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Abstract
Causal abstraction (CA) theory establishes formal criteria for relating multiple structural causal
models (SCMs) at different levels of granularity by defining maps between them. These maps have
significant relevance for real-world challenges such as synthesizing causal evidence from multiple
experimental environments, learning causally consistent representations at different resolutions,
and linking interventions across multiple SCMs. In this work, we propose COTA, the first method
to learn abstraction maps from observational and interventional data without assuming complete
knowledge of the underlying SCMs. In particular, we introduce a multi-marginal Optimal Transport
(OT) formulation that enforces do-calculus causal constraints, together with a cost function that relies
on interventional information. We extensively evaluate COTA on synthetic and real world problems,
and showcase its advantages over non-causal, independent and aggregated OT formulations. Finally,
we demonstrate the efficiency of our method as a data augmentation tool by comparing it against
the state-of-the-art CA learning framework, which assumes fully specified SCMs, on a real-world
downstream task.
Keywords: structural causal models, causal abstractions, causal abstraction learning, causal optimal
transport, multi-marginal optimal transport

1. Introduction

Learning relations between models and underlying representations at different levels of granularity is
a key challenge across sub-fields of AI as it can enable aggregation of information, transfer learning,
emulation via surrogate models, and multi-scale estimation and reasoning e.g. (Weinan, 2011;
Somnath et al., 2021; Geiger et al., 2021). Rigorous relationships of abstraction between such models
would enable utilising seemingly incompatible data, leading to improved inferences via evidence
synthesis and cost savings by minimising the need for extensive data collection.

In causality the notion of abstraction is fundamental for causal representation learning, where
causal variables might be abstractions of underlying quantities or when relations are sought between
micro- and macro-level models of the same underlying process (Schölkopf et al., 2021; Chalupka
et al., 2017). Relations between causal models and estimands across multiple environments have
been studied under transportability (Pearl and Bareinboim, 2011) and multi-environment causal
analysis (Peters et al., 2016; Yin et al., 2021). A theory of causal abstraction has been formalised
(Rubenstein et al., 2017; Beckers and Halpern, 2019; Rischel, 2020; Massidda et al., 2022) through
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the definition of a map relating two causal models representing the same system in different levels of
detail and a measure of interventional consistency evaluating the discrepancy between the two under
interventions (Beckers et al., 2020; Rischel, 2020). This framework has been used in the field of
explainability (Geiger et al., 2021), where, given an abstraction, a neural network is trained to behave
consistently with an abstracted model. While limited work exists on abstraction learning, (Zennaro
et al., 2023) proposed a differentiable programming solution to learn an abstraction between two
causal models in the α-abstraction framework of Rischel (2020), but with the strong assumption that
the underlying causal models were fully specified. In this work, we lift this restrictive assumption of
complete SCM knowledge and study the more realistic setting in which the information available to
the modeler is the graph underlying the causal model together with observational and interventional
data. We make the following contributions:

• We formalise the problem of learning causal abstractions (CA) from observational and inter-
ventional data in the (τ, ω)-framework (Rubenstein et al., 2017).

• We introduce the first method to address this problem without assuming full knowledge of
the underlying causal models and showcase its superiority against our multiple developed
baselines and prior work (Zennaro et al., 2023) of alternative CA learning frameworks that also
assumes fully specified SCMs.

• To do so, we develop a causal Optimal Transport (OT) formulation for abstraction learning,
named COTA, where observational and interventional distributions of the base and abstracted
models act as marginals in a Kantorovich (1942) joint OT problem with multiple transport
plans. Further, we prove the joint convexity of COTA in the induced plans, guaranteeing an
optimal solution to the optimization problem.

• We incorporate causal knowledge to the optimisation problem by introducing do-calculus
constraints and a causally informed cost function. We demonstrate that this enables us to
learn better abstraction maps compared to non-causal or independent solutions and also makes
COTA a potent data augmentation tool.

2. Background on causality, abstractions, and optimal transport

In this section we introduce basic definitions from the field of causality, causal abstractions, and
optimal transport. We use the following standard notation to formalise causal models: boldface
capital X denotes a set of random variables, and capital letter Xi denotes the i-th random variable
in X; boldface small x denotes a set of values realising X; xi denotes the i-th value in x. We use
boldface P to refer to the underlying probability measures.

2.1. Causality

Definition [SCM (Pearl, 2009)] A structural causal modelM is a tuple ⟨X,U,F ,P(U)⟩, where X
is a set of N endogenous random variables, each one with domain dom[Xi], 1 ≤ i ≤ N ; U is a set
of exogenous random variables each associated with an endogenous variable; F is a set of structural
functions, one for each endogenous variable Xi ∈ X defined as fi : dom[PA(Xi)]× dom[Ui]→
dom[Xi] where PA(Xi) ⊆ X \Xi; P(U) =

∏N
i=1 P(Ui) is a joint probability distribution over U.

We make a few standard assumptions on our SCMs. We assume acyclicity, implying that the SCM
M entails a directed acyclic graph (DAG) GM where nodes correspond to the endogenous variables
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X and edges are defined by the signature of the functions in F (Peters et al., 2017). 1 We will also
assume faithfulness, guaranteeing that independencies in the data are captured in the graphical model,
and causal sufficiency, meaning that there are no unobserved confounders (Spirtes et al., 2000).

Definition [Interventions (Pearl, 2009)] Given a SCMM, an (exact) intervention ι = do(A = a),
where for each endogenous variable Ai ∈ A ⊆ X we have a value ai ∈ a and ai ∈ dom[Ai], is an
operator that replaces each function fi associated with the variable Ai with the constant ai.

Graphically, the intervention ι = do(A = a) mutilates the induced graph GM by removing the
incoming arrows in each node Ai and replacing fi with the constant ai. In this way, an interven-
tion defines a new post-intervention SCMMι described by the probability distribution PMι(X).
Whenever clear from the context, we shorthand do(A = a) to do(a).

Also, sets of interventions are equipped with a natural partially-ordered set (poset) structure2

with respect to containment: given ι = do(a) and η = do(b), ι ⪯ η iff A ⊆ B and whenever
Bj = Ai then bj = ai (Rubenstein et al., 2017).

Definition [Compatibility] Given a set of values b ∈ dom[B], B ⊆ X, and an intervention
ι = do(a) we say that b and ι are compatible Cmp(b, ι) if do(a) ⪯ do(b).

Thus, a set of values b such that Cmp(b, ι) is a set of values that agrees with the intervention ι; a set
of values b for which it does not hold Cmp(b, ι), is a setting ofM that is ruled out by ι.

2.2. Causal Abstractions

Causal abstractions formalise relations between low-level (base) and high-level (abstracted) models,
enabling causal evidence synthesis and consistent representation learning among them. This allows
shifting between varying levels of granularity based on the specific inquiry or available data.

Definition [τ -ω Exact Transformation (Rubenstein et al., 2017)] Given a base modelM and an
abstracted modelM′ respectively equipped with posets I, I ′ of interventions, and a surjective and
order-preserving map ω : I → I ′, a τ -ω transformation is a map τ : dom[X] → dom[X′]. An
exact transformation is a map τ such that

τ# (PMι(X)) = PM′
ω(ι)

(X′), ∀ι ∈ I. (1)

For the ω map, order-preserving implies that ι ⪯ η =⇒ ω(ι) ⪯ ω(η) and surjective that
∀ι′ ∈ I ′ ∃ ι ∈ I such that ω(ι) = ι′. An exact τ -ω transformation is a form of abstraction between
probabilistic causal models (Beckers et al., 2020) that ensures commutativity between interventions
and transformations: intervening via ι and then abstracting via τ leads to the same result as abstracting
first via τ and then intervening via ω(ι). Exactness is rare in realistic scenarios due to approximation
and uncertainty. Thus, we permit approximate transformations (Beckers et al., 2020; Rischel and
Weichwald, 2021) and introduce the concept of average abstraction error.

1. Also, assuming the measurability of the structural functions in F we can derive, via a pushforward over the functions
in F , the probability distribution PM(X) over the endogenous variables.

2. A partially-ordered set (poset) is a pair (S,⪯), with a non-empty set S and reflexive, anti-symmetric, and transitive
relation ⪯. In a poset, elements are comparable if one precedes the other. Totally-ordered sets are posets, where all
their element pairs are comparable.
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Definition [Abstraction error] Let τ be a τ -ω transformation between SCMM andM′ wrt I and
ω. Given a discrepancy measure D between distributions, and a distribution q over the intervention
set I, we evaluate the approximation introduced by τ as the abstraction error:

e(τ) = Eι∼q

[
D
(
τ#(PMι), PM′

ω(ι)

) ]
(2)

We assume a uniform distribution q over I , treating each intervention as equally important. However,
a modeller may modify this distribution, assigning varying importance to interventions of particular
interest. Fig. 1 (left) shows the commutative diagram induced by such an approximate abstraction.

2.3. Optimal Transport

Optimal Transport theory (Villani et al., 2009) provides a mathematical framework to efficiently
redistribute probability mass between distributions by minimising a cost function. Consider two
probability measures PM(X),PM′(X′) on domains dom[X],dom[X′]. When only samples from
the measures are available, computational OT resorts to the corresponding empirical measures of
them (Peyré et al., 2019), say P̂M(X) = α, P̂M′(X′) = β. Thus, we obtain i.i.d. data from
the distributions, {xj}Nj=1 ∼ PM(X), {x′

i}Mi=1 ∼ PM′(X′) and construct the empirical measures
as α =

∑N
j=1 αjδxj , β =

∑M
i=1 βiδx′

i
where δ is the Dirac measure. Note that in principle

dom[X], dom[X′] could be either continuous or discrete.
The Monge (1781) formulation of OT then aims to find a map T : dom[X] → dom[X′] that

pushforwards α onto β, the one that minimises:

T ⋆ = argmin
T : T#α=β

∑N

j=1
c(xj , T (xj)) (3)

where c : X × X′ → R≥0 represents the cost of moving a unit mass from X to X′. Due to the
challenge of unique solution existence of Eq. (3), Kantorovich (1942) introduced a more flexible
formulation that seeks to find a coupling matrix, defined as an element of the set of stochastic
matrices with given marginals, i.e., U(α, β) = {P ∈ RM×N

≥0 : P1M = α, P⊤
1N = β}. The set

U(α, β) is bounded and defined by M +N equality constraints, and therefore is a convex polytope
(Peyré et al., 2019). Solving the induced OT problem directly often poses significant computational
challenges. To address this issue, Entropic OT, an efficient and tractable formulation of OT which
incorporates an entropic regularization term, is usually used in practice . This is formalised as:

P ⋆ = OTc(α, β) = argmin
P∈U(α,β)

⟨C,P ⟩ − ϵH(P ) = argmin
P∈U(α,β)

∑M,N

i=1,j=1
Ci,jPi,j − ϵH(P ) (4)

where ⟨·, ·⟩ denotes the Frobenius inner product, C ∈ RM×N
≥0 is a cost matrix where each element

is constructed with the OT cost function Ci,j = c(x′
i,xj) and H(P ) is the discrete entropy of the

coupling matrix P with ϵ > 0 a trade-off parameter. The original Kantorovich OT problem is now a
special case of Eq. (4) when the entropic regularization parameter ϵ is set to 0. Further details on
Optimal Transport, can be found in Appendix H.

