that
is, G = gridS(A). While the grid does not need to be “complete”, we suppose that G has at least one
backbone. Now, suppose that we have another axis-aligned grid in S ′, associated with its discrete
coordination B, with G′ = gridS′(B). Suppose G′ = h(G). Then, there exists a permutation
function σ over dimension indexes 1, . . . , d and a direction reversal vector s ∈ {−1,+1}d such that
∀j ∈ {1, . . . , d}, i = σ−1(j), K = |Ai| = |Bj |, ∀k ∈ {1, . . . ,K},∀z′ ∈ S ′,
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If si = +1, then: 
z′j = Bj,k ⇐⇒ h−1(z′)i = Ai,k,

z′j > Bj,k ⇐⇒ h−1(z′)i > Ai,k,

z′j < Bj,k ⇐⇒ h−1(z′)i < Ai,k;

If si = −1, then: 
z′j = Bj,k ⇐⇒ h−1(z′)i = Ai,K−k+1,

z′j > Bj,k ⇐⇒ h−1(z′)i < Ai,K−k+1,

z′j < Bj,k ⇐⇒ h−1(z′)i > Ai,K−k+1.

Principle of the proof Starting from the premise G′ = h(G), we know that h maps every point of
G to a point of G′. The proof recovers the entire underlying grid structure in 3 steps:
Step 1 recover a one-to-one mapping of the individual separators: G′ = h(G).
Step 2 recover the partition into subsets of parallel separators (each subset associated to an axis):

G′(j) = h(G(i)) (with permutation j = σ(i)).
Step 3 show that the ordering of the separators in a parallel-separators-set is preserved (up to possible

order reversal):
[h(ΓS(i,Ai,1)), . . . , h(ΓS(i,Ai,K))] = [ΓS′(j,Bj,1), . . . ,ΓS′(j,Bj,K)] or in reversed order
[h(ΓS(i,Ai,1)), . . . , h(ΓS(i,Ai,K))] = [ΓS′(j,Aj,K), . . . ,ΓS′(j,Aj,1)]. And similarly, the
ordering of the halves corresponding to each of these separators is preserved. Knowing to
which half (either Γ+

S′(j, τ) or Γ−
S′(j, τ)) a point z′ belongs tells us whether z′j is above or

below the threshold τ .
For example, seeing that z′j > Bj,k tells us that z′ ∈ Γ+

S′(j,Bj,k), which implies from step 3 (in
the case of no order reversal) that its preimage z = h−1(z′) belongs to Γ+

S (i,Ai,k), which yields
zi > Ai,k. This is what Theorem 15 expresses. We refer the reader to Appendix E.3 for the full
proof.

Corollary 16 Recovery of quantized factors. Under the same premises as Theorem 15, consider
random variables Z and Z ′ = h(Z). Using the quantization operation Q (previously defined in
Section 2.3, equation 1), we recover quantized factors up to permutation σ of the axes and possible
direction reversal indicated by s: ∀i ∈ 1, . . . , d, Q(Zi;Ai) = Qsi(Z ′

j ;Bj) with j = σ(i).

Proof Z ′ = h(Z) implies that Zi = h−1(Z ′)i.
Now if si = +1, Theorem 15 yields Z ′

j ≥ Bj,k ⇐⇒ Zi ≥ Ai,k.
Thus, Q(Zi,Ai) =

∑
k 1Zi≥Ai,k

=
∑

k 1Z′
j≥Bj,k

= Q(Z ′
j ;Bj).

Similarly, if si = −1, Theorem 15 yields Z ′
j ≤ Bj,k ⇐⇒ Zi ≥ Ai,k.

Thus, Q(Zi,Ai) =
∑

k 1Zi≥Ai,k
=

∑
k 1Z′

j≤Bj,k
= Q−(Z ′

j ;Bj).

So in both cases, we have Q(Zi;Ai) = Qsi(Z ′
j ;Bj).

5.3. Quantized factor identifiability theorem

Theorem 17 Quantized factors identifiability theorem. Let Z be a latent random variable with
values in Z ⊂ Rd and whose PDF is pZ . Let f : Z → X ⊂ RD be a diffeomorphism, and X = f(Z)
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be the observed random variable. Assume that the support of the PDF pZ is an open connected set2.
Further assume that pZ has at least one connected independent discontinuity in each dimension,
such that the set of non-removable discontinuities of pZ forms an axis-aligned grid with a backbone.
Let A be the discrete coordination of this grid. Then, there exists a diffeomorphism g : X → Z ′

yielding a variable Z ′ = g(X) such that the set of non-removable discontinuities of the PDF pZ′ is
an axis-aligned grid. Consider any such diffeomorphism g, and let B be the discrete coordination
of its resulting axis-aligned grid. Then, there exists a permutation function σ over the dimension
indexes 1, . . . , d, and a direction reversal vector s ∈ {−1,+1}d such that q′j(Z

′
j) = qi(Zi) with

i = σ−1(j), where q′j(Z
′
j) = Qsi(Z ′

j ;Bj) and qi(Zi) = Q(Zi;Ai). In other words, the quantized
factors in Z ′ agree with the quantized factors in Z, up to permutation and possible axis reversal.

Proof Note that existence is trivial (it suffices to take g = f−1, which yields Z ′ = Z). But the fact
that any g that yields a PDF whose non-removable discontinuities form an axis-aligned grid will have
this property can now easily be proven from our previous results. It suffices to consider h = g ◦ f to
be a diffeomorphism (the composition of two diffeomorphisms), so that Z ′ = h(Z), and to combine
the non-removable discontinuity preservation theorem (Thm. 4) with the grid structure preservation
and recovery theorem (Thm. 15). Let G = gridS(A) and G′ = gridS(B) be the set of non-
removable discontinuity points of pZ and pZ′ , respectively. From the non-removable discontinuity
preservation theorem, we have that G′ = h(G). And from the grid structure preservation and
recovery theorem and its corollary, we have that G′ = h(G) implies that there exists a permutation
function σ over dimension indexes 1, . . . , d and a direction reversal vector s ∈ {−1,+1}d such that
Qsi(Z ′

j ;Bj) = Q(Zi;Ai) with i = σ−1(j). We have, thus, proved that the quantized factors of Z ′

agree with the quantized factors of Z, up to permutation and axis reversal.

6. Independent discontinuities in real-world disentangled factors
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Figure 2: Grid structure observed in the PDF of
the NASA exoplanet dataset (standard-
ized log of factors).

We have motivated independent discontinuities
as a theoretical requirement to be able to identify
quantized factors even after they passed through
highly flexible diffeomorphic maps. In real data
under finite samples, we can only hope for a
smooothed density estimate that will never show
true discontinuities, but merely sharp changes
(gradients of large magnitude) in the density.
Also if one is willing to assume a slightly less
flexible map, such as Lipschitz, the requirement
for true discontinuities may likely be relaxed to
merely sharp changes.

Still, one may wonder why and how such
sharp density changes could appear in latent fac-
tors of real-world data. Here is a simple exam-
ple: due to gravity, people and most objects tend
to be either in a standing or lying position. One will seldom see them with a 45◦ pitch angle

2. Alternatively, if the support is not open, we can consider its interior.

11394



BARIN-PACELA AHUJA LACOSTE-JULIEN VINCENT

irrespective of how other factors appear (e.g. background color). This results in a sharp change
(discontinuity) in the PDF of the pitch angle factor, independent of the values of the other factors.
This is an example of a density jump due to a physical equilibrium point, of which we can expect
many variants in nature.

Empirically, we found evidence of independent sharp density changes forming a grid structure
in descriptive factors of the NASA Exoplanet Archive (Akeson et al., 2013). Figure 2 shows the
magnitude of the gradient of the density of the factors stellar magnitude and planet radius. Locations
of high magnitude gradient show an axis-aligned grid, compatible with independent jumps in the
density similar to the synthetic data from Figure 1. We provide another evidence of axis-alignment
in real motion-capture data in Appendix C.

7. Experiments

3 2 1 0 1 2 3
z1

3

2

1

0

1

2

3

z 2

z

(a) True factors.

2 1 0 1 2
x1

2

1

0

1

2

x 2

x

(b) Observed variables.

