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Abstract
The task of inferring high-level causal variables from low-level observations, commonly referred
to as causal representation learning, is fundamentally underconstrained. As such, recent works
to address this problem focus on various assumptions that lead to identifiability of the underlying
latent causal variables. A large corpus of these preceding approaches consider multi-environment
data collected under different interventions on the causal model. What is common to almost all
of these works is the restrictive assumption that in each environment, only a single variable is
intervened on. In this work, we relax this assumption and provide a novel identifiability result for
causal representation learning that allows for multiple variables to be targeted by an intervention
within one environment. Our approach hinges on a general assumption on the coverage and diversity
of interventions across environments, which also includes the shared assumption of single-node
interventions of previous works. The main idea behind our approach is to exploit the trace that
interventions leave on the variance of the ground truth causal variables and regularizing for a
specific notion of sparsity with respect to this trace. In addition to and inspired by our theoretical
contributions, we present a practical algorithm to learn causal representations from multi-node
interventional data and provide empirical evidence that validates our identifiability results.
Keywords: Causal representation learning, identifiability, interventional data, sparsity

1. Introduction

Across the sciences, data are recorded in the form of low-level measurements of observable physical
variables. However, the causal model underlying and robustly explaining the data may operate on
high-level variables, sometimes called causally autonomous or causally disentangled variables. The
task of learning such causal representations of data falls under the rubric of causal representation
learning (Schölkopf et al., 2021). This problem has been shown to be fundamentally underconstrained
(Locatello et al., 2019), leading to various approaches that employ inductive biases in order to
provably identify the underlying latent causal variables.
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Figure 1: Comparison of samples drawn from the SCM of Example 1 under three different inter-
ventions between (a) the ground truth representation and (b) a mixed representation. Notice that
the density of variables with nonzero variance (indicated by shading) is lower in each environment
in the ground truth representation than in the mixed case. We exploit the principle that the ground
truth is more sparse in terms of nonzero variance dimensions to achieve identifiability of causal
representations using multi-node interventional data.

Recent works that provide such identifiability guarantees either restrict the underlying structural
causal model (Lachapelle et al., 2022; Buchholz et al., 2023; Liang et al., 2023), or the transformation
mapping the causal variables to the observed data (also called the mixing function) (Ahuja et al.,
2023a; Zhang et al., 2023), or both (Squires et al., 2023). Many of these methods additionally assume
the availability of interventional or counterfactual data collected across environments (Ahuja et al.,
2023a,b; Zhang et al., 2023; Squires et al., 2023; Buchholz et al., 2023; Liang et al., 2023; von
Kügelgen et al., 2023, 2021; Brehmer et al., 2022), or use supervisory signals such as time structure
(Hyvärinen and Morioka, 2017; Hälvä and Hyvärinen, 2020; Yao et al., 2021), sometimes in addition
with knowledge of intervention targets (Lippe et al., 2022a,b). What unites nearly all aforementioned
methods that require the availability of interventional data—and guarantee full component-wise
identifiability of the latent causal variables—is the restrictive assumption requiring interventions to
be atomic or single-node, i.e., when the number of latent variables intervened on per environment is
at most one.

In this work, we relax the restrictive single-node intervention assumption, and design a setup that
guarantees the element-wise identifiability of latent causal variables by using data that is collected
across multiple interventional environments, given the assumption that the mixing function is linear.
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However, importantly, we do not require these interventions to be atomic, only that they are hard
and sufficiently diverse in a specific sense outlined below, see in particular Assumption 4. Our
assumption on the nature of interventions generalizes previous works in the sense that they allow
for more general interventions, most notably those acting on multiple variables in one environment,
while still allowing for the case of atomic interventions. Furthermore, we make no assumptions on
the underlying structural causal model (SCM). To prove our main result, we introduce a specific
notion of sparsity concerning the trace left in the data by interventions. As we detail in Appendix A.2,
this general idea of using sparsity to achieve identifiability of representations is motivated by a similar
assumption on the predictor of a multi-task prediction problem of Lachapelle et al. (2022). However,
our problem setting is not a prediction task, and therefore the nature of our sparsity assumption is
fundamentally different. Our results also support the sparse mechanism shift hypothesis, that posits
that the distribution shifts of the underlying causal variables across environments must be sparse
(Perry et al., 2022).

Our main contributions can be summarized as follows:

1. We formalize the notion that in the ground truth representation only a sparse subset of variables
is affected by an intervention, while this effect is dense for variables that have undergone
mixing.

2. Based on this, we prove identifiability for the setup of latent variables that have undergone
linear mixing, given hard interventional data across environments. The SCM underlying the
latent variables can be arbitrarily nonlinear with additive noise. Crucially, the interventional
structure is not required to be atomic, but only sparse and diverse in the sense outlined in
Assumption 4.

3. We present a proof-of-concept algorithm to recover the latent causal variables up to permuta-
tions and rescaling in the setting outlined above, alongside accompanying experiments.

2. Motivating Example

We begin by presenting the following motivating example as an intuitive introduction to our approach
to exploit a specific notion of sparsity to disentangle linear mixtures using multi-node interventional
data.

Example 1 Consider the following structural causal model (SCM)

Z1

Z2 Z3

Z1 := η1

Z2 := Z1 + η2

Z3 := Z1 + Z2 + η3

ηj ∼ N (0, 1),

with d = 3 variables Z = (Z1, Z2, Z3) and independent noise terms η1, η2, η3. Now, consider three
environments, with the following corresponding interventions

I1 = {do(Z1 = 1, Z2 = 1)},
I2 = {do(Z1 = 1, Z3 = 2)},
I3 = {do(Z2 = 1, Z3 = 3)}.
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We draw n samples from the above SCM in each environment. The resulting zj ∈ Rn×d are shown in
Fig. 1(a).