3. Abstraction Learning as Multi-marginal Optimal Transport

In this section we formalise the CA learning problem from data as a multi-marginal OT problem, and
show how we inject causal information into it. We assume (a) access to the causal DAGs of the base
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Figure 1: (Left) Abstraction commutative diagram. We run two different paths: (a) apply ι on
the base modelM, and then τ ; or (b) apply τ to get the abstracted modelM′, and then ω(ι). We
compute the distance between τ#(PMι) and PM′

ω(ι)
using a divergence D, indicated by the dotted

line. If D = 0, the commutative diagram expresses an exact τ -ω abstraction. (Middle) The action of
the ω map on a poset of interventions I = {∅, ι1, ι2, ι3, }. The map ω is a surjective order-preserving
map from I to I ′. (Right) The action of τ map on a poset of distributions induced by I. A single
map τ pushforwards all the base distributions PMι onto abstracted distributions PM′

η
.

M and the abstractedM′ models; (b) a finite set of interventions I; (c) an intervention mapping
ω : I → I ′; (d) samples from the observational and interventional distributions. Thus, each base
model intervention ι ∈ I and its image ω(ι) ∈ I ′ yield a pair of empirical distributions, denoted as
πι = {(P̂Mι(X), P̂M′

ω(ι)
(X′))}. We define the set of all these pairs as Πω(I); see Fig. 1(middle) for

the structure of Πω(I). Our aim is to learn a single τ -ω transformation from data sampled from the
pairs in Πω(I). We address this challenge by viewing each pair πι as marginals in an Entropic OT
problem within the Kantorovich formulation for discrete measures3. We compute a plan P ι for each
pair πι, thereby leading to a multi-marginal optimization problem, made up of |Πω(I)| independent
OT problems:

P ⋆ = OTc(Πω(I)) = argmin
{P ι∈U(πι)}ι∈I

{∑
ι∈I

〈
C,P ι

〉
− ϵH(P ι)

}
(5)

where U(πι) is the transport polytope of each pair πι. As shown in Fig. 1 (right), since we are looking
for a single transformation τ , the plans P ι obtained by solving Eq. (5) have to be aggregated into a sin-
gle plan P̄ , from which the map τ can be derived. In our context, we compute the final τ as a stochastic
mapping fs : dom[X]→ A|dom[X′]|, induced from P , where An = {p ∈ Rn, : pi ≥ 0,

∑
i pi = 1}

the simplex in Rn, to account for uncertainty of the learned abstraction with n <∞ in order to allow
the computation of the probability vectors. The stochastic mapping converts the mass allocation,
induced by P̄ , by assigning each base sample to a probability vector, depicting a distribution over the
abstracted samples.

Introducing causal knowledge into OT. The optimization problem of Eq. (5) is a collection of
independent OT problems. However, we know that the marginals of different plans that correspond
to the same model are linked since they are interventional distributions of the same SCM and could be
formally related via do-calculus operations. Furthermore, standard costs used in OT (e.g. l1, l2, lp)
cannot capture a meaningful notion of distance between the domain of the base and the abstracted

3. The Kantorovich framework is essential for abstraction problems where marginal distribution dimensions mismatch,
necessitating mass splitting between base and abstract points, which renders Monge maps infeasible.
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model. For these reasons, we enrich Eq. (5) in two ways: (a) by establishing structural causal
constraints amongst the different plans able to capture the relation of their marginals and (b) by
introducing causal knowledge through the definition of a suitable cost function which integrates
knowledge from the ω map. We show how such an enrichment transforms the initial problem into a
joint causally informed multi-marginal optimization problem.

4. Methodology

In this section we present our methodology: Section 4.1 shows how do-calculus (Pearl, 2009)
constraints can be incorporated into the optimization problem; Section 4.2 defines a meaningful cost
for the OT problem; Section 4.3 presents the end-to-end COTA algorithm and analyzes its convexity
and computational complexity.

4.1. Do-calculus constraints for optimal transport of abstractions

As mentioned in Section 3, marginals of different plans can be related via do-calculus when they refer
to the same SCM. We first analyze the intervention set structure to identify comparable interventions.

Definition [(Maximal) Chain] Given a poset I, a chain Iq is a totally ordered subset of I. Let
C(I) = {I1, . . . , IQ} be the set of all chains for I. A chain Iq ∈ C(I) is maximal if ¬∃ chain
Is ∈ C(I) such that Iq ⊂ Is.

Interventions ι, η ∈ I are comparable ι ⪯Iq η if there exists at least one chain Iq to which they both
belong. Notice that comparability in I extends immediately to I ′ because of the order-preservation
of ω. Further, we also extend the notion of comparability to transport plans.

Definition [Comparable plans] Let intervention pairs of distribution πι, πη for ι, η ∈ I. The
induced transport plans P ι, P η are comparable P ι ⪯ P η iff ∃ Iq ∈ C(I) such that ι ⪯Iq η.

Marginals of comparable plans can be related via do-calculus. Let ι = do(a), ω(ι) = do(a′) and
η = do(b), ω(η) = do(b′), such that ι ⪯Iq η. Let also the corresponding plans P ι ⪯ P η be defined
over the empirical measures P̂Mι , P̂Mω(ι)

and P̂Mη , P̂M′
ω(η)

respectively. We will show now show
how a causal constraint may be derived by equating the relationships given by OT and do-calculus.

OT relationship. The mass conservation constraints U(πι) on P ι induced by OT guarantee that:

Base︷ ︸︸ ︷
P̂Mι(Xj) =

(∑
i
P ι
i,j

)
j
∀j ∈ dom[X]

Abstracted︷ ︸︸ ︷
P̂M′

ω(ι)
(X ′

i) =
(∑

j
P ι
i,j

)
i
∀i ∈ dom[X′] (6)

do-calculus relationship. Causal inference theory (Pearl, 2009, Chapter 3, pp. 73) relates interven-
tional distributions via the truncated factorization (or g-formula). Without loss of generality, let πι
be the pair of observational distributions, where ι, ω(ι) are the null interventions. Then, it holds that:

PMdo(b)
(X) =

{ PM(X)∏
i PM(Bi=bi | PA(Bi))

if Cmp(x, do(b))

0 otherwise

}
Base (7)
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In our empirical setup, we express Eq. (7) through the minimization of a statistical divergence
d : RD ×RD → R≥0, where D is |dom[X]| for the base and |dom[X′]| for the abstracted model, as
follows:

d

(
P̂Mdo(b)

(X),
1∏

i P̂M(Bi = bi | PA(Bi))
P̂M(X)

)
if Cmp(x,do(b))

}
Base (8)

Throughout, we will work with the general class of Bregman divergences (Dhillon and Tropp, 2008).
An equivalent relationship to Eq. (8) for the distributions of the abstracted model may be derived.

Integrating do-calculus and OT. Finally, in order to express Eq. (8) in terms of the optimization
variables P ι, P η, we substitute in the mass conservation constraints for both the base and the
abstracted models given by Eq. (6):

δι,η(P
ι, P η) := d

((∑
i

P η
i,j

)
j
,

1

(Zη)j

(∑
i

P ι
i,j

)
j

)
if Cmp(xj , η).

}
Base (9)

δ′ι,η(P
ι, P η) := d

(∑
j

P η
i,j

)
i
,

1

(Zω(η))i

(∑
j

P ι
i,j

)
i

 if Cmp(x′i, ω(η)).

}
Abstracted

(10)
where Zη,Zω(η) are the normalizing vectors for the base and the abstracted distributions respectively,
induced from Eq. (7); see Appendix A for their derivation in terms of the plans. Instead of computing
independently the OT plans as in Eq. (5) we can jointly learn plans that preserve causal relations by
incorporating the base and abstracted model distances D(P ι, P η) = [δι,η, δ

′
ι,η]

⊤ defined over the
marginals of two plans.

4.2. A causally informed cost function

The OT cost function captures the transport problem’s geometry in order to find the optimal plan.
Although in R costs like lp can represent the distance between samples, this is not trivial when dealing
with samples between causal models. However, the ω map of the τ -ω transformation provides a
solution by formally encoding the interventional relationship between samples of two SCMs. In
order to compute a distance between samples x ∈ dom[X] of the base and x′ ∈ dom[X′] of the
abstracted model, given interventions ι = do(a) and ω(ι) = do(a′), we exploit ω to discount the
cost of transporting sample a to a′. We then define cω : dom[X]× dom[X′]→ R≥0:

cω(x,x
′) = |I| −

∑
ι∈I

1
[
Cmp(x, ι) ∧ Cmp(x′, ω(ι))

]
, (11)

where 1[a] is the indicator function returning one if the condition a is satisfied. The function cω
discounts the cost of transporting the sample x to x′ proportionally to the number of pairs (ι, ω(ι))
w.r.t. which x and x′ are compatible. Hence, the larger and more diverse the set of pairs Πω(I) is,
the more informative the ω-cost will be, thereby enhancing its capacity to convey comprehensive
insights into the cost matrix. This sensitivity of cω to I is demonstrated in Section 6. Finally, by
construction, Cω has the advantage of being is invariant to the ordering of the values x (columns)
and x′ (rows). In Appendix C we offer an illustration of a Cω matrix derived from cω and further
discuss the construction of ω-costs.
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4.3. The causal optimal transport of abstractions (COTA) objective

We now discuss how we can integrate the do-calculus constraints discussed in Section 4.1 and the
ω-informed cost presented in Section 4.2 in the the OT framework to jointly solve multiple transport
problems and learn an abstraction τ . For a given set of pairs Πω(Ik) = {πι1 , · · ·πιN | ιn ∈ Ik}
where Ik a maximal chain, we define the objective function of COTA as the following OT problem:

P ⋆
k = COTAc (Πω (Ik)) = argmin

{P ιn∈U(πιn )}ιn∈Ik

κ ·
∑
ιn∈Ik

⟨Cω, P
ιn⟩︸ ︷︷ ︸

OT

+λ⊤ D(P ιn , P ιn+1)︸ ︷︷ ︸
do-calculus constraints

−µ · H(P ιn)︸ ︷︷ ︸
entropy

 ,

(12)

where λ = [λ, λ′]⊤ and (κ,λ, µ) a convex combination, i.e. κ+ λ+ λ′ + µ = 1 for κ, λ, λ′, µ ≥ 0.
Thus, we transformed the initial CA problem of Eq. (5) into a joint multi-marginal OT problem
integrated with causal knowledge from different sources. Algorithm 1 presents the end-to end
implementation of COTA. The complexity of the algorithm isO(Nmax+Nchains · (D3

max logDmax)),
where Nmax = max (N,N ′) with N,N ′ respectively the number of samples for base and abstracted
model, Nchains the number of maximal chains, and Dmax = max (D,D′) with D = |dom[X]| , D′ =
|dom[X′]|. The first term accounts for the complexity of line 3, while the second term accounts
for the loop of line 13 and the internal call of the COTA solver. The entropy regularizationH(Pιn)
allows for a speed up to O(D2) with Sinkhorn algorithms (Peyré et al., 2019). In Appendix F we
also present Approximate COTA, an approximation that halves the causal constraints D(·, ·) of
the optimisation problem of Eq. (12).

Theorem 1 (Convexity of COTA) The optimization problem given by Eq. (12) is jointly convex in
the transport plans {P ιn ∈ U(πιn)}ιn∈Ik ∀Ik ∈ C(I). When µ > 0, it is strictly convex.

Proof (sketch) The main assertion that needs to be shown is the joint convexity of the function
{P ιn}ιn∈Ik → κ ·

∑
ιn∈Ik ⟨Cω, P

ιn⟩+ λ⊤ · D(P ιn , P ιn+1) + µ · H(P ιn) in all of the plans. 4 To
show the main assertion, we use two inequalities following directly from the convexity definition
of the single plan function P ιn → ⟨Cω, P

ιn⟩ and from the joint convexity of (P ιn , P ιn+1) →
D(P ιn , P ιn+1) in P ιn , P ιn+1 . Further, note that the entropic regulariser H(P ιn) is known to be a
strictly convex function of P ιn (Peyré et al., 2019). Finally, since the function defined by the set of
all the plans in Ik is a summation, combining these two inequalities gives the desired result, with
strict convexity holding for µ > 0 due toH(P ιn). The full proof is provided in Appendix B.