8 6 4 2 0 2 4 6 8
z′1

4

3

2

1

0

1

2

3

z′ 2

z' 

(c) Linear ICA reconstruction of
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(d) Reconstruction of the factors
by Hausdorff Factorized Sup-
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(e) Our model’s reconstruction
of the factors.

Figure 3: The true latent factors (a) do not have factorized support and are correlated. The
observations (b) are the result of a linear map applied to the factors. Our method (c)
obtains a factorized representation corresponding to the ground-truth factors. Both linear
ICA (d) and Hausdorff Factorized Support (e) Roth et al. (2023) fail to learn the axis-
aligned true latent factors.

We develop a criterion for learning axis-aligned discontinuities and present a proof-of-concept
experiment for the case where the mixing map f is linear. This is a simple prototype to demonstrate
the feasibility of quantized identification based on independent discontinuities in the PDF, and how it
can be advantageous compared to other methods already in the linear case. We present a tentative
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criterion for nonlinear transformations in Appendix B.2, but it remains to be thoroughly tested and
experimented. We reserve the proposal and analysis of a full practical criterion for future work.

The method we present here aims to align the gradients of the joint density of the factors with the
axes. We perform a density estimation p̂σ of Z and use it to obtain the gradients ∂ log p̂σ

∂z . Gradients
of high magnitude hint at potential discontinuities. We encourage the alignment of these gradient
vectors with the standard basis vectors (axes) by maximizing their cosine similarity. The algorithm
and experimental setup is detailed in Appendix B.1.

Figure 3 presents the visualization of the reconstruction of the latent variables for our model,
compared to Linear ICA (using the FastICA algorithm (Hyvärinen, 1999)) and to Hausdorff Fac-
torized Support (HFS) (Roth et al., 2023), for the case where the ground-truth latent factors are
neither independent nor have a factorized support. The results show that the true latent structure
is well-reconstructed by our model. The learned factor grid is axis-aligned and corresponds to the
original grid up to permutation and axis reversal, as anticipated by the theory. The quantized cells
are correctly identified up to this indeterminacy. Meanwhile, both FastICA and Hausdorff Factorized
Support learn the factors up to a rotation and shearing (besides permutation and scaling), because
their reconstruction is not axis-aligned. Appendix B.1 presents the results in the case where the
support is factorized and we remark that our model is again able to axis-align the factors, while even
HFS’ reconstruction does not present factorized support 3.

8. Conclusion and future work

In this theoretical work, we have introduced the novel paradigm of quantized factor identifiability.
We have then shown that fully unsupervised identifiability of quantized factors is possible under
diffeomorphisms. This is significant given that the prevailing literature is dominated by impossibility
results. We are able to achieve the identification of quantized factors, provided that we assume
independent discontinuities in the latent factor’s distribution (which naturally form a grid). The
novel relaxed (weaker) form of identifiability is meant as a step towards more realistic assumptions
for disentanglement: no restrictive inductive bias on the mapping and no assumed independence of
factors, rather aiming for potential causal footprints (Lopez-Paz et al., 2017).

However, there are important limitations to this theory, the most obvious being that it requires
actual discontinuities. This is required due to the flexibility of general diffeomorphisms, as justified
in Appendix G. Future work shall try to relax this to just sharp (but not infinitely sharp) changes in
the density, under slightly less general Lipschitz smooth mappings.

When moving to the finite sample setting, we must resort to density estimation, which yields a
smoothed estimate of pX , and as a result, discontinuities will become non-infinite sharp changes.
These “softer” discontinuities can still be detected by considering the magnitude of the gradient of
the density (as we display in Figure 2). The development of an effective practical training criterion
and algorithm to train a nonlinear reverse mapping g to recover an axis-aligned grid is left for future
work (Appendix B.2 proposes a possible starting direction).

3. The code for reproducing these results is available at
https://github.com/facebookresearch/quantized_identifiability/.
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APPENDIX

Appendix A. Related work

We categorize the existing literature on causal representation learning into the following two cate-
gories: i) the theory imposes assumptions on both the mixing map and the latent factors, leading to
typically fully unsupervised models; ii) the theory imposes assumptions on the distribution of latent
factors and not strictly on the mixing map, leading to models that mostly require weak supervision or
auxiliary variables. None of these studies considered the recovery of quantized factors like we do in
this work.

Identifiability of latent factors in the unsupervised i.i.d setting: In linear Independent Compo-
nent Analysis (ICA), Comon (1994) established that under a linear and invertible mixing map and
independent non-Gaussian latent factors, these latent factors ca be identified up to order and scale
indeterminacies. Beyond the linear case, Taleb and Jutten (1999) analyze a post-nonlinear mapping,
obtaining the same indeterminacies as in linear mixtures. Gresele et al. (2021) demonstrated that
with independent latent factors and a mixing function that adheres to the independent mechanism
assumption, some of the non-identifiability counterexamples highlighted in Hyvärinen and Pajunen
(1999) can be avoided. Expanding on the role of mixing maps, Buchholz et al. (2022) scrutinized
different classes of maps that restrict the Jacobian of the mixing maps. Their study specifically
focused on conformal maps and orthogonal coordinate transformations. Kivva et al. (2022) proposes
that when the mixing map is piece-wise linear and the latent distribution is a Gaussian mixture (with
latent components conditionally independent given a discrete, unobserved confounder), the true
latent factors can be identified up to scaling and permutation as well. Ahuja et al. (2022c) asserted
that the true latent factors can be identified, barring permutation and scaling errors, when the mixing
map is polynomial and latent factors satisfy the support independence assumption, as proposed in
Wang and Jordan (2021); Roth et al. (2023). Brady et al. (2023); Lachapelle et al. (2023) obtain
identifiability for additive decoders, while Moran et al. (2022); Zheng et al. (2022); Zheng and Zhang
(2023) obtain identifiability by assuming a sparse structure on the Jacobian of the mixing function.

Identifiability of latent factors with weak supervision: Research in this category largely
makes assumptions on the latent distribution but imposes few constraints on the mixing map. To
compensate for this lack of restrictions, these studies necessitate additional information, typically in
one of two forms: a) identification driven by auxiliary information (e.g., labels, time stamps), or b)
identification driven by weak supervision (e.g., data augmentations) (Hyvarinen and Morioka, 2017;
Hyvärinen et al., 2019; Hyvarinen and Morioka, 2016). A key example of auxiliary information-
driven identification is the work on identifiable variational autoencoders (Khemakhem et al., 2020a),
which assumes the existence of an additionally observed variable such that the latent variables are
conditionally independent given it, and the conditional probability density of the latent variable given
this auxiliary variable comes from an exponential family. This work has been expanded upon in
several subsequent studies (Khemakhem et al., 2020b; Lachapelle et al., 2022; Ahuja et al., 2022b;
Hyttinen et al., 2022), which modify some of its assumptions. Locatello et al. (2020); Klindt et al.
(2021) assumed access to paired data, which can emerge from data augmentation or natural video
frames with sparse changes, resulting in supervision-driven identification. Several follow-up studies
(Hälvä et al., 2021; Ahuja et al., 2022a; Brehmer et al., 2022; Yao et al., 2022; Lippe et al., 2022)
have built upon this work, moving beyond the independence assumptions on the latent factors and
incorporating general transition dynamics.
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Appendix B. Practical criterion

B.1. Proof-of-concept experimentation for linear maps

Synthetic data generation:
We generate a grid of points by establishing a prior for each cell, such that the sum of the priors

of all the cells equals 1. We define a 4× 4 grid, the position of each separator being drawn uniformly
inside the range of the grid. In order to generate correlated data, first we draw the prior probabilities
from a standard Uniform distribution. Then, we redefine the prior probability of the cells in the
diagonal to be higher than the probability of the other cells, followed by normalization. The dataset is
composed of 50,000 samples from this distribution. In the dataset with unfactorized support (Figure
3), the correlation coefficient between the true factors of variation is of 0.61.

Algorithm:
The steps for implementing the training criterion are:

1. Randomly initialize a parametric mapping g : X → Z to be learned.
2. From the matrix of observed samples X of size n×D, compute the matrix of estimated latent

variables Z = g(X) of size n× d – where g is applied separately to each row4.
3. Estimate the density of Z using a kernel density estimator (Parzen window) p̂σ and compute

the gradient Vi,· =
∂ log p̂σ

∂z (Zi,·) at every point of Z.