Now, consider the same environments as above, but in the case where the variables in Z are
mixed by the invertible matrix

L =

1 1 1
1 −1 1
1 1 −1

 ,

denoting the mixed variables as Z̃ = ZL. Again drawing n samples for each environment—we recall
that interventions act on the unmixed ground truth variables—the resulting z̃j ∈ Rn×d is presented
in Fig. 1(b).

Notice that in the unmixed case, in each respective environment, the columns of zj which have
been intervened on take the same constant value for each sample and thus have zero variance,
while those dimensions that are not targeted by interventions have nonzero variance and display
stochasticity in the values they may take. Contrarily, in the mixed case, for this specific mixing matrix
L, in all environments, all columns z̃j have nonzero variance.

The main observation to be made in the above example is the fact that mixing seems to increase
the "density" of those dimensions of Z̃ which are not constant and have nonzero variance, w.r.t the
ground truth representation Z.

Inspired by this observation, we propose to regularize the learned representation such that the
effect of interventions is most sparse across environments. In the following, we make this specific
notion of sparsity precise and show that this constraint indeed allows us to recover the latent causal
factors up to permutation and rescaling (cf. Definition 1), under a general linear mixing matrix L.

3. Disentanglement from Multi-Node Interventions

In this section, we present the main results of this work on identifying causal representations from
multi-node interventional data. The basic idea of our approach is to exploit the fact that interventions
leave a specific trace in the data, which is most sparse in the ground truth representation. In
the following, we make this notion of sparsity formal and prove that regularizing for it yields a
representation of the latent variables that is equivalent to the ground truth.

3.1. Problem Setting

Notation. Scalar variables are denoted in normal face (x) and vector-valued variables in bold (x).
Random variables are capitalized (Y ), the values they take we write in lower case (y). Matrices are
capitalized and bold (M) and will be introduced as such. We denote the sequence of integers from 1
to n with [n].

Data Generating Process. Consider the random variables Z = (Z1, . . . , Zd). Assume Z ∼ P
where the unknown joint distribution P is induced by a structural causal model (SCM) defined over
the random vector Z. This SCM induces the factorization

P (Z) =
d∏

j=1

P (Zj | ZPaj ), (1)
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where Paj ⊂ [d] \ {j} indicates the parents of variable Zj . Let G denote the corresponding directed
acyclic graph (DAG) of this SCM. For a detailed definition of SCMs, we refer the reader to Pearl
(2009).

We make no parametric assumptions on the causal mechanisms of this SCM, i.e., the structural
equation for each variable takes on the general form Zj := fj(ZPaj , ηj), where ηj ; j ∈ [d] are
the exogenous, independent noise terms. We assume the distributions of the noises have nonzero
variance.

Instead of measuring Z directly, we only have access to observations Z̃ ∈ Rm, where Z̃ = ZL is
generated from the causal variables by the injective linear map L : Rd → Rm with m ≥ d.

Additionally, we assume to have access to observations Z̃ from different environments, where
each environment e ∈ E corresponds to a setting where subsets T ⊆ [d] of the underlying, latent
variables Z have been intervened upon. We assume that we are given a probability measure PE on the
set of environments E with full support E , which describes the distribution of a random environment
E. Note that in practice we will have distributions of the latent variables corresponding to different
interventional environments, that we can then view as having been drawn from PE , much in the way
outlined in Mooij et al. (2020). We explicitly do not include the observational distribution, i.e., where
no variables have been intervened on, in E . We consider do-interventions (Pearl, 2009), sometimes
called hard interventions, which replace the structural equations of intervened upon variables with
constant values. We write

Zj := aj for j ∈ T, (2)

where a ∈ R|T |. Each environment e is characterized by its corresponding intervention Ie :=
{(T,a) | T ⊆ [d],a ∈ R|T |} and we denote with P e the distribution of the random vector Ze

induced by intervention Ie. We stress that interventions are explicitly not assumed to only target
single variables. We assume that the mixing function L remains unchanged across environments.

Objective. Our goal is to recover the latent variables Z from observations Z̃. Specifically, we are in-
terested in exploring how observing transformations of latent variables under different interventional
environments e ∈ E can be leveraged to learn the underlying causal variables.

Formally, recovering the latent variables Z from observations Z̃ amounts to learning the inverse
of the mixing function L. We are only interested in latent variables that are equal to the ground truth
up to permutation, element-wise rescaling and possible redundancies if the dimensionality of the
learned representation is greater than that of the ground truth variables. Consequently, we define an
equivalence class over such latents. While weaker notions exist (Hyvärinen and Morioka, 2017), we
refer to identifiability as being able to recover the latent variables up to this equivalence. We call
equivalent representations causally disentangled up to redundancies.

Definition 1 (Causal Disentanglement up to Redundancies) A learned representation Ẑ ∈ Rm

is causally disentangled up to redundancies w.r.t. the ground truth representation Z ∈ Rd if there
exists a matrix L ∈ Rd×m, where

1. each column of L contains at most one nonzero element,

2. there are at least d columns in L with a nonzero element,

s.t. Ẑ = ZL almost surely.
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This definition ensures that each learned variable Ẑi is either a scalar multiple of a ground truth
variable Zj , or zero, and that all ground truth variables in Z appear as scalar multiples in Ẑ at
least once. Notice for the special case where m = d, the matrix L in the above definition can be
decomposed into a diagonal invertible matrix D and a permutation matrix P, i.e., L = DP, and we
recover the standard definition of causal disentanglement (Khemakhem et al., 2020; Lachapelle et al.,
2022).