5. Related work

In this section we briefly review related works of OT within the domain of causality and the multi-
marginal techniques akin to our own methodology. There has been increasing interest in applying OT
methodology to perform inference in causal models. Regarding treatment effect estimation, Torous
et al. (2021) propose estimators of binary treatment effects in the potential outcome framework
based on OT to handle high-dimensional covariates; Gunsilius and Xu (2021) address covariate
matching in multi-valued treatments via multi-marginal OT. Recently, Tu et al. (2022) propose

4. Other conditions, like convex constraints and domain properties, are satisfied by stochastic matrices; see Appendix B.
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Algorithm 1 COTA
Require: DAGs forM[X],M′[X′], sets I, I ′ and ω : I → I ′, surjective and order-preserving.
Ensure: τ : dom[X]→ A| dom[X′]|, where An = {p ∈ Rn : pi ≥ 0,

∑
i pi = 1}.

1: for ι ∈ I do:
2: {xj}Nj=1 ∼ PMι(X), {x′

i}Mi=1 ∼ PM′
ω(ι)

(X′) # sampling from the true distributions

3: P̂Mι(X)←
∑N

j=1 αjδxj , P̂M′
ω(ι)

(X′)←
∑M

i=1 βiδx′
i

# construct the empirical measures

4: for j = 0 to N do:
5: for i = 0 to M do:
6: Cω[i, j]← |I| −

∑
ι∈I 1 [Cmp(xj, ι) ∧ Cmp(xi

′, ω(ι))] # compute the ω-cost matrix

7: C(I)← compute_chains(I) # compute the set of all maximal chains of I
8: for Ik ∈ C(I) do:
9: Πω(Ik)← ∅

10: for ι ∈ Ik do:
11: Πω(Ik)← Πω(Ik) ∪ {(P̂Mι , P̂M′

ω(ι)
)} # compute the set of pairs for every Ik

12: P ← ∅
13: for Ik ∈ C(I) do:
14: P ← P ∪ {COTAc(Πω (Ik)} # run COTA for every Ik and assemble the set of all plans

15: if COTA(P̂) then P̂ ← 1
|P|
∑|P|

t=1 Pt

16: Return: τ ← fs(P̂) # return the final τ as the stochastic mapping fs(·) of the average plan

17: if COTA(τ̂) then f̂s(Pt)← 1
|P|
∑|P|

t=1 fs(Pt)

18: Return: τ ← f̂s(Pt) # return the final τ as the average stochastic mapping fs(·) of the plans

the use of OT to perform bivariate causal discovery in the context of continuous data and additive
noise, with benefits such as avoiding to specify likelihoods and efficient computation due to one-
dimensional distributions. Additionally, an extension of OT to multiple marginals is considered in
Peyré et al. (2019); Pass (2015); Kostic et al. (2022). In this setting, the problem involves finding
couplings between source and target distributions, even in high-dimensional cases. Differently from
our formulation, this multi-marginal setup does not consider any relations between the computed
transport plans. Finally, in Table 21 of Appendix I we provide a comparative table, showcasing the
different proposed approaches in CA learning, including also concurrent research works.

6. Experiments

Throughout the experiments, we investigate the performance of COTA under diverse experimental
settings and in different tasks in order to showcase: (a) its superiority over non-causal solutions;
(b) the actual gains of introducing the do-calculus constraints into the optimization routine; (c) the
advantage of the causally informed ω-cost, relative to the size and diversity of the intervention set,
compared to standard/non-causal costs; and (d) the efficiency of COTA as a data augmentation tool
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in a downstream task compared to established state-of-the-art CA learning frameworks. The code
and results for all experiments are publicly accessible 5.

COTA. We run COTA considering two Bregman divergences for the distance term D of Eq. (12),
the Frobenius norm (FRO) and the Jensen–Shannon Divergence (JSD). We also run an ablation study
in which we replace cω in COTA’s objective with a conventional cost cH based on the Hamming
distance and compare the two costs’ performance. Finally, regarding the parameter λ = [λ, λ′]⊤

in Eq. (12), in the main paper we demonstrate the equal weight case where λ = λ′6 and provide
additional results from the more general case of λ ̸= λ′ in Appendix E.

Baselines. In addition, we compare our method with three alternative setups which serve as
baselines. These configurations consist of non-causal independent solutions of the OT problem, as
described in Eq. (5), or barycentric adaptations of the standard OT framework. In particular:

• In Pwise OT we apply OTc to generate a set of k independent plans P = {P1, . . . , Pk} and
aggregate them into an average single plan P̂ and compute τ = fs(P̂). This is equivalent to
COTA(P̂) when κ = 1, λ = 0 and µ = 0.

• In Bary OT we first compute two barycenters: one of the base model’s (ᾱ) and one of the
abstracted model’s distributions (β̄) and then solve the standard OTc (single-pair) problem for
(ᾱ, β̄), to compute the plan P̄ , and finally compute τ = fs(P̄ ).

• In Map OTwe apply OTc to generate the set of k plansP = {P1, . . . , Pk}, compute the k inde-
pendent stochastic maps from them and compute τ as the average of them τ = ̂{fs(Pi)}i∈[K].
This is equivalent to COTA(τ̂) when κ = 1, λ = 0 and µ = 0.

Evaluation. Across all scenarios, we assess the learned τ in terms of the abstraction error from
Eq. (2) using the JSD (eJSD(τ)) and the Wasserstein (eWASS(τ)) distances by employing a leave-one-
pair-out procedure to measure the quality and the robustness of the learned abstraction. Specifically,
we remove one pair πi = (αi, βi) from Πω(I), learn τ from the remaining pairs, and measure
the e(τ) distance between τ#(αi) and βi. All reported measures are presented as the mean and
standard deviation over 50 repetitions with a 95% confidence interval. For COTA we select the
hyperparameters (κ, λ, µ) via a grid-search of 100 convex combinations.

6.1. Causal Abstraction Learning Simulations

The DAGs alongside their intervention sets for all the following scenarios are presented in Appendix G.

Simple Lung Cancer (STC). This motivating example is made up by a discrete base model with a
chain structure (Smoking→ Tar→ Cancer) and an abstracted that removes the mediator node. We
investigate two different scenarios: when the interventions are performed on variables (a) without
parents (STCnp) and (b) with parents (STCp). Table 1 showcases the abstraction error of COTA in
STCnp and demonstrates its superiority against all the different baselines, both for eWASS(τ) and
eJSD(τ). Also, notice how cω returns a lower abstraction error compared to cH, not only in different
settings of COTA, but also with baseline ones. This suggests that indeed the ω-cost can provide more
relevant information for learning an abstraction. Further, in Fig. 2 we highlight the impact of the

5. github.com/yfelekis/COTA

6. i.e. λ⊤ · D(P ι, P η) = [λ, λ] ·
[
δι,η
δ′ι,η

]
= λ · (δι,η + δ′ι,η).
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Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.010± 0.005 0.011± 0.003
cH 0.087± 0.007 0.025± 0.001

JSD cω 0.012± 0.006 0.012± 0.003
cH 0.087± 0.006 0.025± 0.001

COTA(τ̂ ) FRO cω 0.013± 0.021 0.171± 0.001
cH 0.169± 0.005 0.178± 0.001

JSD cω 0.014± 0.021 0.171± 0.001
cH 0.169± 0.004 0.178± 0.001

Pwise OT – cω 0.013± 0.002 0.011± 0.002
– cH 0.093± 0.004 0.039± 0.002

Map OT – cω 0.023± 0.022 0.147± 0.001
– cH 0.169± 0.022 0.156± 0.001

Bary OT – cω 0.233± 0.142 0.067± 0.042
– cH 0.323± 0.074 0.095± 0.039

Table 1: Abstraction error evaluation for the
STCnp example. The configuration COTA(P̂ )−
FRO−cω yields the lowest abstraction error when
compared to all other settings and baselines, for
both metrics. A "rich" intervention set cω effec-
tively captures the correspondence between sam-
ples leading to superior performance over cH in
all COTA settings and baselines.

Figure 2: Effect of λ for the STCnp example.
The ternary plot illustrates a grid-search amongst
1000 convex combinations of (κ, λ, µ) for the
COTA(P̂ )−FRO−cω setting. Values of λ close to
zero present high abstraction error, demonstrating
the benefit of the do-calculus constraints in the
OT problem. The minimum is reached at (.81, .17,
.02) and is denoted with "×".

Method D C eJSD(τ) eWASS(τ)

COTA(τ̂ ) FRO cω 0.249± 0.005 0.135± 0.001
cH 0.229± 0.003 0.129± 0.001

Table 2: Abstraction error for the STCp example
with I = {do(T = 0),do(T = 1)}. Cost cH
outperforms cω due to limited intervention set I.

Method D C eJSD(τ) eWASS(τ)

COTA(τ̂ ) FRO cω 0.379 0.053
cH 0.220 0.053

Table 3: Abstraction error for the EBM example.
The conventional cost cH outperforms cω due to
a limited intervention set I.

parameter λ, which weighs the do-calculus constraints’ term in Eq. (12); as the best performing
setting of COTA is reached for λ > 0, this validates the hypothesis that introducing causal constraints
helps learning better abstractions. In the STCp scenario, COTA still outperforms the baselines (see
Appendix E), although Table 2 shows that cH returns a lower abstraction error compared to cω. We
argue that this is likely due to the dependency of ω-cost on the intervention set, which, in this case,
comprises only two interventions. As explained in Section 4.2 such a small intervention set leads to
an almost-uniform and uninformative ω-cost, and in such case a conventional cost like Hamming
might be able to capture certain patterns more efficiently. Visualizations of the induced cost matrices
for both functions can be found in Fig. 4 and Fig. 5 in Appendix C.
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Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.287± 0.014 0.044± 0.001
cH 0.287± 0.014 0.047± 0.001

COTA(τ̂ ) FRO cω 0.263± 0.005 0.061± 0.001
cH 0.263± 0.006 0.061± 0.001

Pwise OT – cω 0.306± 0.009 0.045± 0.001
– cH 0.387± 0.002 0.047± 0.001

Map OT – cω 0.294± 0.008 0.054± 0.001
– cH 0.350± 0.005 0.054± 0.001

Bary OT – cω 0.294± 0.047 0.044± 0.003
– cH 0.414± 0.040 0.046± 0.010

Table 4: Abstraction error for LUCAS. The
configuration COTA(τ̂) − FRO yields the low-
est abstraction error for the JSD metric and the
COTA(P̂ )−FRO− cω setting for the WASS met-
ric. The ω-cost cω outperforms cH .

Training set Test set Zennaro et al. (2023) COTA

LRCS[CG ̸= k] LRCS[CG = k] 1.86± 1.75 1.40± 1.39

LRCS[CG ̸= k] LRCS[CG = k] 0.22± 0.26 0.19± 0.04

+WMG

LRCS[CG ̸= k] LRCS[CG = k] 1.22± 0.95 0.80± 0.55

+WMG[CG ̸= k] WMG[CG = k]

Table 5: MSE of COTA and a SOTA CA frame-
work on a regression task for EBM. Augmenting
data via the learned abstraction reduces the aver-
age error in all different settings compared to the
SOTA. We used COTA(P̂ ) − FRO − cω with the
hyperparameters (κ, λ, µ) = (.2, .5, .3) achieving
the lowest abstraction error.

LUng CAncer Set (LUCAS) This model7 is a large-scale synthetic SCM designed to simulate data
related to the study of lung cancer. Table 4 confirms that even on larger and more realistic problems
COTA exceeds the baselines in terms of the abstraction error, and cω provides results at least as good
as cH. The full table of results can be found in Appendix E.