4. Define importance weighting terms α based on the gradient magnitudes αi =
∥Vi,·∥∑n

i′=1 ∥Vi′,·∥
. A

large magnitude of the gradient indicates a sharp jump, hence, this weight indicates how close
the sample is to a density jump, that is, how likely it belongs to an axis-separator of the grid.

Let V̄i = Vi
∥Vi∥ be the normalized version of Vi. For the individual gradient vectors to be

axis-aligned, the maximum cosine similarity with the canonical axis vectors should be maximized:

maximize max
j∈{1,...,d}

|cosim(Vi·,1j)| = max
j

|Vij |
∥Vi·∥2

=
∥Vi·∥∞
∥Vi∥2

= ∥V̄i·∥∞. (2)

Then, the final loss function to be optimized over all the points is:

minimize ℓgrad−axis = −
n∑

i=1

αi∥V̄i,·∥∞. (3)

Details of model and algorithm – Dataset with unfactorized support:
We minimize this loss using stochastic gradient descent with a learning rate of 0.1, momentum

of 0.9, and a batch size of 5000 samples. Mini-batches are employed due to the high memory cost of
loading the full dataset. The results displayed are for when the training loss stops decreasing.

The kernel density estimation employs a bandwidth of 0.1. With finite samples, we use a density
estimator p̂Z′ , since we do not have access to the exact pZ′ . We remark that any density estimation
will result in some smoothing of the true distribution. So even if there were real discontinuities in the
exact density, they will appear as smoothed discontinuities: the gradients of the density have large
magnitude, not infinite magnitude.

Hausdorff Factorized Support training details:
We train HFS using the hausdorff_hard distance approximation which is used throughout

the experiments from Roth et al. (2023). In this simple linear case, we simply optimize to minimize

4. Note that we dropped the apostrophe ’ in Z to lighten notation.
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(c) Linear ICA reconstruction of the factors.
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(d) Reconstruction of the factors by Hausdorff
Factorized Support.
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(e) Our model’s reconstruction of the factors.

Figure 4: When the true latent factors (4(a)) are correlated, our method (4(e)) obtains a factorized
representation corresponding to the ground-truth factors, as opposed to linear ICA (4(c))
and Hausdorff Factorized Support (4(d)) which reconstruct the factors up to a rotation.
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the Hausdorff distance between the learned factors and their counterpart with factorized support. We
did not find an advantage in using the reconstruction term as the representation does not collapse into
a single point. Training is done using stochastic gradient descent with a step size of 0.0001 and a
batch size of 5000 samples.

Experiment with factorized support: We conduct a similar study on a dataset in which
the support of the true factors is factorized. In this dataset (Figure 4, the true factors have a
correlation coefficient of 0.64. In this experiment, we attempt to have a fair comparison with HFS
and demonstrate that using (discontinuity) information from inside the support can help achieve
better axis-alignment (and as a result, better factorized support) of the learned factors of variation.

We compare our model with linear ICA and show that our model is able to learn a factorized
representation of the factors, while Fast ICA (Hyvärinen, 1999) fails due to the correlation of the
factors violating the independence assumption, as illustrated in Figure 4. HFS also learns the
reconstructed factors up to a rotation (but no shearing), even though its factorized support assumption
is satisfied, showing that in this case our criterion is effective in aligning the factors with the axes.

B.2. Towards a criterion for nonlinear maps

Alignment of discontinuities in the joint density For nonlinear maps, only encouraging the
gradients to be axis aligned does not suffice because the distortions yield a curved latent space. It is
also desirable to straighten this deformed grid, which can then be axis-aligned. Here, we outline a
few terms that could encourage this behavior in the training dynamics. We can align both the point
samples and their gradient vectors. Moreover, the alignment comes in two forms: local alignment in
a neighborhood of points, and alignment to the axes.

• Gradient local alignment term: encourage pairs of neighboring points of high gradient
magnitude to have gradients aligned by maximizing their cosine similarity. We can make the
criterion a weighted average of cosine similarities, with significant weights only if they are
neighboring points and both have large gradient magnitudes):

βi,i′ =αiαi′ exp(−
1

2σ2
2

∥Zi − Zi′∥2)

β̄i,i′ =
βi,i′∑
i,i′ βi,i′

maximize
∑
i,i′

β̄i,i′ cosim(Vi,Vi′)

i.e. minimize ℓgrad−local =−
∑
i,i′

β̄i,i′
〈
V̄i, V̄i′

〉
• Points local axis alignment term: encourages neighboring points with large density gradient

magnitude to lie on or close to the same axis separator. For this, it suffices that they share one
of their coordinates. In other words, is suffices to minimize the minimum over coordinates of
the squared difference:

minimize ℓpoints−local =
∑
i,i′

β̄i,i′ min
j

(
Zij − Zi′j

∥Zi − Zi′∥

)2
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• Points-gradient-orthogonality term: encourages the gradient vector to be orthogonal to the
vectors joining neighboring points by penalizing their squared cosine similarity:

minimize ℓpoints−grad =
∑
i,i′

β̄i,i′

(〈
V̄i,

Zi′ − Zi

∥Zi′ − Zi∥

〉)2

.

We can, then, define a training criterion that is a weighted sum of these terms (with appropriate sign),
possibly together with the minimization of a reconstruction error ℓrec (from a decoder network f̂ that
tries to reconstruct X from Z).

ℓrec =
1

n

n∑
i=1

∥f̂(Zi)−Xi∥2

The complete loss to minimize is, thus,

L(θ) = λ1ℓgrad−local + λ2ℓgrad−axis + λ3ℓpoints−local + λ4ℓpoints−grad + λ5ℓrec

where θ is the set of (network) parameters of both encoder g and decoder f̂ .

Appendix C. Additional evidence of axis-aligned discontinuities in real data
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Figure 5: Evidence of axis-aligned discontinuities found in the CMU Motion Capture Dataset.

Figure 5 presents additional evidence of axis-aligned discontinuities in real data from the CMU
Motion Capture dataset (obtained from mocap.cs.cmu.edu). We preprocess the variables to
obtain the angles of the joints of the body in different frames captured. In particular, the angle of
the left elbow is the angle formed by the markers “LELB”, “LUPA”, and “LWRA”. The variable
angle(shoulders) measures the angle of the shoulders (defined by the markers “RSHO” and “LSHO”)
with respect to the vertical axis. Then these angles are standardized. In the plot, we can observe
axis-aligned discontinuities in green, which represents a high magnitude of the gradient of the density.

Appendix D. Illustrations of the definitions

Figures 7, 8, 10, 9, and 11 illustrate the concepts used in the definitions of section 5.2.
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(b) Latent factors whose PDF
has axis-aligned disconti-
nuities
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(c) Underlying grid structure

Figure 6: Illustration of different kinds of assumptions on the distribution of latent factors. Left:
samples from traditional assumption of independent non-Gaussian factors (here using a
truncated Laplace distribution). Middle: samples from a distribution that follows our
assumption of axis-aligned discontinuities in the probability density. Right: Underlying
grid structure revealing discontinuities in the density landscape as colored axis-separators,
forming a grid. Traditional independence assumption yields non-identifiability result
under general nonlinear smooth mapping (diffeomorphism). Our assumption yields, under
diffeomorphism, provable recovery of a discretized coordinate system. It allows to map
back observed points into the proper latent grid cell – a novel relaxed form of identifiability,
which we term quantized factor identifiability.

ℋ1 ℋ2 ℋ3

ℋ4
ℋ5

ℋ6

Figure 7: Axis separators H1, . . . ,H6 of S (Definition 9).
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ℋ2

τ Γ+
𝒮(i, τ) = {z ∈ 𝒮 |zi > τ}Γ−𝒮(i, τ) = {z ∈ 𝒮 |zi < τ}

Figure 8: An axis-separator of S splits S in two halves Γ+
S (i, τ) = {z ∈ S|zi > τ} and Γ−

S (i, τ) =
{z ∈ S|zi < τ}, which are each nonempty and connected (Definition 9).