3.2. Assumptions

Before presenting our main theorem, we introduce some additional objects and assumptions that are
required to make our considerations precise.

First, let us formally define a quantity that allows us to measure the notion of sparsity we are
interested in.

Definition 2 (Variance density.) Let A ∈ Rd be a random vector. Then

∥A∥Var :=
d∑

j=1

1(Var(Aj) ̸= 0),

where 1(·) is the indicator function.

The next lemma states that there is no mixing matrix L, such that in the resulting mixture, any
variable has variance zero.

Lemma 3 (Non-vanishing variance under mixing.) For all invertible L ∈ Rd×d,

∀j ∈ [d],Var((ZL)j) ̸= 0.

The proof is presented in Appendix A.1.
Further, we denote with Se the set that contains the indices the elements of Ze that have nonzero

variance in environment e, that is

Se := {j ∈ [d] | Var(Ze
j ) ̸= 0}.

Because we consider hard interventions that set the values of variables to constant values, S contains
all variables that have not been intervened upon in this environment.

We consider again the environment distribution PE which we can factorize as

PE =
∑

S∈P([d])

p(S)PE|S ,

where P([d]) denotes all subsets of [d], p(S) = PE ({e ∈ E | Se = S}) and PE|S is the conditional

distribution PE|S( · ) := PE( · |S) = PE( · ∩S)
p(S) if p(S) ̸= 0 (and 0 otherwise). We denote with S the

support of the distribution p(S), i.e., S := {S ∈ P([d]) | p(S) > 0}. The next assumption concerns
S and in words states that the environments we observe must be diverse enough, such that for each
latent dimension j, if we consider all environments where we intervene on variable Zj , we do not
always simultaneously intervene on another variable Zi.
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Assumption 4 (Sufficient coverage of interventions.) For all j ∈ [d]⋃
S∈S|j /∈S

S = [d] \ {j}.

This assumption is arguably quite general, therefore some remarks on its implications are in order.
First, notice that if a given variable Zj is intervened on in all environments E , the assumption cannot
be fulfilled. Further, the set of environments that contain single-node interventions for all variables
are subsumed and permitted by the above assumption, showing that it generalizes the most common
assumption of preceding works.

A particularly interesting implication of this assumption lies in its connection to the notion
of separating systems, first introduced by Katona (1966). This concept has proven useful for
experimental design for causal discovery (Hyttinen et al., 2013; Shanmugam et al., 2015; Kocaoglu
et al., 2017a,b) and also allows us to derive a lower bound on the number of environments required
to fulfill the above assumption and therefore ultimately learn the underlying causal representation.
Specifically, Assumption 4 is equivalent to the definition of strongly separating systems in Kocaoglu
et al. (2017b, Definition 1), which by Kocaoglu et al. (2017b, Lemma 2) allows us to directly
conclude that we can satisfy our central assumption with a minimum of 2⌈log d⌉ environments. This
stands in contrast to requiring d environments when only single-node interventions are considered
and highlights that allowing multi-node interventions can lead to requiring less environments overall,
when the interventions can be chosen freely. Note that Lippe et al. (2022c) show a similar result
for a lower bound on required environments for causal representation learning, however these are
specific to their time series setting that additionally requires knowledge of intervention targets in
each environment.

3.3. Identifiability Result

We are now ready to present our main identifiability result. Intuitively, it exploits the fact that in
the ground truth representation, interventions set certain dimensions to a constant value, leaving
only a sparse subset of all dimensions with nonzero variance. Conversely, under some linear
mixing, generally all latent dimensions will have nonzero variance terms. The idea is then to find a
transformation that yields a representation that is as sparse as possible in the aforementioned sense,
which we show results in recovering latent variables that are equivalent to the ground truth.

Theorem 5 (Disentanglement via intervention sparsity.) Assume the data generating process
described in Section 3.1. Let L ∈ Rd×m be an injective matrix and Ẑ = ZL. Suppose Assumption 4
holds. Then, if

EPE
∥ẐE∥Var ≤ EPE

∥ZE∥Var,

Ẑ is causally disentangled up to redundancies w.r.t. Z (cf. Definition 1), where ∥Z·∥Var is defined as
the function ∥Z·∥Var : (E , PE) → R, e 7→ ∥Ze∥Var.

In particular, if m = d, it holds that L = DP, where D is a diagonal invertible matrix and P is
a permutation matrix.

In words, Theorem 5 shows that under our assumptions, any representation that is as sparse as the
ground truth representation (w.r.t. the variance density) must already be causally disentangled. This
will motivate the optimization approach of the following section. The proof of Theorem 5 is inspired
by that of Lachapelle et al. (2023, Theorem B.5), and is presented in Appendix A.2.
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4. Experiments

We illustrate the result presented in Theorem 5 by providing empirical evidence that we can recover
the ground truth causal variables from observed data when our assumptions are met. We provide
code to reproduce all of our experimental results1.

4.1. Practical Algorithm

Based on our theoretical results presented in Section 3 we present an algorithm that implements the
main principles of our theorem in terms of practical constraints, to recover the underlying causal
representation from data.

Since the observed data Z̃ is generated from the ground truth data Z according to Z̃ = ZL, our
algorithm aims to learn a linear map L̂ : Rm → Rd, such that the resulting Ẑ = ZLL̂ is disentangled
w.r.t the ground truth Z (cf. Definition 1). We learn L̂ via stochastic gradient descent by optimizing
over the loss function

min
L̂

LVar + λeLe + λmLm + λdiagLdiag + λnormLnorm, (3)

where the individual loss terms are introduced in the following.
Since our theoretical results exploit assumptions on the sparsity of nonzero variance terms across

environments, we introduce the matrix V ∈ Re×m, where the elements in row Vi: contain the
variance of Z̃ in environment e = i; Vi,j := Var(Z̃i

j). In words, V contains the stacked variance
terms of Z̃ in each environment.

