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Abstract

Causal abstraction is a promising theoretical framework for explainable artificial intelligence that
defines when an interpretable high-level causal model is a faithful simplification of a low-level deep
learning system. However, existing causal abstraction methods have two major limitations: they
require a brute-force search over alignments between the high-level model and the low-level one, and
they presuppose that variables in the high-level model will align with disjoint sets of neurons in the
low-level one. In this paper, we present distributed alignment search (DAS), which overcomes these
limitations. In DAS, we find the alignment between high-level and low-level models using gradient
descent rather than conducting a brute-force search, and we allow individual neurons to play multiple
distinct roles by analyzing representations in non-standard bases—distributed representations. Our
experiments show that DAS can discover internal structure that prior approaches miss. Overall, DAS
removes previous obstacles to uncovering conceptual structure in trained neural nets.

1. Introduction

Can an interpretable symbolic algorithm be used to faithfully explain a complex neural network
model? This is a key question for interpretability; a positive answer can provide guarantees about
how the model will behave, and a negative answer could lead to fundamental concerns about whether
the model will be safe and trustworthy.

Causal abstraction provides a mathematical framework for precisely characterizing what it means
for any complex causal system (e.g., a deep learning model) to implement a simpler causal system
(e.g., a symbolic algorithm) (Rubenstein et al., 2017; Beckers et al., 2019; Massidda et al., 2023).
For modern Al models, the fundamental operation for assessing whether this relationship holds in
practice has been the interchange intervention (also known as activation patching), in which a neural
network is provided a ‘base’ input, and sets of neurons are forced to take on the values they would
have if different ‘source’ inputs were processed (Geiger et al., 2020; Vig et al., 2020; Finlayson et al.,
2021; Meng et al., 2022). The counterfactuals that these interventions create are the basis for causal
inferences about model behavior.

Geiger et al. (2021) show that the relevant causal abstraction relation obtains when interchange
interventions on aligned high-level variables and low-level variables have equivalent effects. This
ideal relationship rarely obtains in practice, but the proportion of interchange interventions with the
same effect (interchange intervention accuracy; I1A) provides a graded notion, and Geiger et al.
(2023) formally ground this metric in the theory of approximate causal abstraction. Geiger et al. also
use causal abstraction theory as a unified framework for a wide range of recent intervention-based
analysis methods (Vig et al., 2020; Csordés et al., 2021; Feder et al., 2021; Ravfogel et al., 2020;
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Elazar et al., 2020; De Cao et al., 2021; Abraham et al., 2022; Olah et al., 2020; Olsson et al., 2022;
Chan et al., 2022).

Causal abstraction techniques have been applied to diverse problems (Geiger et al., 2019, 2020;
Lietal., 2021; Huang et al., 2022). However, previous applications have faced two central challenges.
First, causal abstraction requires a computationally intensive brute-force search process to find
optimal alignments between the variables in the high-level model and the states of the low-level one.
Where exhaustive search is intractable, we risk missing the best alignment entirely. Second, these
prior methods are localist: they artificially limit the space of possible alignments by presupposing
that high-level causal variables will be aligned with disjoint groups of neurons. There is no reason to
assume this a priori, and indeed much recent work in model explanation (see especially Ravfogel
et al. 2020, 2022; Elazar et al. 2020; Olah et al. 2020; Olsson et al. 2022) is converging on the insight
of Smolensky (1986), Rumelhart et al. (1986), and McClelland et al. (1986) that individual neurons
can play multiple conceptual roles. Smolensky (1986) identified distributed neural representations
as “patterns” consisting of linear combinations of unit vectors.

In the current paper, we propose distributed alignment search (DAS), which overcomes the above
limitations of prior causal abstraction work. In DAS, we find the best alignment via gradient descent
rather than conducting a brute-force search. In addition, we use distributed interchange interventions,
which are “soft” interventions in which the causal mechanisms of a group of neurons are edited
such that (1) their values are rotated with a change-of-basis matrix, (2) the targeted dimensions
of the rotated neural representation are fixed to be the corresponding values in the rotated neural
representation created for the source inputs, and (3) the representation is rotated back to the standard
neuron-aligned basis. The key insight is that viewing a neural representation through an alternative
basis that is not aligned with individual neurons can reveal interpretable dimensions (Smolensky,
1986).