ℋ2

τ

ℋ2

τ

Figure 9: Axis-separator of S counterexample: Even though the support of the set on the left is
connected, H2 splits it into three parts, not two halves, so it does not satisfy the axis-
separator condition (Definition 9).
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A1,1 A1,2 A1,3

A2,1
A2,2

A2,3

Figure 10: A discrete coordination A is a tuple A = (A1, . . . ,Ad) where each Ai is itself a tuple
of real numbers in increasing order Ai = (Ai,1, . . . ,Ai,ni) such that Ai,k+1 > Ai,k.
These represent the coordinates of axis-separators along each of the d coordinate axes
(Definition 13).

Figure 11: Left: The set of axis separators in dark blue are a backbone since they intersect all the
others (Definition 14). Right: The set of separators in dark blue is not a backbone since
the horizontal axis separator does not intersect the right-most vertical separator.

Appendix E. Detailed Proofs

E.1. Proof of non-removable discontinuity preservation (Theorem 4)

Proof Let us denote Jh(z) =
∂h
∂z (z) the Jacobian of h, and Jh−1(z′) = ∂h−1

∂z′ (z′) the Jacobian of
h−1. Suppose pZ is one of the PDFs of Z, from this we can obtain a PDF of Z ′ using the change of
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variable formula: pZ′(z′) = pZ(h
−1(z′))|det Jh−1(z′)|. Symmetrically, we can say that if pZ′ is a

PDF of Z ′, we obtain a PDF version of Z as follows: pZ(z) = pZ′(h(z))| det Jh(z)|.
Suppose the PDF pZ has a non-removable discontinuity at z0. Pick one of the PDFs of Z ′, let us

call it pZ′ . There are three possibilities for what could happen at Z ′ = h(z0).
• pZ′ is continuous at h(z0). We can apply the change of variables formula and obtain a PDF of
Z that is given as pZ(z) = pZ′(h(z))| det Jh(z)|. Since the RHS is a product of two terms
that are continuous at z0, we conclude that pZ is continuous at z0. This contradicts the fact
that pZ has a non-removable discontinuity at z0.

• pZ′ is discontinuous at h(z0) but the discontinuity is removable. Therefore, there exists a PDF
pZ′ that is continuous at h(z0). We can now follow the same argument as the above bullet to
construct a PDF of Z that is continuous at z0, which would contradict the fact that pZ has a
removable discontinuity at z0.

• Finally, we are only left with the case that pZ′ has a non-removable discontinuity at h(z0),
which is what we set out to prove.

E.2. Theorem: a connected independent discontinuity of a PDF that has a connected support
is an axis-separator of that support.

Theorem 18 Let S ⊂ Rd an open connected set. Let ΓS(i, τ) = {z ∈ S|zi = τ}. If ΓS(i, τ) is a
connected set, then it is a separator of S.

E.3. Proof of grid structure preservation and recovery (Theorem 15)

E.3.1. STEP 1 – RECOVERY OF ALL SEPARATORS

Knowing, from Theorem 4, that the set of points making up the axis-aligned grid G maps through h
to the set of points making up the axis-aligned grid G′ (i.e. G′ = h(G)), our first major step consists
in establishing that the axis-separators that make up G (i.e. the elements of G) map one-to-one
to the axis-separators that make up G′ (i.e. the elements of G′). We can denote this simply as
G′ = h(G) =⇒ G′ = h(G).

PROOF FOR STEP 1

The high level proof is as follows (a complete detailed proof is provided in Appendix E.5):
• Since H ∈ G is a connected smooth hypersurface in S, and diffeomorphisms map connected

sets to connected sets and smooth hypersurfaces to smooth hypersurfaces, we get that h(H) is
a connected smooth hypersurface in S ′.

• From Theorem 4, we also know that h(H) ⊂ G′.
• Next, we establish that the only smooth connected hypersurfaces in S ′ that are included in G′

are necessarily subsets of a single axis-separator of G′ . This is fundamentally due to the fact
that a connected smooth hypersurface cannot spread from one separator of the grid to another
along their orthogonal intersection, as it would no longer be smooth (having a “kink”), so it
has to stay within a single separator.

• We conclude that h(H) is necessarily a subset of a single axis-separator H ′ ∈ G′.
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• We then show that not only is h(H) a subset of a single axis-separator H ′ ∈ G′, but that it
has to be that entire separator. Because from the previous point, reverse diffeomorphism h−1

must map back the would-be remaining part of H ′ (i.e. H ′ \ h(H) ̸= ∅) to a subset of the
same separator as it maps back h(H), i.e. to H . But this leads to a contradiction, since that
remaining part did not come from H initially. (See proof of Lemma 26 in Appendix).

• We have thus shown that H ∈ G =⇒ h(H) ∈ G′ . It suffices to apply this result in the
other direction using h−1 to establish the converse. We thus have a bijection: the one-to-one
mapping we needed to prove. Which we can write succinctly as G′ = h(G).

E.3.2. STEP 2 – RECOVERY OF PARTITION INTO SETS OF PARALLEL SEPARATORS

We have established in step 1 that we recover the set of all separators G′ = h(G). Our next step
is to recover its partition into subsets of parallel separators (each subset associated to an axis):
G′(j) = h(G(i)) (with permutation j = σ(i)).

PROOF FOR STEP 2

Consider d separators forming a backbone of G, recall that a backbone is constituted of d distinct
axis-separators that intersect in a single point, i.e. H∗

1 ∈ G(1), . . . ,H∗
d ∈ G(d) ,

⋂d
i=1H∗

i = {z∗}.
We have that ∀j ̸= i, H∗

i ̸= H∗
j =⇒ ∀j ̸= i, h(H∗

i ) ̸= h(H∗
j ).

We also have that
⋂d

i=1H∗
i = {z∗} =⇒

⋂d
i=1 h(H∗

i ) = {h(z∗)} (as h is a bijection).
Moreover, we know from step 1 that H∗

i ∈ G =⇒ h(H∗
i ) ∈ G′. In short, the h(H∗

1), . . . , h(H∗
d) are

d distinct separators, each an element of G′, that intersect in a single point h(z∗). The only sets of d
distinct separators in G′ that pass through a same point are d separators defined along each of the d
different axes of Z ′ = Rd. Thus there exists a permutation σ such that for such backbone separators,
H∗

i ∈ G(i) =⇒ h(H∗
i ) ∈ G′(σ(i)).

Now consider any other separator H ∈ G(i). From the definition of the backbone, we know that
H ∩H∗

j ̸= ∅, ∀j ̸= i.
This implies that h(H) ∩ h(H∗

j ) ̸= ∅, ∀j ̸= i. The fact that h(H) intersects a separator h(H∗
j ) ∈

G′(σ(j)) implies that it does not belong to parallel-separator-set G′(σ(j)). Thus ∀j ̸= i, h(H) /∈
G′(σ(j)). So there is just one parallel separator set left which h(H) can belong to: h(H) ∈ G′(σ(i)).
In short, we have proved that H ∈ G(i) =⇒ h(H) ∈ G′(σ(i)).

Since distinct separators map to distinct separators, and each has to belong to exactly one of
the G′(k), this mapping is a bijection and we can write H ∈ G(i) ⇐⇒ h(H) ∈ G′(σ(i)), or in short
h(G(i)) = G′(j) with j = σ(i).

E.3.3. STEP 3 – RECOVERY OF COORDINATE ORDERING

The last step consists in showing that the ordering of the separators in a parallel-separators-set is
preserved (up to possible order reversal).

PROOF FOR STEP 3

The gist of the proof is as follows (a complete detailed proof is provided in Appendix E.4):
We first establish that h preserves separators and halves. This follows directly form the preserva-

tion of inclusion, connectedness and set operations under diffeomorphisms. Then, we use the fact
that inclusion defines a strict order relationship between positive halves associated to a coordination,
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and similarly between negative halves. As inclusion is preserved by a diffeomorphism, this order
relationship is preserved. We can use this to show that the order implied by Ai is either conserved,
as is, in Bj (negative halves of coordination A being mapped to negative halves of B) or simply
reversed (negative halves of A are being mapped to positive halves of B). This directly yields the
result of the main Theorem (15).