Total Variance Support. The first term in Eq. (3), LVar, captures the assumption that the support of
nonzero variance terms, i.e.,

∑
i,j 1(Vi,j ̸= 0), is minimal across environments. Since the indicator

function is not differentiable, we use the sigmoid function σ(x) := 1
1+e−x and define

LVar :=

e,m∑
i,j

σ(Vi,j).

Per-Environment Variance Support. The next term, Le, enforces that there is no environment
in which all variables are intervened upon at the same time. In terms of V, this means that every
row Vi: contains at least one nonzero entry, which implies that the sum across each row i is nonzero,
i.e., 1((

∑m
j Vi,j) ̸= 0). Again replacing the counting operation of the indicator function with a sum

over sigmoid functions, we write

Le := −
e∑
i

σ
( m∑

j

Vi,j

)
,

where the negative sign comes from the fact that we want this term to be nonzero.

Per-Dimension Variance Support. This term reflects the deliberation that there is no dimension
j ∈ [m] which is intervened upon in all environments. Analogous to Le, in terms of V this means
that we enforce that each column V:j contains at least one nonzero entry and we write

Lm := −
m∑
j

σ
( e∑

i

Vi,j

)
.

1. https://github.com/simonbing/Multi-Node-CRL
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Diagonal Sparsity. Consider the exemplary variance matrix for m = 3 and with three environments

V =

0 0 ∗
0 0 ∗
∗ ∗ 0

 ,

where nonzero entries are denoted with ∗. V satisfies the considerations represented by Le and
Lm (no nonzero rows or columns), but clearly is in violation of Assumption 4, since Z1 and Z2 are
always intervened on together. Considering the same number of environments, a variance matrix that
satisfies all of the above constraints could, e.g., be

V′ =

0 0 ∗
∗ 0 0
0 ∗ 0

 ,

where all but one variable is intervened on per environment. Let the k-th diagonal of the (d× d)-
matrix A be defined as diagk(A) := {Ai,j ∀ i, j ∈ [d] | (i+k−1) mod d = j mod d}. In words,
diagk(A) describes the diagonal elements of the matrix A that "wrap around", where any k > 1
denotes the offset from the main diagonal. For a 3× 3-matrix, consider the following example:

A =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ,

diag1(A) = {a1,1, a2,2, a3,3},
diag2(A) = {a1,2, a2,3, a3,1},
diag3(A) = {a1,3, a2,1, a3,2}.

If we compare the diagonals of V and V′ we notice that V′—which is aligned with our
assumptions—has more diagonals that contain only zeros than V. Based on this observation,
we formulate the loss term Ldiag.

We operationalize the above argument that V should contain as many 0-diagonals as possible
by recalling the ℓ2,1 norm for matrices, defined as ∥A∥2,1 :=

∑d
j=1∥A:j∥, where ∥·∥ denotes the

Euclidean norm for vectors. Since regularizing with the ℓ2,1 norm is known to promote column
sparsity (Argyriou et al., 2008), we define an analogous regularization to promote sparsity of
diagonals:

Ldiag :=

m∑
j=1

∥diagj(V)∥.

Norm Regularization. To prevent V from collapsing to all zeros, we enforce the Frobenius norm
of L̂ to take a fixed value a ∈ R>0. In practice, we choose a = 1 and define

Lnorm := (∥L̂∥ − a)2.

4.2. Synthetic Data Generation

We generate synthetic data by sampling from randomly generated DAGs according to the Erdős–Rényi
model (Erdős and Rényi, 1959), where we change the number of nodes d and the probability of an
edge being present in the graph p across experiments. Unless stated otherwise, we consider linear
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Figure 2: We report the mean MCC score across various experimental conditions, over five random
seeds. Error bars or shaded regions indicate the standard error. (a) Our model performs well across
all considered number of latent variables d, even up to d = 30. (b) MCC across different probabilities
of an edge being present p. Our method achieves near-perfect score across all settings, indicating
that we do not implicitly rely on assumptions on the density of the underlying graph. (c) MCC for
different sample sizes n. Performance increases with sample size and saturates at n = 2 · 105.

causal mechanisms fj :=
∑

j∈Paj αjZj + ηj for all variables Zj , where we sample the coefficients
αj independently from U [−0.1, 1.0]. The random noise ηj is independently sampled from N (0, 0.1)
for all j. For all experiments, except the one in which we investigate the effect of varying sample
size, we sample n = 105 data points per environment.

To generate interventional data, we consider environments where for each latent variable Zj we
intervene on all other variables Zi, i ̸= j, satisfying Assumption 4.

Since we only assume access to a mixture Z̃ = ZL of the causal variables, after sampling
according to the procedure detailed above, we randomly sample an invertible matrix L and apply this
mixing. For the results shown in this section we sample one L and keep it fixed across runs, to focus
on the randomness induced by different initializations. In practice we found that different mixing
matrices L do not greatly influence the reported results, which we show with additional experiments
in Appendix B.5.