Electric Battery Manufacturing (EBM) Finally we compare with the only real-world public
dataset that, to the best of our knowledge, has been used for CA learning (Zennaro et al., 2023).
This dataset contains data related to electric battery manufacturing collected from two experimental
settings. The first setting (WMG) has been modelled through a low-level SCM that captures the effect
of a control variable (comma gap) on an output (mass loading) at multiple spatial locations. The
second setting (LRCS) is modelled through a high-level SCM that relates the same control variable to
a single output (Cunha et al., 2020). We learn an abstraction map τ using the set of real interventions
performed during the collection of the data. Following Zennaro et al. (2023), we use the learned
map τ to abstract the WMG data and aggregate them with the LRCS data; then we perform a set
of downstream regression tasks. Compared to the SOTA which required full knowledge of the
underlying SCM, COTA requires only knowledge of the underlying DAG and provides better results
in terms of the Mean Square Error (MSE) in all the proposed setups, as shown in Table 5. In general,
COTA is always the top performer compared to the baselines (see Appendix E for the complete
table of results), while in Table 3 we highlight a similar behaviour as the one in Table 2 whereby
the limited size of the interventional data prevents cH to lead to better abstractions compared to cω.
A complete presentation of the different settings and the data of this case study can be found in
Appendix D.

7. http://www.causality.inf.ethz.ch/data/LUCAS.html
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7. Discussion

In this work, we presented COTA, a framework for learning causal abstractions from observational
and interventional data through a causally constrained multi-marginal OT formulation. Incorporating
do-calculus constraints and a causally-informed cost cω in the optimisation problem led to lower
abstraction error compared to non-causal baselines in diverse scenarios. The effectiveness of the cω
cost was shown to be sensitive to the intervention set; expanding the interventions set improved the
performance with the ω-cost compared to conventional non-causal costs like Hamming. Lastly, COTA
outperform the prior CA learning art of Zennaro et al. (2023) when employed as a data augmentation
procedure on a real world regression task.

Our work opens up new challenges and directions in both fields of causal abstraction learning
and OT. First, constrained multi-marginal OT settings like COTA have been understudied in the
literature, and further theoretical work on the guarantees of existence and uniqueness of the estimated
maps is needed. Recent methods for joint learning of plans and parameterised maps (Uscidda and
Cuturi, 2023; Seguy et al., 2018) to obtain better estimators (Perrot et al., 2016) hold promise in
this front. Furthermore, generalising a framework like COTA to semi-Markovian SCMs presents a
significant challenge, because lifting the causal sufficiency assumption may render the estimation of
certain causal constraints unidentifiable. Finally, another interesting direction would be to extend CA
learning frameworks like COTA in order to incorporate temporal dependencies and continuous-time
models, for example structural dynamical causal models (Bongers et al., 2018).
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Armin Kekić, Bernhard Schölkopf, and Michel Besserve. Targeted reduction of causal models, 2023.

Soheil Kolouri, Se Rim Park, Matthew Thorpe, Dejan Slepcev, and Gustavo K. Rohde. Optimal
mass transport: Signal processing and machine-learning applications. IEEE Signal Processing
Magazine, 34(4):43–59, 2017. doi: 10.1109/MSP.2017.2695801.

Vladimir R Kostic, Saverio Salzo, and Massimiliano Pontil. Batch greenkhorn algorithm for entropic-
regularized multimarginal optimal transport: Linear rate of convergence and iteration complexity.
In International Conference on Machine Learning, pages 11529–11558. PMLR, 2022.

Riccardo Massidda, Atticus Geiger, Thomas Icard, and Davide Bacciu. Causal abstraction with soft
interventions. arXiv preprint arXiv:2211.12270, 2022.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale
Sci., pages 666–704, 1781.

Mona Faraji Niri, Kailong Liu, Geanina Apachitei, Luis A.A Román-Ramírez, Michael Lain,
Dhammika Widanage, and James Marco. Quantifying key factors for optimised manufacturing of
li-ion battery anode and cathode via artificial intelligence. Energy and AI, 7:100129, jan 2022.
doi: 10.1016/j.egyai.2021.100129.

Brendan Pass. Multi-marginal optimal transport: theory and applications. ESAIM: Mathematical
Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 49(6):
1771–1790, 2015.

Judea Pearl. Causality. Cambridge University Press, 2009.

14475



CAUSAL OPTIMAL TRANSPORT OF ABSTRACTIONS

Judea Pearl and Elias Bareinboim. Transportability of causal and statistical relations: A formal
approach. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 25, pages
247–254, 2011.

Michaël Perrot, Nicolas Courty, Rémi Flamary, and Amaury Habrard. Mapping estimation for
discrete optimal transport. Advances in Neural Information Processing Systems, 29, 2016.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical Society. Series
B (Statistical Methodology), pages 947–1012, 2016.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: Foundations
and learning algorithms. MIT Press, 2017.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Eigil F Rischel and Sebastian Weichwald. Compositional abstraction error and a category of causal
models. arXiv preprint arXiv:2103.15758, 2021.

Eigil Fjeldgren Rischel. The category theory of causal models. Master’s thesis, University of
Copenhagen, 2020.

Paul K Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M Mooij, Dominik Janzing, Moritz
Grosse-Wentrup, and Bernhard Schölkopf. Causal consistency of structural equation models. In
33rd Conference on Uncertainty in Artificial Intelligence (UAI 2017), pages 808–817. Curran
Associates, Inc., 2017.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
2015.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109(5):612–634, 2021.

Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, and
Mathieu Blondel. Large scale optimal transport and mapping estimation. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.
net/forum?id=B1zlp1bRW.

Vignesh Ram Somnath, Charlotte Bunne, and Andreas Krause. Multi-scale representation learning
on proteins. Advances in Neural Information Processing Systems, 34:25244–25255, 2021.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT
press, 2000.

Matthew Thorpe. Introduction to optimal transport. 2017. URL https://api.
semanticscholar.org/CorpusID:131768046.

15476

https://openreview.net/forum?id=B1zlp1bRW
https://openreview.net/forum?id=B1zlp1bRW
https://api.semanticscholar.org/CorpusID:131768046
https://api.semanticscholar.org/CorpusID:131768046


FELEKIS ZENNARO BRANCHINI DAMOULAS

William Torous, Florian Gunsilius, and Philippe Rigollet. An optimal transport approach to causal
inference. arXiv preprint arXiv:2108.05858, 2021.

Ruibo Tu, Kun Zhang, Hedvig Kjellström, and Cheng Zhang. Optimal transport for causal discovery.
In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
qwBK94cP1y.

Théo Uscidda and Marco Cuturi. The monge gap: A regularizer to learn all transport maps. arXiv
preprint arXiv:2302.04953, 2023.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

E Weinan. Principles of multiscale modeling. Cambridge University Press, 2011.

Kevin Xia and Elias Bareinboim. Neural causal abstractions, 2024.

Mingzhang Yin, Yixin Wang, and David M Blei. Optimization-based causal estimation from
heterogenous environments. arXiv preprint arXiv:2109.11990, 2021.

Fabio Massimo Zennaro, Máté Drávucz, Geanina Apachitei, W. Dhammika Widanage, and Theodoros
Damoulas. Jointly learning consistent causal abstractions over multiple interventional distributions.
In 2nd Conference on Causal Learning and Reasoning, 2023. URL https://openreview.
net/forum?id=RNs7aMS6zDq.

Appendix A. Derivation of normalizing vectors

We follow the notation introduced in the main text. For ι ⪯ η, ι = do(A = a) and ω(ι) =
do(A′ = a′) induce a transport plan P ι, while η = do(B = b) and ω(η) = do(B′ = b′) induce a
transport plan P η. Our aim is to express the normalizing vectors Zη = PM(Bi = bi | PA(Bi)) and
Zω(η) = PM′(B′

i = b′
i | PA(B′

i)) in terms of the plan P ι. These are the conditional probabilities
defined in Eq. (7) and can be written as:

PM(Bi = bi | PA(Bi)) =
PM(Bi = bi,PA(Bi))

PM(PA(Bi))

}
Base (13)

PM′(B′
i = b′

i | PA(B′
i)) =

PM′(B′
i = b′

i,PA(B
′
i))

PM′(PA(B′
i))

}
Abstracted (14)

Then given P ι ⪯ P η we express the sub-parts of the equations above in terms of the transportation
plan P ι by defining specific sets of indices on it. Starting from Eq. (13) and the denominator
PM(PA(Bi)), this can be then written as:

PM(PA(Bi)) =
∑

[i,j]∈Oι,η,ρ

P ι
ij , (15)

where Oι,η,ρ = {[i, j] | xj ∈ dom[X] ∧ Cmp(xj ,do(PAB = ρ))} , for ρ ∈ dom[PAB].
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Consequently, for the numerator we first define the following set:

Cι,η = {[i, j] | xj ∈ dom[X] ∧ Cmp(xj , η)}

and also let the intersection set Ωι,η,ρ = Cι,η ∩ Oι,η,ρ for every ρ ∈ dom[PAB]. Then, we have:

PM(Bi = bi,PA(Bi)) =
∑

[i,j]∈Ωι,η,ρ

P ι
i,j (16)

By performing the symmetric operations for the abstracted model in Eq. (14) and get the
respective sets O′

ι,η,ρ′ , C′ι,η and Ω′
ι,η,ρ we can then finally define the normalizing vectors in terms of

the plan as follows:

Zη =

∑
[i,j]∈Ωι,η,ρ

P ι
i,j∑

[i,j]∈Oι,η,ρ
P ι
i,j

, Zω(η) =

∑
[i,j]∈Ω′

ι,η,ρ
P ι
i,j∑

[i,j]∈O′
ι,η,ρ′

P ι
i,j

(17)

We also present the derivation of the special case in which the intervened variables have no
parents. Specifically, one can easily see that in this case:

Oι,η,ρ = {[i, j] | xj ∈ dom[X]} for ρ ∈ dom[PAB]

O′
ι,η,ρ′ =

{
[i, j] | x′i ∈ dom[X′]

}
for ρ′ ∈ dom[PAB′ ]

This implies that Ωι,η,ρ = Cι,η and similarly Ω′
ι,η,ρ = C′ι,η. Therefore, since PAB = PAB′ = ∅

then Cmp(xj ,do(PAB = ρ)) ∀ xj ∈ dom[X] and Cmp(x′i,do(PAB′ = ρ′)) ∀ x′i ∈ dom[X′],
which suggest that

∑
[i,j]∈Oι,η,ρ

P ι
i,j =

∑
[i,j]∈O′

ι,η,ρ′
P ι
i,j = 1. Therefore, the normalizing vectors in

Eq. (17) now become:

Zη =
∑

[i,j]∈Cι,η

P ι
i,j , Zω(η) =

∑
[i,j]∈C′

ι,η

P ι
i,j (18)

The later relation conveys that in the case of no parents for the intervened variable the normalizing
vectors become constant vectors for each model and are not different for each of the xj ∈ dom[X]
and x′i ∈ dom[X′] respectively, compared to the general case where we have a unique normalizing
constant for each of these entries.

Appendix B. Proof of Theorem 1

Let D = dom[X] and D′ = dom[X′]. Let N(k) = N (the number of plans depends on the chain k)
for simplicity. Hence we have N plans in a particular chain Ik. Also for simplicity of notation, let
P ιn = Pn, Cω = C. We show the proof for a generic chain, and it holds for any chain in the set of
chains. To prove the theorem, we need to show:

1. The set SD×D′ × . . .SD×D′︸ ︷︷ ︸
N times

= {(P1, . . . , PN ) | Pn ∈ SD×D′ , for all k = 1, . . . , N}, where

SD×D′ is the set of stochastic matrices of dimension D ×D′, is a convex set.