E.4. Detailed proof for Step 3

PRELIMINARY LEMMA

Lemma 19 Preservation of separator and halves under diffeomorphism: If h is a diffeomorphism
and C is a separator of S that splits it in two halves C+ and C−, then h(C) is a separator of h(S)
that splits it in two halves h(C+) and h(C−)
Formally:

C ⊂ S, C, connected, split(S, C) = {C+, C−}
⇐⇒ h(C) ⊂ h(S), h(C), connected, split(h(S), h(C)) = {h(C+), h(C−)}

Proof This follows from preservation of inclusion, connectedness, and set operations (union,
intersection, difference) under a diffeomorphism.
Formally: C ⊂ S =⇒ h(C) ⊂ h(S).
C+ and C− being the connected components of S − C implies that C+ and C− are each connected,
and that S \ C = C+ ∪ C−, where C+ ∪ C− is not connected.
Each of S,C, C+, C− connected =⇒ Each of S, h(C), h(C+), h(C−) connected.
S \ C = C+ ∪ C− =⇒ h(S) \ h(C) = h(C+) ∪ h(C−)
C+ ∪ C− not connected =⇒ h(C+) ∪ h(C−) not connected.
That h(C+) ∪ h(C−) is not connected but h(C+) and h(C−) are each connected, implies that h(C+)
and h(C−) are the two connected components of h(C+) ∪ h(C−) i.e. of h(S)− h(C).
This implies that split(h(S), h(C)) = {h(C+), h(C−)}. The implication in the other direction can
be obtained in the by applying the same reasoning using h−1.

PROOF OF STEP 3

Let j = σ(i) and K = |Ai| = |Bj | and denote the corresponding set of axis separators as
A = {ΓS(i,Ai,1), . . . ,ΓS(i,Ai,K)} and B = {ΓS′(j,Bj,1), . . . ,ΓS′(j,Bj,K)}
and denote the corresponding sets of halves:
A+ = {Γ+

S (i,Ai,1), . . . ,Γ
+
S (i,Ai,K)}, A− = {Γ−

S (i,Ai,1), . . . ,Γ
−
S (i,Ai,K)}, A± = A+ ∪

A−

and B+ = {Γ+
S′(j,Bj,1), . . . ,Γ

+
S′(j,Bj,K)}, B− = {Γ−

S′(j,Bj,1), . . . ,Γ
−
S′(j,Bj,K)}, B± =

B+ ∪ B−

Proof Step 2, states that h(A) = B.
And we have from the above Lemma that

split(S, C) = {C+, C−}
⇐⇒split(h(S), h(C)) = {h(C+), h(C−)}
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thus the equality of the sets of separators h(A) = B obtained in Proof Step 2 implies an equality
of the sets of halves:

h(A±) = B±

Now, the only halves, among all halves, that do not include any of the separators are Γ−
S (i,Ai,1)

and Γ+
S (i,Ai,K) i.e. formally:

{C ∈ A|∀H ∈ A±, C ∩ H = ∅} = {Γ−
S (i,Ai,1),Γ

+
S (i,Ai,K)}

this property will naturally translate to their mapping by diffeomorphism h (due to preservation
of inclusion an intersections)

hence

{C ∈ h(A)|∀H ∈ h(A±), C ∩ H = ∅} = {h(Γ−
S (i,Ai,1)), h(Γ

+
S (i,Ai,K))}

i.e.
{C ∈ B|∀H ∈ B±, C ∩ H = ∅} = {h(Γ−

S (i,Ai,1)), h(Γ
+
S (i,Ai,K))}

but we also have, similarly,

{C ∈ B|∀H ∈ B±, C ∩ H = ∅} = {Γ−
S′(i,Bi,1)),Γ

+
S′(i,Bi,K))}

From this we conclude that:

{h(Γ−
S (i,Ai,1)), h(Γ

+
S (i,Ai,K))} = {Γ−

S′(i,Bi,1)),Γ
+
S′(i,Bi,K))}

Thus we have either one of two cases:
Case 1: h(Γ−

S (i,Ai,1)) = Γ−
S′(i,Bi,1) and h(Γ+

S (i,Ai,K)) = Γ+
S′(i,Bi,K). We associate this

case with si = +1

Case 2: h(Γ−
S (i,Ai,1)) = Γ+

S′(i,Bi,K) and h(Γ+
S (i,Ai,K)) = Γ−

S′(i,Bi,1). We associate this
case with si = −1

Case 1: si = +1, h(Γ−
S (i,Ai,1)) = Γ−

S′(i,Bi,1) and h(Γ+
S (i,Ai,K)) = Γ+

S′(i,Bi,K) The half-
spaces in A± that include Γ−

S (i,Ai,1) are only the Γ−
S , formally:

{H ∈ A±|Γ−
S (i,Ai,1) ⊂ H} = A−

this relationship will be maintained under diffeomorphism h i.e.

{H ∈ h(A±)|h(Γ−
S (i,Ai,1)) ⊂ H} = h(A−)

thus, since h(A±) = B± and h(Γ−
S (i,Ai,1)) = Γ−

S′(i, Bi,1) this can be rewritten as

{H ∈ B±|Γ−
S′(i,Bi,1) ⊂ H} = h(A−)

B− = h(A−)
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or, written less compactly:

{h(Γ−
S (i,Ai,1)), . . . , h(Γ

−
S (i,Ai,K))} = {Γ−

S′(j,Bj,1), . . . ,Γ
−
S′(j,Bj,K)}

Furthermore strict inclusion defines an order relationship between the elements of A− which
will be preserved under the diffeomorphism, and thus defines a strict ordering between them:

Γ−
S (i,Ai,1) ⊊ Γ−

S (i,Ai,2) ⊊ . . . ⊊ Γ−
S (i,Ai,K)

=⇒ h(Γ−
S (i,Ai,1)) ⊊ h(Γ−

S (i,Ai,2)) ⊊ . . . ⊊ h(Γ−
S (i,Ai,K))

we know that the h(Γ−
S (i, Ai,k)) are the elements of B− (as we have just sown that B− = h(A−)),

i.e. the Γ−
S′(j,Bj,k). Their order is defined uniquely by strict inclusion as

Γ−
S′(j,Bj,1) ⊊ Γ−

S′(j,Bj,2) ⊊ . . . ⊊ Γ−
S′(j,Bj,K)

thus we can conclude not only (as we showed with B− = h(A−)) that

{h(Γ−
S (i,Ai,1)), . . . , h(Γ

−
S (i,Ai,K))} = {Γ−

S′(j,Bj,1), . . . ,Γ
−
S′(j,Bj,K)}

but also that their ordering is preserved i.e.

(h(Γ−
S (i,Ai,1)), . . . , h(Γ

−
S (i,Ai,K))) = (Γ−

S′(j,Bj,1), . . . ,Γ
−
S′(j,Bj,K))

or expressed differently:

∀k ∈ {1, . . . ,K}, h(Γ−
S (i,Ai,k)) = Γ−

S′(j,Bj,k)

it is straightforward to conclude from this that we also have

∀k ∈ {1, . . . ,K},
h(Γ−

S (i,Ai,k)) = Γ−
S′(j,Bj,k)

h(Γ+
S (i,Ai,k)) = Γ+

S′(j,Bj,k)

h(ΓS(i,Ai,k)) = ΓS′(j,Bj,k)

or stated differently, that:

∀k ∈ {1, . . . ,K}, ∀z ∈ S
z ∈ Γ−

S (i,Ai,k) ⇐⇒ h(z) ∈ Γ−
S′(j,Bj,k)

z ∈ Γ+
S (i,Ai,k) ⇐⇒ h(z) ∈ Γ+

S′(j,Bj,k)

z ∈ ΓS(i,Ai,k) ⇐⇒ h(z) ∈ ΓS′(j,Bj,k)

or equivalently
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∀k ∈ {1, . . . ,K}, ∀z′ ∈ S ′,

h−1(z′) ∈ Γ−
S (i,Ai,k) ⇐⇒ z′ ∈ Γ−

S′(j,Bj,k)

h−1(z′) ∈ Γ+
S (i,Ai,k) ⇐⇒ z′ ∈ Γ+

S′(j,Bj,k)

h−1(z′) ∈ ΓS(i,Ai,k) ⇐⇒ z′ ∈ ΓS′(j,Bj,k)

which we may also write

∀k ∈ {1, . . . ,K}, ∀z′ ∈ S ′,

z′j < Bj,k ⇐⇒ h−1(z′)i < Ai,k

z′j > Bj,k ⇐⇒ h−1(z′)i > Ai,k

z′j = Bj,k ⇐⇒ h−1(z′)i = Ai,k

which is what we needed to prove in the main grid structure recovery theorem.