4.3. Results

We provide the results of various experimental settings and compare against two exemplary baselines;
linear independent component analysis (ICA) (Comon, 1994) and interventional causal representation
learning (ICRL) (Ahuja et al., 2023a). These are unfair comparisons, since both methods’ assumptions
are misaligned with our setting; ICA assumes independent, non-gaussian latent variables and ICRL
assumes single-node interventions per environment. This comparison is not meant to show that
our proposed method outperforms these approaches per se, but rather that our problem setting is
not a contrived reformulation of a possibly simpler case, where ICA and ICRL are representative
baselines for simpler settings. The main conclusion we can draw from our empirical findings is that
our method recovers the ground truth latent variables in a more general problem setting than previous
approaches.
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Model MCC

Nonlin. SCM 1 0.96± 0.03
Nonlin. SCM 2 0.97± 0.05

Table 1: MCC (mean ± standard error) over five different random seeds for two different nonlinear
models. Our method performs equally well as for linear SCMs.

To quantify how well we achieve our objective of recovering the equivalence class described in
Definition 1 we report the mean correlation coeeficient (MCC) (Hyvärinen and Morioka, 2016; Khe-
makhem et al., 2020) (cf. Appendix B.4), which is precisely aligned with our notion of identifiability.

As suggested by our theoretical findings, across all experimental settings, our method achieves
an almost perfect MCC score.

Effect of SCM Size. We investigate the effect of different underlying SCM sizes by considering
d ∈ {3, 6, 10, 30}. Shown in Fig. 2(a), we see that our model’s performance does not noticeably fall
off, even up to d = 30. Both methods we compare against, ICA and ICRL, do not perform well,
corroborating that our considered setting is indeed more general than their respective settings, and
cannot be solved by either model.

SCM Density. In this experiment, we investigate the sensitivity of our approach to the density of
the underlying ground truth causal graph. We vary the probability p of an edge being present in a
graph with d = 6 nodes from 0 to 1, interpolating between a completely disconnected and a fully
connected graph. The results are reported in Fig. 2(b). We see that the performance of our approach
is equally high across all values of p, underlining that we do not rely on assumptions regarding
the sparsity of the underlying causal graph. Interestingly, our method can disentangle independent
Gaussian latent variables (p = 0), which is precisely the case in which ICA fails.

Nonlinear SCMs. We consider two different SCMs, both with nonlinear mechanism functions fj
for each Zj . Both models consist of d = 6 variables, with an adjacency matrix randomly sampled
according to the procedure described in Section 4.2. In the first model, the mechanism functions
are defined as fj :=

∑
j∈Paj Z

2
j + ηj for all Zj , while the second model consists of more complex

nonlinear mechanisms. See Appendix B.3 for a detailed description of both models. We report the
MCC scores for both models in Table 1 and see that our method achieves similarly good results as on
linear SCMs, underlining that we do not rely on parametric assumptions on the underlying causal
model.

Number of Samples. We investigate the influence of sample size by increasing the number of data
points n sampled per environment, for an SCM with d = 6. The results are visualized in Fig. 2(c),
indicating that disentanglement is achieved after observing around 105 samples per environment,
while the score saturates and perfect results are achieved after 2 · 105 samples.

5. Related Work

First exemplified by the impossibility result of nonlinear independent component analysis (ICA)
(Hyvärinen and Pajunen, 1999), the general problem of representation learning is known to be
heavily underconstrained (Locatello et al., 2019). Just as research in ICA has progressed by making
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assumptions explicit and subsequently exploiting these assumptions for inference (Hyvärinen and
Morioka, 2017; Hälvä and Hyvärinen, 2020; Gresele et al., 2021; Morioka and Hyvärinen, 2023),
recent works in causal representation learning works propose various assumptions to enable identifia-
bility. One such inductive bias is to assume and exploit time structures, e.g., in Lippe et al. (2022b,a,
2023) by assuming knowledge of interventions targets or types, in Yao et al. (2021, 2022) by the
assumption of nonstationarity or in Lachapelle et al. (2022, 2024) by imposing sparsity constraints
on the underlying SCM. A complementary line of works focuses on constraining the kind of mixing
the latent variables have undergone, with a particular interest in the case of linear mixing. Squires
et al. (2023) show results for linear SCMs that undergo linear mixing, generalized by Buchholz et al.
(2023) to nonparametric SCMs, and Varıcı et al. (2023) provide a score-based approach for learning
representations under linear mixtures. One common assumption made across approaches is some
kind of heterogeneity assumption on the available data, either induced by counterfactual pairs (von
Kügelgen et al., 2021; Brehmer et al., 2022) or interventional data, e.g., hard do-interventions as in
Ahuja et al. (2023a) or soft interventions as in Zhang et al. (2023). What unites almost all works
that include identifiability results based on some form of interventional (or counterfactual) data is
the assumption that per environment, interventions only target a single node (Brehmer et al., 2022;
Squires et al., 2023; Buchholz et al., 2023; Ahuja et al., 2023a; Zhang et al., 2023; Varıcı et al., 2023;
Liang et al., 2023; von Kügelgen et al., 2023). While there exist identifiability results with multi-node
interventions in the time series setting they come with additional assumptions or limitations that we
do not require. The results of Lachapelle et al. (2022, 2024) only hold for an empty graph when
only a single time step is considered and the results of Lippe et al. (2022a,b, 2023) require observing
an auxiliary variable related to interventions at a given time step to show identifiability. Ahuja
et al. (2023b) and Liang et al. (2023) also consider multi-node interventions, however they require
additional assumptions and only guarantee identifiability up to blocks of variables, as opposed to our
stronger component-wise identifiability.