2. The constraints {Pn ∈ U(πn), n = 1, . . . , N} are convex.
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3. The function (P1, . . . , PN )→
∑N

n=1 κ ·
〈
C,Pn

〉
+ λ⊤D (Pn;Pn+1) + µ · H(Pn) is jointly

convex in P1, . . . , PN . Denote this function by fCOTA(P1, . . . , PN ).

Point (1) is a consequence of the fact that each Pn is in the set of stochastic matrices SD×D′ , which
is a convex set, and that the Cartesian product × preserves convexity. Point (2) follows since each
U(πn) is a convex set (Peyré et al., 2019). To prove (3), we are going to use the following facts.

Lemma The domain of each Pn is a convex set, and the inner product Pn →
〈
C,Pn

〉
is a convex

function in Pn.

Proof: the domain of Pn is the stochastic matrices as described in point (1) above; the inner product
is a convex function in Pn (Boyd and Vandenberghe, 2004) ■
Further, λ⊤D(Pn;Pn+1) is jointly convex in the pair (Pn, Pn+1), which the next lemma shows.

Lemma The function (Pn, Pn+1)→ λ⊤D(Pn;Pn+1) is jointly convex in the pair (Pn, Pn+1)

D(Pn, Pn+1) = [δn,n+1, δ
′
n,n+1]

⊤

Given that:

1. Pn, Pn+1 are stochastic matrices, i.e., they belong to the set SD×D′ .

2. d is a Bregman divergence between probability vectors, which is jointly convex in both its
inputs (Dhillon and Tropp, 2008).

3. δ(Pn, Pn+1) = d(Pn1, Pn+11) , δ′(Pn, Pn+1) = d(P⊤
n 1, P⊤

n+11) where 1 is a vector of ones
of appropriate dimension. Note that Pn1 and P⊤

n 1 are the marginals of Pn.

We want to prove that λ⊤D(Pn, Pn+1) is jointly convex in Pn and Pn+1, i.e., for P ′
n, P

′
n+1 any

stochastic matrices of the corresponding sizes and γ ∈ [0, 1], it holds (due also to linearity of matrix
multiplication)

λ⊤D(γPn+(1−γ)P ′
n, γPn+1+(1−γ)P ′

n+1) ≤ γλ⊤D(Pn, Pn+1)+(1−γ)λ⊤D(P ′
n, P

′
n+1). (19)

It is now sufficient to prove that both δ(Pn, Pn+1), δ
′(Pn, Pn+1) are jointly convex in Pn and

Pn+1, and convexity of λ⊤D(·, ·) follows. We prove the result for δ and an analogous proof holds
for δ′.

Expanding:

δ(γPn+(1− γ)P ′
n, γPn+1+(1− γ)P ′

n+1) = d((γPn+(1− γ)P ′
n)1, (γPn+1+(1− γ)P ′

n+1)1),

given that d is a Bregman divergence and is jointly convex, for any probability vectors α, α′, β, β′:

d(γα+ (1− γ)α′, γβ + (1− γ)β′) ≤ γd(α, β) + (1− γ)d(α′, β′)

Setting α = Pn1, α′ = P ′
n1, β = Pn+11, and β′ = P ′

n+11, we get (simply by linearity of
matrix-vector multiplication):

d(γPn1+ (1− γ)P ′
n1, γPn+11+ (1− γ)P ′

n+11) ≤ γd(Pn1, Pn+11) + (1− γ)d(P ′
n1, P

′
n+11).
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This is equivalent to:

δ(γPn + (1− γ)P ′
n, γPn+1 + (1− γ)P ′

n+1) ≤ γδ(Pn, Pn+1) + (1− γ)δ(P ′
n, P

′
n+1).

Thus, if d is a Bregman divergence, making it therefore jointly convex in its two vector inputs,
then δ is jointly convex in its two matrix inputs Pn and Pn+1. ■
Now, we resort to the definition of joint convexity of a function f : SD×D′ × . . .SD×D′︸ ︷︷ ︸

N times

→ R≥0 in

the tuple of matrices (P1, . . . , PN ) ∈ SD×D′ × . . .SD×D′ .
Definition 1 A function f is jointly convex in P1, . . . , PN iff, for γ ∈ [0, 1] and the domain of
(P1, . . . , PN ) is a convex set, it holds

f(γP1 + (1− γ)P ′
1, . . . , γPN + (1− γ)P ′

N ) ≤ γf(P1, . . . , PN ) + (1− γ)f(P ′
1, . . . , P

′
N ). (20)

We will show that for fCOTA(P1, . . . , PN ), joint convexity follows from convexity of the inner
product in Pn and joint convexity in the pairs (Pn, Pn+1) of the distance.

By taking the convex combinations γP1 + (1− γ)P ′
1, . . . , γPN + (1− γ)P ′

N and plugging it in,
we get:

fCOTA(γP1 + (1− γ)P ′
1, . . . , γPN + (1− γ)P ′

N ) (21)

=

N∑
n=1

κ ·
〈
C, γPn + (1− γ)P ′

n

〉
+ λ⊤D(γPn + (1− γ)P ′

n ; γPn+1 + (1− γ)P ′
n+1) (22)

+ µ · H(γPn + (1− γ)P ′
n).

By combining the fact that the inner product is convex in Pn so
〈
C, γPn+(1−γ)P ′

n

〉
≤ γ

〈
C,Pn

〉
+

(1− γ)
〈
C,P ′

n

〉
, the inequality from Eq. (19), and the (strict) convexity ofH, we have

fCOTA(γP1 + (1− γ)P ′
1, . . . , γPN + (1− γ)P ′

N ) (23)

≤
N∑

n=1

κ ·
(
γ
〈
C,Pn

〉
+ (1− γ)

〈
C,P ′

n

〉)
+ λ⊤ (γD(Pn;Pn+1) + (1− γ)D(P ′

n;P
′
n+1)

)
+ µ ·

(
γH(Pn) + (1− γ)H(P ′

n)
)

= γ

(
N∑

n=1

κ
〈
C,Pn

〉
+ λD(Pn;Pn+1) + µH(Pn)

)
+ (1− γ)

N∑
n=1

κ
〈
C,P ′

n

〉
+ λ⊤D(P ′

n;P
′
n+1) + µH(P ′

n)

= γfCOTA(P1, . . . , PN ) + (1− γ)fCOTA(P ′
1, . . . , P

′
N ), which is the definition of convexity in P1, . . . , PN .■

Appendix C. OT costs

In this section we discuss the mechanics underlying the computations of the OT costs. First, we
recall the ω-cost function formula as it is introduced in the Eq. (11). Given two samples x ∈ dom[X]
and x′ ∈ dom[X′], and an intervention set I together with ω : I → I ′, we define the ω-cost as the
following function:

cω(x,x
′) = |I| −

∑
ι∈I

1
[
Cmp(x, ι) ∧ Cmp(x′, ω(ι))

]
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Figure 4: Omega Cost (Cω) Figure 5: Hamming cost (CH)

The function cω discounts the cost of transporting samples x to x′ proportionally to the number of
pairs (ι, ω(ι)) w.r.t. which x and x′ are compatible. In Fig. 3 we visualise the construction of the
cost matrix Cω based on the cω(·, ·) function of Eq. (11).

As shown in Section 6, for cω to be an effective cost function, the intervention set needs to be
well-specified and informative regarding the domains of the two models. In such a case, a meaningful
cost matrix can be derived and more elements on the induced transport plans will be influenced
by causal knowledge. Our experiments confirmed that in scenarios where the intervention set was
limited, conventional costs like Hamming cH could return lower abstraction errors compared to cω.
The reason is that, by construction, cω will assign maximum values (|I|) for samples for which it has
no available information from the ω map. On the other hand, costs like cH which spreads its values
across the whole domain might be able to capture certain patterns more efficiently. We provide a
visualization of the cost matrices for both cω and cH functions in Fig. 4 and Fig. 5 respectively.
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ι1 : do(∅)
ω7→ do(∅)

ι2 : do(X[1] = 0)
ω7→ do(X′[1] = 0)

ι3 : do(X[1] = 0,X[2] = 0)
ω7→

do(X′[1] = 0)

Figure 3: ω-informed cost matrix computer with |I| = 3. Notice, how all values x and x′ are
compatible with ι1 and ω(ι1), while only x1,x2 are compatible with do(X[1] = 0,X[2] = 0) and
x′
1 is compatible with do(X′[1] = 0)
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Appendix D. EBM Downstream Task

In our EBM scenario we rely on data about battery coating released by the Laboratoire de Réactivité
et Chimie des Solides (LRCS) (Cunha et al., 2020) and by the Warwick Manufacturing Group (WMG)
(Zennaro et al., 2023). These datasets contain observations about different variables affecting the
coating process (Comma Gap, Mass Loading Position), as well as observation about a key outcome
variable related to the width of the coating (Mass Loading). Both groups aim at inferring a machine
learning model that would allow them to control the target variable via interventions on the other
variables.

Closely following Zennaro et al. (2023), we learn abstractions from the WMG model to the
LRCS model in order to merge data collected by the two laboratories and learn a model from the
aggregate dataset. We compare our approach COTA with the competing CA learning method proposed
in (Zennaro et al., 2023). The latter builds upon the α-abstraction framework established by Rischel
(2020), which is briefly summarized in Appendix D.1. To assess the usefulness of abstraction,
we solve three extrapolation tasks meant to show how fitting a simple model to the aggregated
dataset produced via abstraction guarantees better predictive results. We consider the following three
downstream tasks:

• In the first task, we train a regression model on all LRCS samples except for samples belonging
to class k. We then test the regression model on LRCS samples belonging to class k. This
constitutes the baseline model learned on data from a single laboratory.

• In the second task, we train a regression model on all LRCS samples except for samples
belonging to class k and all the abstracted WMG samples. We then test the regression model
on LRCS samples belonging to class k. This constitutes a scenario in which we enrich one
dataset (LRCS) with data from another laboratory (WMG); moreover, the enriching data
provides information on the class k which was not originally observerd in LRCS.

• In the third task, we train a regression model on all LRCS and abstracted WMG samples
except for samples belonging to class k. We then test the regression model on LRCS and
WMG samples belonging to class k. This constitutes a scenario in which we enrich one dataset
(LRCS) with data from another laboratory (WMG); however, the enriching data also lacks
observations for the class k.

Our solution outperforms the SOTA in terms of MSE, and confirms that using abstractions to
aggregate data may be beneficial for downstream tasks, such as regression tasks. This is particularly
true in settings where data are limited because of the cost and complexity of collecting samples, such
as in the case of battery manufacturing Niri et al. (2022).

D.1. The α-abstraction framework

This framework draws inspiration from category theory, and assumes two SCMsM = ⟨X,U,F ,P(U)⟩,
M′ = ⟨X′,U′,F ′,P′(U′)⟩ with finite sets of endogenous variables, where each variable defined on
a finite and discrete domain.

Definition [Rischel (2020)] Given two SCMs M and M′, an abstraction α is a tuple ⟨R, a, α⟩
where:

• R ⊆ X is a subset of relevant variables in the modelM.
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• a : R→ X′ is a surjective map between variables, from nodes inM to nodes inM′.

• α is a collection of surjective maps αX′ : dom[a−1(X ′)] → dom[X ′] where X ⊆ X and
X ′ ⊆ X′.

An α-abstraction establishes an asymmetric relation from a base modelM to an abstracted model
M′. This definition encodes a mapping on two layers: on a structural or graphical level between the
nodes of the DAGs via a, and on a distributional level via the maps αX′ .

Rischel (2020) introduces a notion of interventional consistency between base and abstracted
model, whereby interventional distributions produced in the base and abstracted model are related
via the abstraction α; furthermore, a notion of abstraction error, analogous to the one used in this
paper, is also proposed. It is then immediate to relate the τ -abstraction and α-abstraction as they both
imply comparing distributions generated by base and abstracted model through an abstraction map.