In our experiments, we evaluate the capabilities of DAS to provide faithful and interpretable
explanations with two tasks that have obvious interpretable high-level algorithmic solutions with two
intermediate variables. In both tasks, the distributed alignment learned by DAS is as good or better
than both the closest localist alignment and the best localist alignment in a brute-force search.

In our first set of experiments, we focus on a hierarchical equality task that has been used
extensively in developmental and cognitive psychology as a test of relational reasoning (Premack,
1983; Thompson et al., 1997; Geiger et al., 2022a): the inputs are sequences [w,x,y,z], and the
label is given by (w = x) = (y = z). We train a simple feed-forward neural network on this task and
show that it perfectly solves the task. Our key question: does this model implement a program that
computes w = x and y = z as intermediate values, as we might hypothesize humans do? Using DAS,
we find a distributed alignment with 100% IIA. In other words, the network is perfectly abstracted by
the high-level model; the distinction between the learned neural model and the symbolic algorithm is
thus one of implementation.

Our second task models a natural language inference dataset (Geiger et al., 2020) where the
inputs are premise and hypothesis sentences (p, /) that are identical but for the words w, and wy,;
the label is either entails (p makes h true) or contradicts/neutral (p makes h false). We fine-tune a
pretrained language model to perfectly solve the task. With DAS, we find a perfect alignment (100%
ITA) to a causal model with a binary variable for the entailment relation between the words w, and
wy, (e.g., dog entails mammal).

In both our sets of experiments, the DAS analyses reveal perfect abstraction relations. However,
we also identify an important difference between them. In the NLI case, the entailment relation can
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be decomposed into representations of w, and wj,. What appears to be a representation of lexical
entailment is, in this case, a “data structure” containing two representations of word identity, rather
than an encoding of their entailment relation. By contrast, the hierarchical equality models learn
representations of w = x and y = z that cannot be decomposed into representations of w, x, y and z.
In other words, these relations are entirely abstracted from the entities participating in the relation;
DAS reveals that the neural network truly implements a symbolic, tree-structured algorithm.

2. Related Work

A theory of causal abstraction specifies exactly when a ‘high-level causal model’ can be seen as
an abstract characterization of some ‘low-level causal model’ (Iwasaki and Simon, 1994; Chalupka
et al., 2017; Rubenstein et al., 2017; Beckers et al., 2019). The basic idea is that high-level variables
are associated with (potentially overlapping) sets of low-level variables that summarize their causal
mechanisms with respect to a set of hard or soft interventions (Massidda et al., 2023). In practice, a
graded notion of approximate causal abstraction is often more useful (Beckers et al., 2019; Rischel
and Weichwald, 2021; Geiger et al., 2023).

Geiger et al. (2023) argue that causal abstraction is a generic theoretical framework for providing
faithful (Jacovi and Goldberg, 2020; Lyu et al., 2022) and interpretable (Lipton, 2018) explanations of
Al models and show that LIME (Ribeiro et al., 2016), causal effect estimation (Abraham et al., 2022;
Feder et al., 2021), causal mediation analysis (Vig et al., 2020; Csordas et al., 2021; De Cao et al.,
2021), iterated nullspace projection (Ravfogel et al., 2020; Elazar et al., 2020), and circuit-based
explanations (Olah et al., 2020; Olsson et al., 2022; Wang et al., 2022; Chan et al., 2022) can all be
understood as causal abstraction analysis.

Interchange intervention training (IIT) objectives are minimized when a high-level causal model
is an abstraction of a neural network under a given alignment (Geiger et al., 2022b; Wu et al., 2022;
Huang et al., 2022). In this paper, we use IIT objectives to learn an alignment between a high-level
causal model and a deep learning model.