An approach that utilizes a closely related assumption of sparsity to ours is presented by
Lachapelle et al. (2023). The authors consider a prediction problem in the context of represen-
tation learning, where the source of heterogeneity does not stem from interventions on the underlying
SCM as in our case, but from multiple prediction tasks that share the same representation as potential
predictors. By assuming that only a sparse subset of all covariates are used per task, the latents can
be identified up to permutation and rescaling. Analogously, we guarantee identifiability by assuming
that a sparse subset of the ground truth latent variables have nonzero variance under interventions.

Another line of works frames causal representation learning as being closer to the setting of
classical causal structure learning (Spirtes et al., 2001) with latent variables, commonly assuming
that at least some nodes of the target graph are observed. While we asssume the observed variables to
be deterministic functions of the latents, these works consider observational noise. Most approaches
here rely on a variation of the pure children assumption, stating that each observed variable has only
a single latent parent (Silva et al., 2006). Cai et al. (2019) consider the case where observations
are linear transformations of the latents and each latent has two pure children. Xie et al. (2020)
generalize the preceding assumptions to allow latents with multiple children, formalized in their
Generalized Independent Noise condition and in later work use this condition to learn hierarchical
latent variable models (Xie et al., 2022).
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6. Discussion

In this work, we present a novel identifiability result for learning causal representations under linear
mixing. Our main contribution lies in the generalization of a large body of preceding works that
assume that the environments across which the data is collected correspond to single-node or atomic
interventions on the latent variables, to the case where multi-node or non-atomic interventions are
allowed as well. To enable identifiability from multi-node interventional data, we introduced a novel
notion of sparsity regarding latent dimensions with nonzero variance terms.

In addition to our theoretical contribution, we presented empirical evidence in the form of a
proof-of-concept practical algorithm that recovers the latent variables of an underlying causal model
in synthetic data settings where our assumptions are met.

Limitations. While linear mixing is also directly assumed in Squires et al. (2023), it is still a
strong assumption. However, we argue that identifying causal variables from linear mixtures can
be seen as a crucial module in a larger learning pipeline. Many complementary approaches result
in recovering linear mixtures, such as assuming polynomial mixing functions (Ahuja et al., 2023a),
considering multi-task prediction problems (Lachapelle et al., 2023), learning of nonlinear causal
effects with anchor variables (Saengkyongam et al., 2023), or a large class of problems where deep
neural networks are used (Roeder et al., 2021).

Our proposed practical implementation of our theory into a learning algorithm provides empirical
evidence that our assumptions suffice for identifying causal variables using multi-node data. However,
we only consider one class of interventions that satisfy our assumptions, while there are of course
many more families of interventions that do so as well. While our algorithm is likely not the most
general implementation of our theory, we stress that it merely stands as an empirical proof-of-concept
and generalizing it to all possible cases where our assumptions are fulfilled was beyond the scope of
this work.

Outlook. Since we consider hard (or do-) interventions in this work, an interesting avenue for
future research would be to explore if this assumption can be relaxed to a more general family of
interventions, similarly to how Zhang et al. (2023) generalize the work of Ahuja et al. (2023a).
Beyond that, exploring if our sparsity of nonzero variance dimensions principle is also applicable to
nonlinear mixtures presents itself as a natural next step.
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Appendix A. Proofs

A.1. Auxiliary Lemmata

In order to prove our main result in Theorem 5, we require some additional lemmata, which we state
and prove here.

Lemma 3 (Non-vanishing variance under mixing.) For all invertible L ∈ Rd×d,

∀j ∈ [d],Var((ZL)j) ̸= 0.

Proof
We allow for arbitrary SCMs with jointly independent noise terms, which are assumed to be

non-degenerate in the sense that no variable Zi is independent of its own noise term ηi. In other
words, no variable is deterministically determined by its parents.

Let us label the Zi’s such that they are topologically ordered, i.e., Zi is causally prior to Zj for
i < j and Zd is at bottom of the topological order. Each Zi can be expressed as a function of its
parents and respective noise term, i.e.,

Zi = fi(Z1, . . . Zi−1, ηi) , (4)

where in this formulation we do not require functions fi to be minimal, that is fi is not required to
depend on all of its input arguments. Additionally the noises ηi are jointly independent and have
non-vanishing variance. Solving the latent variables in terms of the independent noises η yields,

Zi = gi(η1, . . . , ηi) , (5)

where the gi’s can be calculated by successively substituting structural equations of parents into those
of children.
Consider an invertible matrix L ∈ Rd×d and an arbitrary index j ∈ [d]. Since L is invertible, its j-th
column must have nonzero entries which we will denote by α1 = (L)i1,j , . . . , αs = (L)is,j ∈ R\{0}
where i1 < i2 < · · · < is. Then, we can write

Z̃ := (ZL)j =
s∑

k=1

αkZik . (6)

Now, assume Var(Z̃) = 0 from which we will derive a contradiction. Since the square root of
the variance is a norm (the L2-norm to be precise), Var(Z̃) = 0 implies that

s∑
k=1

αkZik =

s∑
k=1

αkgk(ηi1 , . . . , ηik) = 0 (7)

almost surely with respect to the noise distribution. Since all αk’s are nonzero we have

Zis = − 1

αs

s−1∑
k=1

αkgk(ηi1 , . . . , ηik). (8)

Hence, we have expressed Zis as a function of the noise terms up to is−1, which by the joint
independence of noise terms implies Zis ⊥ ηis . This contradicts our non-degeneracy assumption
stated at the beginning of the proof.
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Before presenting the proof of our main theorem, we require an additional technical lemma,
adapted from Lachapelle et al. (2023, Lemma B.1). We restate it here.

Lemma 4 (Invertible matrices contain a permutation, (Lachapelle et al., 2023)) Let L ∈ Rd×d

be an invertible matrix. There, there exists a permutation σ : [d] → [d] such that Li,σ(i) ̸= 0 for all
i ∈ [d].