Appendix E. Additional Experiments and Analysis

Here we report the complete experimental results of our simulations. These results corroborate
our understanding of the effectiveness of COTA compared to the baseline methods. Regarding the
parameter λ⊤, in Appendix E.1 we demonstrate the complete results from the the equal weight case
where λ = λ′ and in Appendix E.2 from the more general case of λ ̸= λ′. Notice, that throughout
the results, how in STCnp and LUCAS ω-cost cω returns lower abstraction errors compared to
Hamming cH, whereas in STCp and EBM the opposite holds true due to the smaller and less diverse
intervention sets, as discussed in the main text and in Appendix C.

E.1. Equal weights (λ = λ′).

We present the evaluation results in the case where the parameter λ⊤ governing the causal constraint
term in the COTA optimization objective of Eq. (12) is a constant vector i.e. λ⊤ · D(P ι, P η) =

[λ, λ] ·
[
δι,η
δ′ι,η

]
= λ · (δι,η+ δ′ι,η). The complete evaluation for the STC examples is detailed in Table 6

and Table 8, while results for the LUCAS and the EBM examples are presented in Table 10 and
Table 12 respectively.

E.2. Different weights (λ ̸= λ′).

We present the evaluation results in the case where the parameter λ⊤ governing the causal constraint
term in the COTA optimization objective of Eq. (12) is a non-constant vector i.e. λ⊤ · D(P ι, P η) =

[λ λ′] ·
[
δι,η
δ′ι,η

]
= λ · δι,η + λ′ · δ′ι,η. The complete evaluation for the STC examples is detailed in

Table 7 and Table 9, while results for the LUCAS and the EBM examples are presented in Table 11
and Table 13, respectively. Finally, Table 14 demonstrates the MSE of COTA and a SOTA CA
framework on a regression task for EBM.

Appendix F. Approximate COTA

We can simplify the optimization problem and halve the number of constraints by assuming
that the elements of each marginal of the plan inherit the marginal’s normalising factor (Oc-
cam’s razor). This way, we turn δι,η and δ′ι,η into the element-wise (between the plans) distances
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d

((
1
Zη

j
P ι
ij

)
ij

,
(
P η
ij

)
ij

)
and d

((
1

Zω(η)
i

P ι
ij

)
ij

,
(
P η
ij

)
ij

)
, respectively. Now every pair of ele-

ments P ι
ij , P

η
ij is related simultaneously through Zη

j and Zω(η)
i . Then given d : RD×D′ ×RD×D′ →

R≥0, we re-express our constraints in a matrix form as:

D(P ι, P η) = d

(
1

φ(Zη
j ,Z

ω(η)
i )

P ι, P η

)
if Cmp(xj , η) and Cmp(x′i, ω(η)) (24)

where φ(·, ·) : R2 → R is any aggregating function that preserves the correct support of the plans. In
our experiments we work with φ(Zη

j ,Z
ω(η)
i ) = min(Zη

j ,Z
ω(η)
i ). We provide the complete abstrac-

tion error evaluation results as before alongside the downstream evaluation for the Approximate
COTA in Appendix F.1.

F.1. Approximate COTA Results

We report the complete experimental results for Approximate COTA. Once again, we confirm
our understanding of the effectiveness of COTA compared to the baseline methods. The complete
evaluation for the STC examples is detailed in Table 15 and Table 16, while results for the LUCAS
and the EBM examples are presented in Table 17 and Table 18, respectively. Furthermore, in STCnp
and LUCAS ω-cost cω returns lower abstraction errors compared to Hamming cH, whereas in STCp
and EBM the opposite holds true due to the smaller and less diverse intervention sets, as discussed in
the main text and in Appendix C. In addition, in Fig. 6 and Fig. 7 we provide the equivalent simplex
plots for STCnp, which illustrate the influence of the parameter λ in the optimization problem. Once
again, these plots reinforce the idea that optimal solutions are achieved when λ is greater than 0.
Finally, in Table 19, we demonstrate the results regarding the MSE for the downstream task on the
EBM dataset as before.
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Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.010± 0.005 0.011± 0.003
cH 0.087± 0.007 0.025± 0.001

JSD cω 0.012± 0.006 0.012± 0.003
cH 0.087± 0.006 0.025± 0.001

COTA(τ̂ ) FRO cω 0.013± 0.021 0.171± 0.001
cH 0.169± 0.005 0.178± 0.001

JSD cω 0.014± 0.021 0.171± 0.001
cH 0.169± 0.004 0.178± 0.001

Pwise OT – cω 0.013± 0.002 0.011± 0.002
– cH 0.093± 0.004 0.039± 0.002

Map OT – cω 0.023± 0.022 0.147± 0.001
– cH 0.169± 0.022 0.156± 0.001

Bary OT – cω 0.233± 0.142 0.067± 0.042
– cH 0.323± 0.074 0.095± 0.039

Table 6: Abstraction error evaluation for STCnp

of the λ = λ′ case. The COTA(P̂ ) − FRO −
cω returns the lower abstraction error for both
metrics. The ω-cost cω outperforms cH.

Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.010± 0.006 0.010± 0.003
cH 0.087± 0.006 0.025± 0.001

JSD cω 0.011± 0.006 0.012± 0.003
cH 0.087± 0.006 0.025± 0.001

COTA(τ̂ ) FRO cω 0.012± 0.020 0.171± 0.001
cH 0.169± 0.004 0.178± 0.001

JSD cω 0.013± 0.019 0.171± 0.001
cH 0.169± 0.004 0.178± 0.001

Pwise OT – cω 0.013± 0.002 0.011± 0.002
– cH 0.093± 0.004 0.039± 0.002

Map OT – cω 0.023± 0.022 0.147± 0.001
– cH 0.169± 0.022 0.156± 0.001

Bary OT – cω 0.233± 0.142 0.067± 0.042
– cH 0.323± 0.074 0.095± 0.039

Table 7: Abstraction error evaluation for STCnp

of the λ ̸= λ′ case. The COTA(P̂ ) − FRO −
cω returns the lower abstraction error for both
metrics. The ω-cost cω outperforms cH.

Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.278± 0.015 0.048± 0.007
cH 0.241± 0.003 0.048± 0.007

JSD cω 0.258± 0.027 0.054± 0.003
cH 0.242± 0.001 0.054± 0.003

COTA(τ̂ ) FRO cω 0.249± 0.005 0.135± 0.001
cH 0.229± 0.003 0.129± 0.001

JSD cω 0.241± 0.008 0.135± 0.001
cH 0.229± 0.004 0.129± 0.001

Pwise OT – ω 0.279± 0.014 0.091± 0.005
– H 0.242± 0.002 0.067± 0.001

Map OT – ω 0.250± 0.005 0.140± 0.001
– H 0.229± 0.004 0.129± 0.001

Bary OT – ω 0.318± 0.205 0.104± 0.061
– H 0.272± 0.212 0.075± 0.058

Table 8: Abstraction error evaluation for STCp
of the λ = λ′ case. The cH settings of COTA(τ̂)
return the lower abstraction error for the JSD
metric and COTA(P̂ )−FRO for the WASS metric.
cH outperforms cω due to under-specification of
the intervention set.

Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.277± 0.018 0.046± 0.007
cH 0.241± 0.002 0.046± 0.007

JSD cω 0.273± 0.009 0.047± 0.006
cH 0.241± 0.003 0.047± 0.006

COTA(τ̂ ) FRO cω 0.249± 0.003 0.135± 0.004
cH 0.228± 0.004 0.129± 0.001

JSD cω 0.247± 0.004 0.135± 0.004
cH 0.228± 0.003 0.129± 0.001

Pwise OT – ω 0.279± 0.014 0.091± 0.005
– H 0.242± 0.002 0.067± 0.001

Map OT – ω 0.250± 0.005 0.140± 0.001
– H 0.229± 0.004 0.129± 0.001

Bary OT – ω 0.318± 0.205 0.104± 0.061
– H 0.272± 0.212 0.075± 0.058

Table 9: Abstraction error evaluation for STCp
of the λ ̸= λ′ case. The cH settings of COTA(τ̂)
return the lower abstraction error for the JSD
metric and COTA(P̂ )−FRO for the WASS metric.
cH outperforms cω due to under-specification of
the intervention set.
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Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.287± 0.014 0.044± 0.001
cH 0.287± 0.014 0.047± 0.001

JSD cω 0.286± 0.014 0.048± 0.001
cH 0.287± 0.014 0.048± 0.001

COTA(τ̂ ) FRO cω 0.263± 0.005 0.061± 0.001
cH 0.263± 0.006 0.061± 0.001

JSD cω 0.263± 0.005 0.062± 0.001
cH 0.263± 0.006 0.062± 0.001

Pwise OT – cω 0.306± 0.009 0.045± 0.001
– cH 0.387± 0.002 0.047± 0.001

Map OT – cω 0.294± 0.008 0.054± 0.001
– cH 0.350± 0.005 0.054± 0.001

Bary OT – cω 0.294± 0.047 0.044± 0.003
– cH 0.414± 0.040 0.046± 0.010

Table 10: Abstraction error evaluation for LU-
CAS of the λ = λ′ case. All settings of COTA(τ̂)
return the lowest abstraction error for the JSD
metric and the COTA(P̂ )− FRO− cω setting for
the WASS metric. ω-cost cω outperforms cH.

Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.287± 0.014 0.044± 0.001
cH 0.287± 0.014 0.047± 0.001

JSD cω 0.287± 0.014 0.045± 0.001
cH 0.287± 0.014 0.047± 0.001

COTA(τ̂ ) FRO cω 0.263± 0.005 0.060± 0.001
cH 0.263± 0.006 0.060± 0.002

JSD cω 0.263± 0.005 0.061± 0.001
cH 0.263± 0.006 0.061± 0.001

Pwise OT – cω 0.306± 0.009 0.045± 0.001
– cH 0.387± 0.002 0.047± 0.001

Map OT – cω 0.294± 0.008 0.054± 0.001
– cH 0.350± 0.005 0.054± 0.001

Bary OT – cω 0.294± 0.047 0.044± 0.003
– cH 0.414± 0.040 0.046± 0.010

Table 11: Abstraction error evaluation for LU-
CAS of the λ ̸= λ′ case. All settings of COTA(τ̂)
return the lowest abstraction error for the JSD
metric and the COTA(P̂ )− FRO− cω setting for
the WASS metric. ω-cost cω outperforms cH.
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Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.379 0.006
cH 0.263 0.006

JSD cω 0.379 0.006
cH 0.263 0.006

COTA(τ̂ ) FRO cω 0.379 0.053
cH 0.220 0.053

JSD cω 0.399 0.053
cH 0.263 0.053

Pwise OT – cω 0.430 0.027
– cH 0.263 0.027

Map OT – cω 0.408 0.060
– cH 0.228 0.053

Bary OT – cω 0.530 0.019
– cH 0.335 0.023

Table 12: Abstraction error evaluation for EBM
of the λ = λ′ case. The COTA(τ̂) − FRO − cH
formulation returns the lower abstraction error for
the JSD metric and all the settings of COTA(P̂ )
for the WASS metric. cH outperforms cω due to
under-specification of the intervention set.

Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.311 0.006
cH 0.263 0.006

JSD cω 0.311 0.006
cH 0.263 0.006

COTA(τ̂ ) FRO cω 0.369 0.053
cH 0.219 0.053

JSD cω 0.389 0.053
cH 0.220 0.053

Pwise OT – cω 0.430 0.027
– cH 0.263 0.027

Map OT – cω 0.408 0.060
– cH 0.228 0.053

Bary OT – cω 0.530 0.019
– cH 0.335 0.023

Table 13: Aabstraction error evaluation for EBM
of the λ ̸= λ′ case. The COTA(τ̂) − FRO − cH
formulation returns the lower abstraction error for
the JSD metric and all the settings of COTA(P̂ )
for the WASS metric. cH outperforms cω due to
under-specification of the intervention set.