3. Methods

We focus on acyclic causal models (Pearl, 2001; Spirtes et al., 2000) and seek to provide an intuitive
overview of our method. An acyclic causal model consists of input, intermediate, and output
variables, where each variable has an associated set of values it can take on and a causal mechanism
that determine the value of the variable based on the value of its causal parents. For a simple running
example, we modify the boolean conjunction models of Geiger et al. (2022b) to reveal key properties
of DAS. A causal model 4 for this problem can be defined as below, where the inputs and outputs
are booleans T and F. Alongside %, we also define a causal model .4 of a linear feed-forward neural
network that solves the task. Here we show %, .4, and the parameters of .4":

Wi = cos(20°) —sin(20°) | w=
| sin(20°)  cos(20°) | b

[1 1]

—-1.8

The model .4 predicts T if O > 0 and F otherwise. This network solves the boolean conjunction
problem perfectly in that all pairs of input boolean values are mapped to the intended output.

An input x of a model .# determines a unique total setting .# (x) of all the variables in the
model. The inputs are fixed to be x and the causal mechanisms of the model determine the values of
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the remaining variables. We denote the values that .# (x) assigns to the variable or variables Z as
GETVALUESz(# (x)). For example, GETVALUESy, (%4([T,F])) = F.

3.1. Interventions

Interventions are a fundamental building block of causal models, and of causal abstraction analysis
in particular. An intervention I < i is a setting i of variables I. Together, an intervention and an input
setting x of a model .# determine a unique total setting that we denote as .#.i(x). The inputs are
fixed to be x, and the causal mechanisms of the model determine the values of the non-intervened
variables, with the intervened variables I being fixed to i.

We can define interventions on both our causal model % and our neural model .#". For example,
By, —1([F,T]) is our boolean model when it processes input [F, T| but with variable V; set to T. This
has the effect of changing the output value to T. Similarly, whereas .#"([0, 1]) leads to an intermediate
values h; = —0.34 and sy = 0.94 and output value —1.2, if we compute .45, 1 34([0,1]), then the
output value is 0.48. This has the effect of changing the predicted value to T, because 0.48 > 0.

3.2. Alignment

In causal abstraction analysis, we ask whether a specific low-level model like .4 implements a
high-level algorithm like Z. This is always relative to a specific alignment of variables between
the two models. An alignment IT = ({Ilx }x, {Tx }x) assigns to each high-level variable X a set of
low-level variables ITy and a function 7x that maps from values of the low-level variables in Iy to
values of the aligned high-level variable X. One possible alignment between % and ./ is shown in
the diagram above: II is depicted by the dashed lines connecting & and .4".

We immediately know what the functions for high-level input and output variables are. For the
inputs, T is encoded as 1 and F is encoded as 0, meaning 7p(1) = 7p(1) = T and 7p(0) = 79(0) = F.
For the output, the network only predicts T if y > 0, meaning 7y, (x) = T if x > 0, else F. This is
simply a consequence of how a neural network is used and trained. The functions for high-level
intermediate variables 7y, (x) and 7y, (x) must be discovered and verified experimentally.

3.3. Constructive Causal Abstraction

Relative to an alignment like this, we can define abstraction:

Definition 1 (Constructive Causal Abstraction) A high-level causal model 7 is a constructive
abstraction of a low-level causal model £ under alignment I1 exactly when the following holds for
every low-level input setting x and low-level intervention 1 — i:

T(ﬁ%i(x)) = jﬁr(h—i)(f(x))

¢ being a causal abstraction of .’ under IT guarantees that the causal mechanism for each high-level
variable X is a faithful rendering of the causal mechanisms for the low-level variables in I1y.

To assess the degree to which a high-level model is a constructive causal abstraction of a low-level
model, we perform interchange interventions:

Definition 2 (Interchange Interventions) Given source input settings {s ]}/f and non-overlapping

sets of intermediate variables {X;}X for model .#, define the interchange intervention as the model
k ky _

(A {sj}1.AX}1) = %Aﬁ::l(x,«—GetValsxj (A (5))))

where /\];:1<> concatenates a set of interventions.
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A base input setting can be fed into the resulting model to compute the counterfactual output value.
Consider the following interchange intervention:

H(f@> {[T> T]}’ {{Vl}}) = <%{\/l }GetValsgy, y (Z([1.1]))

We process a base input and a source input, and then we intervene on a target variable, replacing it
with the value obtained by processing the source. Our causal model is fully known, and so we know
ahead of time that this interchange intervention yields T. For our neural network, the corresponding
behavior is not known ahead of time. The interchange intervention corresponding to the above
(according to the alignment we are exploring) is as follows

(A AL {{H ) = A1} — GetValsy,y (47([1,1]))

And, indeed, the counterfactual behavior of the model and the network .#" are unequal:

Under the given alignment, the interchange interventions at the low and high level have different
effects. Thus, we have a counterexample to constructive abstraction as given in Definition 1.
Although .4 has perfect behavioral accuracy, its accuracy under the counterfactuals created by our
interventions is not perfect, and thus 4 is not a constructive abstraction of .4 under this alignment.