Proof Since L is invertible, its determinant is nonzero, i.e.,

det(L) :=
∑
σ∈Sd

sign(σ)
d∏

i=1

Li,σ(i) ̸= 0,

where Sd is the set of d-permutations. This equation implies that at least one term of the sum is
nonzero, meaning there exists σ ∈ Sd such that for all i ∈ [d],Li,σ(i) ̸= 0.

A.2. Proof of Theorem 5

Our main proof is inspired by that of Lachapelle et al. (2023, Theorem B.5). While they prove that
enforcing a certain notion of sparsity in the context of multi-task prediction problems allows for
learning disentangled representations, we can adapt their argument to the setting where we have data
from multiple environments, by considering our specific definition of sparsity w.r.t. nonzero variance
terms in interventional data (cf. Section 3.2).

Theorem 5 (Disentanglement via intervention sparsity.) Assume the data generating process
described in Section 3.1. Let L ∈ Rd×m be an injective matrix and Ẑ = ZL. Suppose Assumption 4
holds. Then, if

EPE
∥ẐE∥Var ≤ EPE

∥ZE∥Var,

Ẑ is causally disentangled up to redundancies w.r.t. Z (cf. Definition 1), where ∥Z·∥Var is defined as
the function ∥Z·∥Var : (E , PE) → R, e 7→ ∥Ze∥Var.

In particular, if m = d, it holds that L = DP, where D is a diagonal invertible matrix and P is
a permutation matrix.

Proof We begin here with the case where m = d from which we will then derive the more general
case with m > d.

Since Ẑ = ZL we can write E∥ZEL∥Var ≤ E∥ZE∥Var, where we drop the subscript of the
expectation for brevity.
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We write

E∥ZE∥Var = Ep(S)EPE|S

[ d∑
j=1

1(Var(ZE
j ) ̸= 0) | S

]

= Ep(S)

d∑
j=1

EPE|S

[
1(Var(ZE

j ) ̸= 0) | S
]

= Ep(S)

d∑
j=1

PE|S
[
Var(ZE

j ) ̸= 0
]

= Ep(S)

d∑
j=1

1(j ∈ S),

where the last step uses the definition of S.
Next, we apply a similar treatment to E∥ZEL′∥Var and write

E∥ZEL∥Var = Ep(S)EPE

[ d∑
j=1

1(Var(ZEL:j) ̸= 0) | S
]

= Ep(S)

d∑
j=1

EPE

[
1(Var(ZEL:j) ̸= 0) | S

]
= Ep(S)

d∑
j=1

PE|S
[
Var(ZEL:j) ̸= 0

]
= Ep(S)

d∑
j=1

PE|S
[
Var(ZE

SLS,j) ̸= 0
]
.

Let Nj denote the nonzero entries of L in column j, i.e., Nj := {i ∈ [d] | Li,j ̸= 0}. Now, we take
the intersection of S and Nj , S ∩Nj , and consider two possible cases.

First, assume S ∩Nj = ∅. Then, we can see that LS,j = 0 and it follows that

PE|S
[
Var(ZE

SLS,j) = 0
]
= 1.

For the second case, consider S ∩Nj ̸= ∅. Now, we can see that LS,j ̸= 0. By Lemma 3 we
have that

Var(ZE
SLS,j) ̸= 0,

and can therefore directly conclude that

PE|S
[
Var(ZE

SLS,j) = 0
]
= 0.

Taking both considered cases and recalling that

PE|S
[
Var(ZE

SLS,j) ̸= 0
]
= 1− PE|S

[
Var(ZE

SLS,j) = 0
]
,
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we can write

PE|S
[
Var(ZE

SLS,j) ̸= 0
]
= 1− 1(S ∩Nj = ∅)

= 1(S ∩Nj ̸= ∅),

and consequently

E∥ẐEL∥Var = Ep(S)

d∑
j=1

1(S ∩Nj ̸= ∅).

Recalling our original constraint, we can now write

Ep(S)

d∑
j=1

1(S ∩Nj ̸= ∅) ≤ Ep(S)

d∑
j=1

1(j ∈ S). (9)

Since L is an invertible matrix, by Lemma 4, we know that there exists a permutation σ : [d] → [d],
such that Lj,σ(j) ̸= 0,∀j ∈ [d]. Since the sum over all dimensions d on the LHS of Eq. (9) is
invariant under σ, we can apply this permutation to the LHS and by collecting terms write

Ep(S)

d∑
j=1

1(S ∩Nσ(j) ̸= ∅)− 1(j ∈ S) ≤ 0. (10)

Now, notice ∀j ∈ [d]

1(S ∩Nσ(j) ̸= ∅)− 1(j ∈ S) ≥ 0,

which holds since whenever j ∈ S it also holds that j ∈ S ∩Nσ(j), since σ by definition permutes
the columns of L such that ∀j there is a nonzero entry Lj,σ(j), and thus j ∈ Nσ(j).

The overall expression in Eq. (10) is non-positive, while all elements of the sum are non-negative,
from which we conclude that all elements of the sum must be equal to zero. We can thus write

∀S ∈ S,∀j ∈ [d],1(S ∩Nσ(j) ̸= ∅) = 1(j ∈ S).

Consequently,

∀S ∈ S,∀j ∈ [d], j /∈ S =⇒ S ∩Nσ(j) = ∅.