Case 2: axis reversal si = −1, h(Γ−
S (i,Ai,1)) = Γ+

S′(i,Bi,K) and h(Γ+
S (i,Ai,K)) = Γ−

S′(i,Bi,1)
We can follow the exact same reasoning steps as in case 1, starting from h(Γ−

S (i,Ai,1)) =
Γ+
S′(i,Bi,K):

• to first show that h(A−) = B+ i.e.

{h(Γ−
S (i,Ai,1)), . . . , h(Γ

−
S (i,Ai,K))} = {Γ+

S′(j,Bj,1), . . . ,Γ
+
S′(j,Bj,K)}

• then use the preservation of the order relation defined by inclusion of halves to establish that

(h(Γ−
S (i,Ai,1)), . . . , h(Γ

−
S (i,Ai,K))) = (Γ+

S′(j,Bj,K), . . . ,Γ+
S′(j,Bj,1))

• thus that

∀k ∈ {1, . . . ,K},
h(Γ−

S (i,Ai,k)) = Γ+
S′(j,Bj,K−k+1)

h(Γ+
S (i,Ai,k)) = Γ−

S′(j,Bj,K−k+1)

h(ΓS(i,Ai,k)) = ΓS′(j,Bj,K−k+1)

• conclude that

∀k ∈ {1, . . . ,K},∀z′ ∈ S ′,

z′j > Bj,k ⇐⇒ h−1(z′)i < Ai,K−k+1

z′j < Bj,k ⇐⇒ h−1(z′)i > Ai,K−k+1

z′j = Bj,k ⇐⇒ h−1(z′)i = Ai,K−k+1

which is what we needed to prove in the main grid structure recovery theorem.
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E.5. Detailed proof of Step 1 – recovery of all separators

The goal of step 1 is to establish that the axis-separators that make up G (i.e. the elements of G)
map one-to-one to the axis-separators that make up G′ (i.e. the elements of G′). We can denote this
simply as G′ = h(G) =⇒ G′ = h(G).

A succinct overview of of the proof was given in Section E.3.1 in the main text. We provide a
detailed proof here. Note that we always assume finite axis-separator sets.

PRELIMINARIES

Whenever we say hypersurface, it is always defined as a d − 1 dimensional regular submanifold
embedded in d-dimensional ambient space S ⊂ Rd, where S is a d-dimensional connected open
submanifold of Rd. In our application S will be the interior of the support of the density we consider.

• Definition: Intersection set. given a grid G = ∪G = ∪H∈GH , we define its intersection
set I(G) as the set of points that belong to intersections of 2 or more distinct separators of G.
Formally: I(G) = ∪H∈G,H′∈G,H′ ̸=H(H ∩H ′).

• Definition: Exclusive point. We say that a point z is exclusive to a separator H of a grid
G = ∪G if it belongs to H but does not belong to any other separator of the grid (i.e. it does
not belong to I). Similarly we will say that a set is exclusive to a separator if all its elements
are exclusive points of that separator. The set of points of a separator H that are exclusive to it
will be denoted H̆ = H \ I .

• Definition: Tangent space we view the tangent spaces to hypersurfaces embedded in an
ambient space included in Rd literally as affine subspaces of Rd, i.e. we use the traditional
view5 of tangent space (do Carmo, 1976), which is a natural generalization of the notion
of a plane tangent to a surface at a point, to higher dimensional hypersurfaces embedded
in Rd. The tangent space at z ∈ A to a hypersurface A will be denoted TA(z) = TzA. A
smooth hypersurface has the property that it has at every z ∈ A a well-defined tangent space
TA(z) = TzA of the same dimension as the hypersurface. When A is a smooth hypersurface,
TA is a smooth map TA : A → Graffd−1(Rd) that maps any point z of A to a point of the
affine-Grassmannian manifold (Klain and Rota, 1997; Lim et al., 2021) Graffd−1(Rd), i.e.
the space of all d − 1 dimensional affine-subspaces of Rd. Since TA is a continuous map
between smooth manifolds, TA(z) will be continuous in any local (or global) parametrization
of A around z. (continuity based on the topology of the affine-Grassmannian manifold for
comparing tangent spaces as affine-subspaces of Rd).
Note that the tangent space to any axis-separator H is a constant: it is the subspace confounded
with the hyperplane that includes the separator, and will be denoted TH . i.e. we have
∀z ∈ H, TH(z) = TzH = TH . Note also that with this affine subspace definition of
tangent space, TH is different for every separator H of an axis-aligned grid: ∀H1 ∈ G, ∀H2 ∈
G, TH1 = TH2 ⇔ H1 = H2.

• Useful properties: We will also use the following properties that are either well-established
differential geometry knowledge or straightforward corollaries thereof

– Property 1: A diffeomorphism maps a smooth hypersurface to a smooth hypersurface
– Property 2: A diffeomorphism maps a path-connected set to a path-connected set.

5. This traditional extrinsic view of tangent space is preferred here to more modern definitions, because it simplifies a
step in our proof. It is also arguably easier to intuit and follow for readers who may not be familiar with differential
geometry.
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– Property 3: Smooth connected hypersurfaces in Rd have a d− 1 dimensional tangent
space that is well-defined all over the hypersurface and continuous (in the sense defined
above, see Tangent space)

– Property 4: A non-empty open subset of a smooth hypersurface in ambient space is itself
a smooth hypersurface in ambient space

– Property 5: A hypersurface that is a subset of another hypersurface has at every of its
points the same tangent space as the hypersurface it is a subset of.

DETAILED PROOF OF STEP 1

Lemma 20 No subset of the intersection set I(G) of an axis-aligned grid G = ∪G can be a
hypersurface in ambient space.

Proof Consider I(G) the intersection set of a grid G = ∪G. Formally:
I(G) = ∪H∈G,H′∈G,H′ ̸=H(H ∩ H ′). Each H ∩ H ′, if it is non-empty, is the intersection of two
orthogonal (thus transversal) connected hypersurfaces (i.e. d−1 dimensional submanifolds embedded
in ambient space), so that their intersection can be at most a d−2 dimensional embedded submanifold
of ambient space. The union of a finite number of at most d− 2 dimensional submanifolds cannot
be more than d − 2 dimensional, so I(G) cannot be more than d − 2 dimensional. Consequently
no subset of I(G) can be more than d− 2 dimensional, thus it cannot be a hypersurface in ambient
space.

Lemma 21 Let A be a connected smooth hypersurface included in an axis-alined grid G = ∪G
with axis-separator set G. Let z ∈ A. All open neighborhoods of z in A will necessarily contain at
least one point that is exclusive to a separator of G.

Proof An open neighborhood BA
z of z in A is an open subset of A, thus from Property 4, BA

z is
a hypersurface in ambient space. From Lemma 20 no subset of I(G), (the set of points of G that
belong to more than one separator) can be a hypersurface. So BA

z cannot be a subset of I(G), i.e. it
must contain at least one point exclusive to a separator of G.

Lemma 22 Let A be a connected smooth hypersurface included in an axis-alined grid G = ∪G with
axis-separator set G. Let z be a point of A that is exclusive to a separator H ∈ G (i.e. z ∈ H \ I(G):
it belongs to no other separator of G), then there exists an open connected neighborhood BA

z of z in
A that is exclusive to H .