Training set Test set Zennaro et al. (2023) COTA

LRCS[CG ̸= k] LRCS[CG = k] 1.86± 1.75 1.40± 1.39

LRCS[CG ̸= k] LRCS[CG = k] 0.22± 0.26 0.20± 0.02
+WMG

LRCS[CG ̸= k] LRCS[CG = k] 1.22± 0.95 0.48± 0.23
+WMG[CG ̸= k] WMG[CG = k]

Table 14: MSE of COTA with λ ̸= λ′ and a SOTA CA framework on a regression task for EBM.
Augmenting data via the learned abstraction reduces the average error in all different settings
compared to the SOTA. We used COTA(P̂ ) − FRO − cω with the hyperparameters (κ, λ, µ) =
(.2, .4, .3, .1) achieving the lowest abstraction error.
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Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.010± 0.005 0.010± 0.002
cH 0.125± 0.003 0.011± 0.003

JSD cω 0.008± 0.001 0.009± 0.001
cH 0.036± 0.011 0.016± 0.002

COTA(τ̂ ) FRO cω 0.013± 0.008 0.171± 0.001
cH 0.096± 0.010 0.175± 0.001

JSD cω 0.013± 0.007 0.171± 0.001
cH 0.145± 0.008 0.175± 0.001

Pwise OT – cω 0.013± 0.002 0.011± 0.002
– cH 0.093± 0.004 0.039± 0.002

Map OT – cω 0.023± 0.022 0.147± 0.001
– cH 0.169± 0.022 0.156± 0.001

Bary OT – cω 0.233± 0.142 0.067± 0.042
– cH 0.323± 0.074 0.095± 0.039

Table 15: Approximate COTA complete ab-
straction error evaluation for the STCnp example.
The COTA(P̂ ) − JSD − cω setting returns the
lower abstraction error for both metrics. The ω-
cost cω outperforms cH.

Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO ω 0.264± 0.001 0.064± 0.001
H 0.241± 0.003 0.060± 0.004

JSD ω 0.259± 0.006 0.051± 0.002
H 0.242± 0.001 0.051± 0.001

COTA(τ̂ ) FRO ω 0.248± 0.006 0.135± 0.001
H 0.227± 0.005 0.129± 0.001

JSD ω 0.236± 0.002 0.130± 0.005
H 0.229± 0.006 0.129± 0.001

Pwise OT – ω 0.279± 0.014 0.091± 0.005
– H 0.242± 0.002 0.067± 0.001

Map OT – ω 0.250± 0.005 0.140± 0.001
– H 0.229± 0.004 0.129± 0.001

Bary OT – ω 0.318± 0.205 0.104± 0.061
– H 0.272± 0.212 0.075± 0.058

Table 16: Approximate COTA complete ab-
straction error evaluation for the STCp exam-
ple. The COTA(τ̂)− FRO− cH and COTA(τ̂)−
JSD− cH settings returns the lower abstraction
errors for eJSD(τ) and COTA(P̂ )−FRO− cω and
COTA(P̂ )− JSD− cH settings returns the lower
abstraction errors for eWASS(τ). Table illustrates
that cH outperforms cω due to under-specification
of the intervention set.

Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.258± 0.003 0.044± 0.001
cH 0.260± 0.004 0.047± 0.001

JSD cω 0.285± 0.014 0.045± 0.001
cH 0.285± 0.014 0.046± 0.001

COTA(τ̂ ) FRO cω 0.259± 0.006 0.060± 0.003
cH 0.259± 0.006 0.060± 0.003

JSD cω 0.260± 0.007 0.061± 0.001
cH 0.263± 0.004 0.061± 0.001

Pwise OT – cω 0.306± 0.009 0.045± 0.001
– cH 0.387± 0.002 0.047± 0.001

Map OT – cω 0.294± 0.008 0.054± 0.001
– cH 0.350± 0.005 0.054± 0.001

Bary OT – cω 0.294± 0.047 0.044± 0.003
– cH 0.414± 0.040 0.046± 0.010

Table 17: Approximate COTA complete ab-
straction error evaluation for the LUCAS exam-
ple. The COTA(P̂ ) − FRO − cω setting returns
the lower abstraction error for both metrics. The
ω-cost cω outperforms cH.

Method D C eJSD(τ) eWASS(τ)

COTA(P̂ ) FRO cω 0.378 0.006
cH 0.263 0.006

JSD cω 0.378 0.006
cH 0.263 0.006

COTA(τ̂ ) FRO cω 0.389 0.053
cH 0.226 0.053

JSD cω 0.389 0.053
cH 0.226 0.053

Pwise OT – cω 0.430 0.027
– cH 0.263 0.027

Map OT – cω 0.408 0.060
– cH 0.228 0.053

Bary OT – cω 0.530 0.019
– cH 0.335 0.023

Table 18: Approximate COTA complete ab-
straction error evaluation for the EBM example.
The COTA(τ̂)−FRO−cH and COTA(τ̂)−JSD−
cH settings returns the lower abstraction errors
for eJSD(τ) and COTA(P̂ ) for all settings returns
the lower abstraction errors for eWASS(τ). Table
illustrates that cH outperforms cω due to under-
specification of the intervention set collected from
the labs.
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Figure 6: Effect of λ for the STCnp example
in the Approximate COTA formulation. The
ternary plot illustrates a grid-search amongst
100 convex combinations of (κ, λ, µ) for the
COTA(P̂ )− FRO− cω setting. Values of λ close
to zero present high abstraction error, demonstrat-
ing the benefit of the do-calculus constraints in
the OT problem. The minimum is reached at (.38,
.46, .16) and is denoted with "×"

Figure 7: Effect of λ for the STCnp example
in the Approximate COTA formulation. The
ternary plot illustrates a grid-search amongst
100 convex combinations of (κ, λ, µ) for the
COTA(P̂ )− JSD− cω setting. Values of λ close
to zero present high abstraction error, demonstrat-
ing the benefit of the do-calculus constraints in
the OT problem. The minimum is reached at (.61,
.38, .01) and is denoted with "×"

Training set Test set Zennaro et al. (2023) COTA

LRCS[CG ̸= k] LRCS[CG = k] 1.86± 1.75 1.40± 1.39

LRCS[CG ̸= k] LRCS[CG = k] 0.22± 0.26 0.13± 0.07
+WMG

LRCS[CG ̸= k] LRCS[CG = k] 1.22± 0.95 0.85± 0.81
+WMG[CG ̸= k] WMG[CG = k]

Table 19: MSE of Approximate COTA and a SOTA CA framework on a regression task for
EBM. Augmenting data via the learned abstraction reduces the average error in all different settings
compared to the SOTA. We used COTA(P̂ ) − FRO − cω with the hyperparameters (κ, λ, µ) =
(.2, .5, .3) achieving the lowest abstraction error.
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Appendix G. DAGs and chains

In this section we provide the complete DAGs alongside their corresponding intervention posets and
induced chains for all the scenarios that we considered and also visualise the operation of the ω map.
For enhanced clarity and ease of navigation between different settings, we have included a concise
table presented in Table 20. To provide further insight, the table also offers an analytical description
of the interpretation of endogenous variables within each example for both the base and abstracted
models.

S T C

S’ C’

τ

∅

S = 0 S = 1

S = 0, T = 1 S = 1, T = 1 S = 1, T = 1

∅

S′ = 0 S′ = 1

Figure 8: Simple Lung Cancer (STC) base (top) and abstracted (bottom) DAGs alongside their
equivalent posets I and I ′ structure for the STCnp variation. The red arrows represent the ω : I → I ′
map.

S T C

S’ C’

τ

∅

T = 0 T = 1

∅

C ′ = 0 C ′ = 1

Figure 9: Simple Lung Cancer (STC) base (top) and abstracted (bottom) DAGs alongside their
equivalent posets I and I ′ structure in the STCp variation. The red arrows represent the ω : I → I ′
map.

AN SM LC CO AL

PP GE FA

LC’EN’ GE’

τ

∅

AN = 0 GE = 1 AL = 0

AN,PP = 0, 0

AN,PP, SM = 0, 0, 0 AN,PP, SM = 0, 0, 1

∅

EN ′ = 0

EN ′ = 1

GE′ = 0

GE′ = 1

Figure 10: (LUCAS) base (top) and abstracted (bottom) DAGs alongside their equivalent posets I
and I ′ structure. The red arrows represent the ω : I → I ′ map.
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CG

ML1

ML2

CG’ ML’

τ

∅

CG = 75 CG = 110 CG = 180 CG = 200

∅

CG′ = 75 CG′ = 100 CG′ = 200

Figure 11: Electric Battery Manufacturing (EBM) base (top) and abstracted (bottom) DAGs alongside
their equivalent posets I and I ′ structure. The red arrows represent the ω : I → I ′ map.

Example Figure X X′

STC Figure 8 S: Smoking, S′: Smoking,

Figure 9 T: Tar, C′: Cancer

C:Cancer

LUCAS Figure 10 AN: Anxiety, SM: Smoking, EN′: Environment,

GE: Genetics, PP: Peer Pressure, LC′: Lung Cancer,

LC: Lung Cancer, FA: Fatigue, GE′: Genetics

CO: Coughing, AL: Allergy

EBM Figure 11 CG: Comma Gap (lab 1), CG′: Comma Gap (lab 2),

ML1: Mass loading position 1 (lab 1), ML′: Mass loading (lab 2)

ML1: Mass loading position 2 (lab 1)

Table 20: Analytical interpretation of the baseM and abstractedM′ model’s endogenous variables.
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Appendix H. Optimal Transport

Optimal Transport (OT) theory as surveyed in Villani et al. (2009); Santambrogio (2015) provides
a mathematical framework for systematically mapping one probability measure µ to another ν by
looking amongst the set of all possible ways to transport the mass from one source distribution to a
target one and selecting the one which minimizes a cost function. The seminal work of Peyré et al.
(2019) surveys computational algorithms to solve OT problems in practice. Overall, OT offers a
versatile and powerful tool for tackling complex and diverse problems across various fields, from
image processing to economics.

H.1. General Measures

Monge formulation The initial problem formulation was given by Gaspard Monge (1781) and
states the following: For two arbitrary measures µ, ν on the Radon spaces8 X and Y respectively,
the Monge problem seeks to find a map T ∗ : X 7→ Y such that:

T ∗ = inf
T

{∫
X
c(x, T (x))dµ(x) : T#µ = ν

}
(25)

where T#µ is the pushforward function9 and c : X × Y 7→ R is the cost function representing the
cost of moving a unit mass from a location x to a location y. If such a T ∗ exists and attains the
infimum then this is called the optimal transport map.

Figure 12: Monge transport map (source: (Kolouri et al., 2017) Figure 1)

Kantorovic formulation In the initial problem formulation by Monge the map T ∗ may not always
exist, for example, when µ is a Dirac measure but ν is not there is no map to attain the infimum of
the optimization problem above.