Since S ∩Nσ(j) = ∅ ⇐⇒ Nσ(j) ⊆ Sc, where Sc denotes the complement of S, we can write

∀S ∈ S,∀j ∈ [d], j /∈ S =⇒ Nσ(j) ⊆ Sc (11)

∀j ∈ [d], Nσ(j) ⊆
⋂

S∈S|j /∈S

Sc. (12)

Recall Assumption 4, which states that ⋃
S∈S|j /∈S

S = [d] \ {j}. (13)
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If we take the complement of both sides of Eq. (13) and apply De Morgan’s law, we get⋂
S∈S|j /∈S

Sc = {j},

which we insert into Eq. (12) and finally see that Nσ(j) = {j}. From this we conclude that L = DP,
where D is a diagonal invertible matrix and P is a permutation matrix.

Now, consider the case where m > d. Let L′ be an invertible d× d submatrix of L. Note that if
L′ is a submatrix of L, the original constraint in the theorem implies that E∥ZEL′∥Var ≤ E∥ZE∥Var.

For any column j of L with nonzero entries, there exists a d× d invertible submatrix L′(j) that
contains the column j and whose columns are all linearly independent. This holds by the following
argument: there is a submatrix L′′ of L with d independent columns, since L has rank d. If j is not
already a column of L′′, by the exchange theorem from linear algebra we can replace some column
of L′′ with j to obtain the submatrix L′(j) with the desired properties.

Now, for each such L′(j) we can apply the argument of the proof for the case m = d and deduce
that any (nonzero) column j of L consists of a single nonzero entry and thus each Ẑj must be zero,
or a scalar multiple of a latent Zi.

The last step of our proof for the case m = d underlines why we make Assumption 4: after
applying De Morgan’s law, this assumption leaves us with a set that contains a single element, which
in turn directly allows us to conclude that the mixing matrix L consists of a diagonal matrix D and a
permutation P. Just as Lachapelle et al. (2023) state, if we did not make Assumption 4 and this final
step resulted not in a singleton, but a set with multiple elements, this would not allow us to directly
conclude that L = DP. If this were the case, we conjecture that we would only be able to achieve
partial disentanglement of blocks of variables (Lachapelle and Lacoste-Julien, 2022).

Appendix B. Experimental Details

In this section, we present additional details to reproduce all of our experimental results. We begin by
outlining the synthetic data generating process and what exactly is subject to randomization across
runs, continue with implementation and training details of our proposed method, provide details on
the nonlinear SCMs we use in our experiments, introduce the metric we use to quantify our results
and finally present additional experimental results not reported in the main text.

B.1. Synthetic Data Generation

Across all experimental settings, we use a train/test split of 75/25, meaning if we have n = 100000
samples per environment, we use ntrain = 75000 samples for training and ntest = 25000 samples to
evaluate our metric.

For each random seed, we resample the underlying SCM, resample n samples from the resulting
SCM and reinitialize our algorithm with new initial weights for L̂. The ground truth matrix L is
sampled once and kept fixed across random seeds. We show that our results do not rely on a cherry
picked mixing matrix by reporting additional runs over random seeds for randomly resampled L (cf.
Appendix B.5).
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B.2. Implementation and Training Details

We use pytorch (Paszke et al., 2019) to implement our algorithm in practice. For optimization,
we use the adamW algorithm (Loshchilov and Hutter, 2018) with learning rate lr = 2 ∗ 10−3 and
otherwise default parameters provided by pytorch. For all experiments, we use a batch size of
4096 and train for 50 epochs.

We refrain from performing hyperparameter optimization in this work. All hyperparameters
are chosen to roughly result in equal magnitudes of each respective loss term and shared across all
experiments. The values of the hyperparameters are chosen as

λe = 1,

λm = 1,

λdiag = 10,

λnorm = 5.

For the implementation of ICA, we use the FastICA algorithm (Hyvärinen and Oja, 2000).

B.3. Nonlinear SCMs

We sample the adjacency matrix of the graph of both nonlinear SCMs according to the procedure
detailed in Section 4.2 with p = 0.75. The resulting graph that is shared by both models is shown in
Fig. 3.

The structural equations of SCM 1 are:

Z1 := η1,

Z2 := Z2
1 + η2,

Z3 := Z2
1 + Z2

2 + η3,

Z4 := Z2
1 + Z2

2 + Z2
3 + η4,

Z5 := Z2
1 + Z2

3 + Z2
4 + η5,

Z6 := Z2
2 + Z2

3 + Z2
4 + Z2

5 + η6,

and those of SCM 2 are defined as:

Z1 := η1,

Z2 := sin(Z1) + η2,

Z3 :=
√
Z1 + Z2 + η3,

Z4 := log(Z2
1 + Z2) + Z2

3 + η4,

Z5 := Z3 cos(Z1) + arctan(Z4) + η5,

Z6 := Z2Z3e
Z2
4

Z5 + η6.
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Figure 3: Causal graph of SCM 1 and SCM 2.

B.4. Metric

Here, we present the formal definition of our used metric, the mean correlation coeffiecient (MCC)
(Hyvärinen and Morioka, 2016; Khemakhem et al., 2020).

Let C be the Pearson correlation matrix between the ground truth variables Z and the learned
variables Ẑ. Then, the MCC score is defined as

MCC := max
π∈Sd

1

d

d∑
j=1

|Cj,π(j)|,

where Sd is the set of d-permutations and |·| denotes the absolute value.

B.5. Additional Experiments

Here, we present repetitions of the experiment in Section 4.3 where we vary the number of ground
truth variables d under additional random samples of the mixing matrix L. The results are reported
in Fig. 4.
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Figure 4: Experiments for changing number of variables d for additional mixing matrices L. Each
subfigure corresponds to a different L. We report the mean MCC score for five random seeds with
error bars indicating the standard error.
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