Proof We reason using the usual Euclidean distance in Rd. Consider an open d-ball Bd
z in Rd

centered on z and whose radius ϵ is chosen to be less than the smallest distance of z to any other
separator, i.e. such that 0 < ϵ < infz′∈(G\H) ∥z − z′∥. Since z is exclusive to separator H and
the number of separators is finite, this distance will be greater than 0. Then all points of G within
a distance less than ϵ of z will necessarily belong exclusively to H , i.e. Bd

z ∩ G ⊂ H̆ , where
H̆ = H \ I(G). Now we can choose a sufficiently small connected open neighborhood BA

z of z in
A so that the distance in ambient space between z and any other point of BA

z is less than ϵ. Thus
BA
z ⊂ Bd

z . Since we also have BA
z ⊂ A ⊂ G this implies that BA

z ⊂ Bd
z ∩G and consequently that

BA
z ⊂ H̆ . We have thus shown that there exists an open connected neighborhood of z in A that is

exclusive to H .
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Lemma 23 Let A be a connected smooth hypersurface included in an axis-alined grid G = ∪G
with axis-separator set G. Then for any point z ∈ A there exists a non-empty open subset B whose
boundary contains z and such that B is a non-empty open subset exclusive to one of the separators.

Proof There are two cases to consider for z: either z is an exclusive point of a separator of the grid,
or it is an intersection point of separators (belonging to I(G)).

First case: z is a point exclusive to a separator H ⊂ G.
Then, by Lemma 22, we know that there exists an open connected neighborhood BA

z of z in A that is
exclusive to H . We can then easily pick an open subset B of BA

z whose boundary contains z (For
instance, pick a close neighbor z1 of z in BA

z , and construct B as the intersection of BA
z with an open

ball centered on z1 and of radius ∥z1 − z∥). B is an open subset exclusive to H , the separator that z
belongs to.

Second case: z is not exclusive to any separator of the grid.
Let G = {H1, . . . ,Hk} be the finite set of separators of grid G = ∪G. Let H̆i = Hi \ I(G)
be the corresponding subset of exclusive points to each separator Hi, and let Ăi = H̆i ∩ A, for
each i ∈ {1, . . . , k}. So Ăi, if it is not empty, will contain only points exclusive to Hi. From
Lemma 22 we deduce that every point of Ăi has an open neighborhood in A exclusive to Hi: this
open neighborhood is thus included in A ∩ H̆i and is thus a subset of Ăi. We have thus shown that
every point of Ăi has an open neighborhood in A that is included in Ăi. From this we conclude that
each Ăi is an open subset (possibly empty) of A.
We know that z belongs to none of the Ăi, since it is not exclusive to any separator. Now we will
show that z belongs to the boundary of at least one of the Ăi. We will reason using the metric dA

induced on embedded submanifold A ⊂ Rd by the usual Euclidean metric in ambient space Rd. Let
ϵ = mini∈{1,...,k} d

A(z, Ăi). We can use a min since it is over a finite number k of separators. Note
that dA(z, Ăi) = infz′∈Ăi

dA(z, z′) will be +∞ if Ăi is empty, by the definition of the infimum. If ϵ
was strictly greater than 0, then this would mean that no point of A exclusive to any separator would
be at a distance strictly less than ϵ from z (since any point of A exclusive to a separator belongs
to one of the Ăi). Thus the open ball BA(z, ϵ) = {z′ ∈ A, dA(z, z′) < ϵ} would not contain any
point exclusive to any separator. But this would contradict Lemma 21. So necessarily ϵ = 0. This
implies that there is at least one of the Ăi whose distance to z is 0, i.e. there exists a k∗ ∈ {0, . . . , k}
such that dA(z, Ăk∗) = 0. Since z /∈ Ăk∗ we conclude that z belongs to the boundary of this Ăk∗ .
Moreover this Ăk∗ is non-empty (otherwise that distance would be +∞). It is thus an open-subset of
A, exclusive to separator Hk. We have thus established that there exists a non-empty open subset of
A exclusive to one of the separators, and whose boundary contains z.

Lemma 24 Let A be a connected smooth hypersurface included in an axis-alined grid G = ∪G
with axis-separator set G. Let γ be a continuous path, included in A, that starts at a point z1, where
z1 is exclusive to a separator H ∈ G. Then γ will necessarily be included entirely in H .

Proof Consider path γ : [0, 1] → A, where γ(0) = z1 is exclusive to H . From Lemma 23, for each
point γ(t) ∈ A, there exists an open subset Bt of A whose boundary contains γ(t) and such that Bt

is an open subset exclusive to one of the separators. Let us call this separator Ht (Note that there may
be multiple possible choices for Bt and Ht). Consider any point z ∈ Bt. Since Bt is a non-empty
open subset of smooth hypersurface A, by Property 4 it is a hypersurface and by Property 5 Bt
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and A will have the same tangent space, so that TzBt = TzA. Since Bt is also a subset of smooth
hypersurface Ht, we have by Property 5 that TzBt = TzHt. Thus TzA = TzBt = TzHt. Now
the tangent space to any axis-separator H ′ is the constant TH′ . We can thus write, for any z ∈ Bt

, TzA = TzBt = TzHt = THt . Since A is a connected smooth hypersurface, it has a continuous
and well defined tangent space at every point. Thus if the tangent space is constant on an open
subset Bt ⊂ A it will have that same constant value at its boundary. So the tangent space to A at
point γ(t), which belongs to the boundary of Bt, will also be Tγ(t)A = THt . For the same reason
of the continuity of the tangent space of a path-connected smooth hypersurface A, we cannot have,
along the curve γ(t), an abrupt change in the tangent space Tγ(t)A, consequently THt cannot change
abruptly along the path. The only way for it not to change abruptly is that Ht stays constant along the
path: Ht = constant ∀t ∈ [0, 1]. In other words, for any point γ(t) along the path there must exist
an open subset Bt of A that is included in and exclusive to the same constant separator along the
path. Now, if z1 = γ(0) is exclusive to a separator H , then H0 = H and we must thus have Ht = H ,
∀t ∈ [0, 1]. We have thus shown that if the path starts at a point z1 = γ(0) which is exclusive to a
separator H , then all points of the path necessarily belong to H (though not necessarily exclusively
to H). Thus, the path is entirely included in H .

Lemma 25 A path-connected smooth hypersurface A included in an axis-alined grid G = ∪G is
necessarily a subset of one separator of G.

Proof Let z0 be a point of A that is exclusive to a separator H ∈ G. We know from Lemma 21 that
such a point exists. Since A is path-connected, there exists in A a continuous path connecting z0 to
any point z ∈ A. Thus, Lemma 24 leads to conclude that ∀z ∈ A, z ∈ H . Thus A ⊂ H .

Lemma 26 Let G = ∪G be an axis-aligned grid in S. Let h : S → S ′ be a diffeomorphism. Let
G′ = ∪G′ be an axis-aligned grid in S ′. If h(G) = G′, the image of a separator H1 ∈ G by the
diffeomorphism h will be a separator H ′ ∈ G′, i.e. H1 ∈ G =⇒ h(H1) ∈ G′.

Proof An axis-separator H1 ⊂ G is a path-connected smooth hypersurface. From Property 1
and Property 2, its image by diffeomorphism h will be a path-connected smooth hypersurface
h(H1) ⊂ G′. So h(H1) is a path-connected smooth hypersurface included in axis-aligned grid G′.
Consequently, Lemma 25 guarantees that we have h(H1) ⊂ H ′ for some H ′ ∈ G′. We will now
prove that h(H1) = H ′. Suppose by contradiction that h(H1) ⊊ H ′, and let B′ = H ′ − h(H1) ̸= ∅.
Similarly, if we apply the reverse diffeomorphism h−1, we will have h−1(H ′) ⊂ H2 for some
H2 ∈ G. Consequently, the two disjoint sets composing H ′ = B′ ∪ h(H1) will both map back to
subsets of H2, i.e. h−1(B′) ⊂ H2 and h−1(h(H1)) ⊂ H2. The latter can be rewritten as H1 ⊂ H2,
which implies H2 = H1 since no two distinct separators of G are included in one another. So
we have h−1(B′) ⊂ H1. Thus h(h−1(B′)) ⊂ h(H1), hence B′ ⊂ h(H1). We had defined B′

as B′ = H ′ − h(H1) ̸= ∅ but a non-empty B′ cannot at the same time correspond to a set from
which we removed h(H1) and be included in h(H1). We have a contradiction, so we cannot have
h(H1) ⊊ H ′, therefore h(H1) = H ′.