For this reason, Kantorovich (1942) formulation of the problem relaxes the deterministic approach
of Monge and introduces the probabilistic transport idea, which allows the execution of mass splitting
from a source toward several targets. Specifically, the Kantorovic problem seeks to find a joint
probability measure over the space X × Y or probabilistic coupling, which solves the following
optimization problem:

P ⋆ = inf
P

{∫
X×Y

c(x, y)dP (x, y)|P ∈ U(µ, ν)
}

(26)

8. Radon space is a separable metric space such that any probability measure on it is a Radon measure
9. Let (X1,Σ1, µ) be a measure space, (X2,Σ2) a measurable space, and f : X1 → X2 a measurable map. Then the

following function ν on S2 is the pushforward measure: ν(B) = µ(f−1(B)) for B ∈ Σ2. We write f#µ = ν.
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where U(µ, ν) is the collection of all probability measures on X × Y with marginals µ on X and ν
on Y . Namely,

U(µ, ν) =
{
P ∈M1

+(X × Y) : ρX#P = µ, ρY#P = ν
}

(27)

where, ρX# and ρY# are the pushforwards of the projections ρX (x, y) = x and ρY(x, y) = y.
This is an infinite-dimensional linear program over a space of measures. It is clear that this

relaxed version of the problem is easier to work with since instead of looking for a map which that
associates to each point xi ∈ X a single point yi = T (xi) ∈ Y , we are looking for a probability
measure with the only constraint to preserve the marginals.

The Kantorovic formulation optimal transport computes the p-Wasserstein distance metric
Wp(·, ·) between two probability distributions µ and ν:

W p
p (µ, ν) = inf

P∈U(µ,ν)

∫
X×Y

||x− y||pdP (x, y), p ≥ 1 (28)

Remarks

• Let T be a transport map between µ and ν, and define PT = (id, T )#µ. Then, PT ∈ U(µ, ν)
is a transport plan between µ and ν.

• Let X ,Y be two compact spaces, and c : X × Y 7→ R ∪ {+∞} be a lower semi-continuous
cost function, which is bounded from below. Then Kantorovich’s problem admits a minimizer
(Thorpe, 2017).

Monge–Kantorovich equivalence for general measures The following theorem ensures that
under some relatively simple conditions the Monge problem is feasible, meaning that the infimum of
Eq. (25) can be attained and thus, the Kantorovich and Monge formulations are equivalent.

Theorem 2 ((Brenier, 1991)) For Radon spacesX and Y with arbitrary measures µ, ν respectively,
if at least one of the two input measures, say µ has a density ρµ with respect to the Lebesgue measure,
then there exists a unique (up to an additive constant) convex function ϕ : Rd 7→ R such that ∇ϕ
pushes forward µ onto ν. In other words, there exists a deterministic coupling P ⋆ as follows:

dP ⋆(x, y) = dµ(x)δ∇ϕ(x)(y) (29)

Furthermore, if X = Y = Rd and c(x, y) = ||x − y||2 then the optimal P ⋆ in the Kantorovic
formulation is unique and is supported on the graph (x, T (x)) of a Monge map T : Rd → Rd. More
formally,

P = (id, T )#µ ⇐⇒ ∀h ∈ C(X × Y),
∫
X×Y

h(x, y)dP (x, y) =

∫
X
h(x, T (x))dµ(x) (30)

This means that the map T is uniquely defined as the gradient of a unique convex function ϕ such
that T (x) = ∇ϕ(x), where (∇ϕ)#µ = ν.

The two main conclusions from Brenier’s theorem are the following:

• In the setting of W2 with no-singular densities, the Monge problem Eq. (25) and its Kan-
torovich relaxation Eq. (26) are equivalent (the relaxation is tight).
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• An optimal transport map (Monge map) must be the gradient of a convex function. Namely, if
ϕ : Rd → R convex and (∇ϕ)#µ = ν, then T (x) = ∇ϕ(x) and

T ⋆ =

∫
X
||x−∇ϕ(x)||2dµ(x) (31)

Various works extended the existence and uniqueness of Monge maps including strictly convex and
super-linear costs.

Probabilistic interpretation Both Monge and Kantorovich formulations can be reinterpreted
through the prism of random variables (Seguy et al., 2018), Peyré et al. (2019). Consider two
complete metric spaces X and Y and random variables X and Y . We denote X ∼ µ to say that X
is distributed according to the probability measure µ. We can now restate both formulations of the
optimal transport problem. Specifically, consider a cost function c : X × Y → R≥0 and two random
variables X ∼ µ and Y ∼ ν taking values in X and Y respectively.

Monge formulation: Find a map T : X → Y which transports the mass from µ to ν while
minimizing the transportation cost,

inf
T

EX∼µ [c(X,T#µ(X))] s.t T#µ(X) ∼ Y (32)

Kantorovic formulation: Find a coupling (X,Y ) ∼ P which minimizes the transportation cost and
asserts that P has marginals equals to µ and ν,

inf
P

E(X,Y )∼P [c(X,Y )] s.t X ∼ µ, Y ∼ ν (33)

H.2. Discrete Measures

In this section, we introduce the notations and the formulation of OT between discrete distributions.
A probability vector is any element α that belongs to the probability simplex Σk:

Σk :=

{
α ∈ Rk

≥0 :
k∑

i=1

αi = 1

}
(34)

A discrete measure µ with weights α and points x1, ..., xk ∈ X ⊂ Rd is defined as:

µ =

k∑
i=1

αiδxi (35)

where δx is the delta Dirac at position x. This measure is a probability measure if µ ∈ Σk.
We are now going to restate the Monge-Kantorovic formulations in the cases of discrete measures.

Consider X = {xi}Mi=1 ⊂ Rd and Y = {yj}Nj=1 ⊂ Rd with respective (probability) weights
α ∈ ΣM ,β ∈ ΣN . Thus, we have the discrete probability measures:

µ =
M∑
i=1

αiδxi and ν =
N∑
j=1

βjδyj (36)

Finally, assuming that the cost of transporting a unit of mass from xi to yj is c(xi, yj) where
c : X × Y → R≥0 is the cost function, this induces a cost matrix Cij = c(xi, yj).
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Monge formulation for discrete measures The Monge formulation of OT then aims to find a map
T ⋆ : X → Y that push-forwards µ onto ν, by assigning to each xi a single point yj . Formally,

T ⋆ = OTMc (µ, ν) = argmin
T : T#µ=ν

M∑
i=1

c(xi, T (xi)) (37)

Kantorovic formulation for discrete measures Following the probabilistic transport approach
of Eq. (26) for the general measures, the Kantorovich problem for discrete measures solves the
following optimization problem in the form of a convex linear program:

P ⋆ = OTKc (µ, ν) = argmin
P∈U(µ,ν)

⟨C,P ⟩ = argmin
P∈U(µ,ν)

M,N∑
i=1,j=1

CijPij (38)

where ⟨·, ·⟩ denotes the Frobenius inner product, expressing the total transportation cost, C ∈ RM×N
≥0

is the cost matrix and U(µ, ν) is the set of joint probability measures with marginals µ and ν and
called the transport polytope or coupling set. In particular, the transport polytope is a convex polytope
defined as follows:

U(µ, ν) =
{
P ∈ RM×N

≥0 : P1N = µ, P⊤
1M = ν

}
=

P ∈ RM×N :

N∑
j=1

Pij = µ,

M∑
i=1

Pij = ν


(39)

In Fig. 13 we provide a schematic viewed of input measures (µ, ν) and a coupling U(µ, ν)
encountered in the case of discrete measures for the Kantorovich OT formulation for the square
euclidean cost c(x, y) = ||x− y||2.

Entropic Optimal Transport Traditional OT, while being a powerful tool, often encounters
computational and statistical challenges in high-dimensional spaces. The introduction of entropy
into this framework (Peyré et al., 2019) offers an organic solution that facilitates scalability and
computational tractability through specific algorithms like Sinkhorn (Cuturi, 2013). Overall, Entropic
OT leverages the principles of information theory, allowing for a more flexible and robust approach
to the transportation problem between distributions. Specifically, for discrete measures, Entropic OT
solves the following optimisation problem:

P ⋆ = OTKc (µ, ν)ϵ = argmin
P∈U(µ,ν)

⟨C,P ⟩ − ϵH(P ) = argmin
P∈U(µ,ν)

M,N∑
i=1,j=1

Ci,jPi,j − ϵH(P ) (40)

where ϵ > 0 a trade-off parameter andH(P ) is the discrete entropy of a coupling matrix P is defined
as:

H(P ) := −
∑
ij

Pij(log(Pij − 1)) (41)

The idea behind Entropic regularization in optimal transport involves employing a regularization
function to derive approximate solutions to the original transport problem of Eq. (38).
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Remarks (Peyré et al., 2019)

• OTKc (µ, ν)ϵ
ϵ→0−−→ OTKc (µ, ν)

• OTKc (µ, ν)ϵ
ϵ→+∞−−−−→ µ⊗ ν = µν⊤

Finally, it is worth mentioning that, given the strong concavity of H, the objective in Eq. (40)
becomes an ϵ-strongly convex function, ensuring the optimization problem OTKc (µ, ν)ϵ has a unique
solution. In Fig. 14 we provide again the optimal coupling U(µ, ν) encountered in the case of discrete
measures for the Entropic OT formulation for the square euclidean cost c(x, y) = ||x− y||2.

Figure 13: Kantorovic
(
OTKc (µ, ν)

)
optimal coupling for two input measures µ, ν. The optimal

coupling P ⋆ belongs to the transport polytope U(µ, ν) and thus preserves the marginals and the total
mass, i.e.

∑
j P

⋆
ij = µ,

∑
i P

⋆
ij = ν and

∑
i,j P

⋆
ij = 1.
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Figure 14: Kantorovic Entropic OT
(
OTKc (µ, ν)ϵ

)
optimal coupling for two input measures µ, ν and

ϵ > 0. The optimal coupling P ⋆ belongs to the transport polytope U(µ, ν) and thus preserves the
marginals and the total mass, i.e.

∑
j P

⋆
ij = µ,

∑
i P

⋆
ij = ν and

∑
i,j P

⋆
ij = 1.
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Appendix I. Causal Abstraction Learning: Current State-Of-The-Art

In this section, we present a comparison of various recent methods for Causal Abstraction learning
proposed to date, including also concurrent works. These methods have been developed within
different CA frameworks. Specifically, COTA alongside Dyer et al. (2023), leverages the exact
transformations framework proposed by Rubenstein et al. (2017). Meanwhile, the works by Xia and
Bareinboim (2024) and Kekić et al. (2023) draw inspiration from the more constrained framework of
constructive τ abstractions introduced by Beckers and Halpern (2019). Additionally, as referenced in
the main text, Zennaro et al. (2023) builds upon the α-abstraction framework of Rischel (2020). In
Table 21 we aim to align and compare these approaches. A notable observation from the table is the
notational equivalence between the α-abstraction (Appendix D.1) and the constructive τ abstraction
frameworks. For instance, the intervariable clustering/partitioning introduced by Xia and Bareinboim
(2024) closely resembles the a map of the variables, while the intravariable clustering of domains
corresponds to the collection α of maps between the realisations of the two modelsM andM′.

Framework GM FM DM Generic τ Constructive τ ω GM′ FM′ DM′

Variable
map
(C, a)

Value
map

(D , αi)

COTA ✓ × ✓ † † ✓ ✓ × ✓

Dyer et al. (2023) × × ✓ ✓ ✓ † ✓ † ✓

Zennaro et al. (2023) ✓ ✓ ✓ − ✓ † ✓ ✓ ✓ ✓

Xia and Bareinboim (2024) × × ✓ − ✓ † ✓ † † ×

Kekić et al. (2023) ✓ × ✓ − ✓ † ✓ ✓ † ✓

Table 21: Comparison of different CA learning frameworks. For a given SCM, F is the set of
structural functions/mechanisms, G is the underlying DAG and D indicates the data of the SCM. The
checkmark symbol (✓) denotes the presence of the provided information, whereas the (×) symbol

the absence of the respective information. The dagger symbol (†) indicates the output/objectives of

each method, while the dash symbol (−) denotes the method’s incapacity to learn the associated
information from the provided assumptions. Finally, a gray symbol (✓, †) featuring a faded area
suggests that the information is implied by a more general or stronger assumption.
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