Proposition 27 The diffeomorphism h maps separators in G one-to-one to separators in G′, i.e.
h(G) = G′ =⇒ h(G) = G′.
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Proof We have shown in Lemma 26 that H ∈ G =⇒ h(H) ∈ G′. It suffices to apply this result
in the other direction using h−1 to establish the converse. We thus have a bijection: the one-to-one
mapping we needed to prove. Which we can write succinctly h(G) = G′.

Appendix F. Background on non-removable discontinuities

The definition of continuity of a function is leveraged in section 5.1.

Definition 28 A function f is continuous at a point x0 if

∀ϵ > 0; ∃δ > 0 : d(x, x0) < δ ⇒ |f(x)− f(x0)| < ϵ

for x in the domain of f and d(x, x0) being the distance between points x and x0.

That is, for any positive real number ϵ, which can be infinitely small, there exists a positive real
number δ such that for x in the interval x0 − δ < x < x0 + δ, the function of x will be at the interval
f(x0)− ϵ < f(x) < f(x0) + ϵ. So for f(x) to be in a small neighborhood around f(x0), x can be
chosen in a small neighborhood around x0.

Definition 29 (Marsden and Hoffman, 1993) A function f : A ⊂ M → N is called continuous on
the set B ⊂ A if f is continuous at each point of B. If we just say that f is continuous, we mean that
f is continuous on its domain A.

These definitions are relevant because when a function is continuous, Definition 28 will hold
at all the points in its domain. However, there can be cases where a function is not continuous at
a point, but it is continuous almost everywhere. We define the removable discontinuity of a PDF
p at point x0 as a discontinuity that can be removed by mapping it to another PDF p′ that has the
same probability measure. The idea is that the area under the curve is the same in the equivalent
PDF without the discontinuity at any interval, as illustrated in Figure 12. More precisely, the PDF px
represents a probability distribution where we can evaluate the probability at an interval by integrating
over it, such as Pr[a ≤ X ≤ b] =

∫ b
a pX(x)dx for a, b belonging to a measurable set M 6. Hence,

a probability distribution Q maps a measurable set M to [0, 1]. Q : M → [0, 1]. We notice and
exemplify in the figure that multiple PDFs can represent the same probability distribution. When
PDFs represent the same probability distribution, we will use the terminology that they belong to the
same equivalence class.

6. We refer to (Capinski and Kopp, 2013) Chapter 2, definition 2.3, for coverage on measurable sets.
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Figure 12: The PDF on the left has a removable discontinuity, but it can be mapped to the PDF on
the right, which is identical but continuous everywhere. In whatever interval taken within
the domain, the area under the PDF is exactly the same for both of them.

A non-removable discontinuity is the type of discontinuity that cannot be removed because the
discontinuity affects the area below the PDF and therefore all the PDFs in the same equivalence class
present a discontinuity at x0, as illustrated in Figure 13.

x

p(x)

Figure 13: Example of a PDF with a non-removable discontinuity. The area under the PDF is
affected by the discontinuity.

Appendix G. On the necessity of axis-aligned landmarks in the probability density pZ

Our justification is built on a powerful result, Theorem 6 from Buchholz et al. (2022). We restate and
revisit the intuitions behind the result below. We use the notation Φ∗P to denote the pushforward of
P under Φ.

Theorem 30 Let pZ be a twice differentiable probability density with bounded gradient. Suppose
that x = Φ(z) where the distribution P of z has density pZ and Φ is a diffeomorphism with
detDΦ(z) = 1 for z ∈ Rd. Then there is a family of functions Φt : ×Rd → Rd indexed by t with
Φ0 = q and qt ̸= Φ0 for t ̸= 0 such that detDΦt(z) = 1 and (Φt)∗P = Φ∗P.

Consider the case when Φ is an identity map. In that case, the above theorem implies that
there exists a family of volume preserving transformations different from the identity map such that
(Φt)∗P = P.

We revisit the intuition behind the proof, which will be reused for the rest of this section. We
define the flow of a vector field as a map Φ : R× Rd → Rd such that
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Φ0(z) = z, ∂tΦt(z) = X(Φt(z)) (4)

We write Φ(t, z) as Φt(z) in the above expression. We can interpret Φt(z) as the position of a
particle, which started at z at time t = 0. Then X(Φt(z)) is the velocity of the particle at time t.
Define a vector field Xij : Rd → Rd as

Xij
k =


∂pj k = i

−∂pi k = j

0 otherwise

, (5)

where Xij
k is the kth component of the vector field. Observe that Xij is orthogonal to the isolines of

the density pZ along the plane corresponding to components i and j. Under the flows described in
equation (4), the probability measures evolve in time and satisfy the continuity equation stated next.
Formally stated, the density associated with (qt)∗P satisfies.

∂pt + Div(ptX
ij) = 0, p0 = p (6)

Observe that Div(Xij) = ∂i∂jp − ∂j∂ip = 0. Also, observe that Div(pXij) = Xij · ∇p = 0.
From Div(pXij) = 0, we can infer that the (qt)∗P = P and from Div(Xij) = 0, Φt is a volume
preserving diffeomorphism. Consider the following autoencoder where the decoder is f̃t = f ◦ qt
and the encoder is g̃t = q−1

t ◦ f−1. Observe that these autoencoders achieve perfect reconstruction.
The encoder fails at identifying the underlying latents as the estimated latents are related to the true
latents by the map Φ−1

t (·). Thus we have seen that even if the learner knows the true density pZ ,
there exists a family of autoencoders that cannot achieve identification.

Suppose Z = [Z1, Z2]. Consider that pZ is a density defined over the unit square centered at
origin. In Figure 14, we show one such density. Suppose we are interested in separating the points
in the four quadrants, where each quadrant provides a distinct quantization for all the values of z
assumed in it. We consider a family of densities pZ , whose isolines crosses z1 = 0 at least once. We
further also assume that these densities pZ are differentiable over the support and have a bounded
gradient. The isoline of this density crosses z1 = 0. Consider two points shown in pink and blue
colors in Figure 14. At t = 0, the pink point is to the right of z1 = 0 and the blue point is to the
left of z1 = 0. Under the flow defined in equation (4), we would argue that after some time τ has
elapsed, the pink point moves to the left of z1 = 0, while the blue point is still to the left of z1 = 0.
Under the map Φτ (z) = (q1τ (z), q

2
τ (z)), the two points are both to the left of z1 = 0. If all the points

Φ1
τ (z) < 0 are associated with the same quantization, then the pink point and the blue point are

associated with same quantization, while their true quantization is different. We provide further
details on the construction. We can assume that the pink point at t = 0 is very close to z1 = 0 but
on the right of z1 = 0. Further, we assume that the magnitude of the flow along the negative z1
direction (which is the vector tangent to the isoline) in the neighborhood of the pink point at t = 0 is
bounded below by at least ϵ1. As a result, the point moves at least τϵ distance along z1 in time τ . We
can assume that the pink point started with z1 < ϵτ and thus it crosses to the left of z1 = 0 after τ
amount of time has elapsed. At the same time, consider the blue point to the left of z1 = 0 at time
t = 0. We assume that the flow along the z1 direction in the ρ radius neighborhood of the blue point
at t = 0 points from right to left, i.e., it is in the negative z1 direction. We choose τ to be sufficiently
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z1

z2

t = 0t = τ
t = 0

t = τ

Isoline of pZ

Figure 14: Two dimensional illustration to explain why isolines cannot cross the axis.

small, τ < ρ/γ, where γ is the largest value that the velocity under the flow can take (this follows
from the assumption that the density has a bounded gradient). Under this constraint, the blue point
stays to the left of z1 = 0 after τ amount of time has elapsed.

The above argument explains that if the isolines of pZ cross the grids, then quantized identification
is not possible even if we know pZ . As a result, we need to focus on the densities pZ whose isolines
are restricted to each of the four quadrants. Consider the family of densities pZ with axis-aligned
discontinuities. Suppose the density in each of the quadrants is continuous, then for this class of
densities the isolines cannot cross any of the axis z1 = 0 and z2 = 0. For this class of densities, our
theory established quantized factor identification guarantees even without requiring knowledge of
pZ . Could there be other densities beyond discontinuous densities with axis-aligned landmarks that
permit quantized identification? This is a fairly non-trivial and important question left for future
work.
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