3.4. Distributed Interventions

The above conclusion is based on the kind of localist causal abstraction explored in the literature to
date. As noted in Section 1, there are two risks associated with this conclusion: (1) we may have
chosen a suboptimal alignment, and (2) we may be wrong to assume that the relevant structure will
be encoded in the standard basis we have implicitly assumed throughout.

If we simply rotate the representation [Hj, H,] by —20° to get a new representation [Y;,Y>], then
the resulting network has perfect behavioral and counterfactual accuracy when we align V| and V,
with Y7 and Y,. What this reveals is that there is an alignment, but not in the basis we chose. Since
the choice of basis was arbitrary, our negative conclusion about the causal abstraction relation was
spurious.

This rotation localizes the information about the first and second argument into separate di-
mensions. To understand this, observe that the weight matrix of the linear network rotates a two
dimensional vector by 20° and the rotation matrix rotates the representation by 340°. The two
matrices are inverses. Because this network is linear, there is no activation function and so rotating
the hidden representation “undoes” the transformation of the input by the weight matrix. Under this
non-standard basis, the first hidden dimension is equal to the first input argument and the second
hidden dimension is equal to the second input argument.

This reveals an essential aspect of distributed neural representations: there is a many-to-many
mapping between neurons and concepts, and thus multiple high-level causal variables might be
encoded in structures from overlapping groups of neurons (Rumelhart et al., 1986; McClelland et al.,
1986). In particular, Smolensky (1986) proposes that viewing a neural representation under a basis
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Figure 1: A generic multi-source distributed interchange intervention. The base input and two source
inputs create three total settings of a model. The top left (green) and right (blue) total
model settings are determined by two source inputs and the middle total model setting
(red) is determined by the base input. Three hidden units from each total setting are rotated
with an orthogonal matrix R : X — Y. Then we intervene on the rotated representation for
the base input and fix two dimensions to be the value they take on for each source input,
respectively. Then we unrotate the representation with R~! and compute a counterfactual
total model setting for the base input. In DAS, the orthogonal matrix is found with gradient
descent using a high-level causal model to guide the search process.

that is not aligned with individual neurons can reveal the interpretable distributed structure of the
neural representations.

To make good on this intuition we define a distributed intervention, which first transforms a set
of variables to a vector space, then does interchange on orthogonal sub-spaces, before transforming
back to the original representation space.

Definition 3 Distributed Interchange Interventions We begin with a causal model .# with input
variables S and source input settings {s j}’;: - Let N be a subset of variables in ./, the target

variables. Let Y be a vector space with subspaces {Y j}’(‘) that form an orthogonal decomposition, i.e.,
Y = (—B];:O Y. Let R be an invertible function R : N — Y. Write Pron/_ for the orthogonal projection

operator of a vector in 'Y onto subspace Y j.l A distributed interchange intervention yields a new
model D1 (. R, {s;}*,{Y ;}5) which is identical to .# except that the mechanisms Fx (which yield

1. Thus, Proj generalizes GetVals to arbitrary vector spaces.
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values of N from a total setting) are replaced by:

R(v)=R" (pijO (R(A(M)) + i Projy, (R(FN(///(sj))))> .
j=1

Notice that in this definition the base setting is partially preserved through the intervention (in
subspace Yp) and hence this is a soft intervention on N that rewrites causal mechanisms while
maintaining a causal dependence between parent and child.

Under this new alignment, the high-level interchange intervention I1(%,{[T,T]},{{Vi}}) =
By} —GetVals vy (B([r.D) is aligned with the low-level distributed interchange intervention

an,[ ) e ],{[1,1]},{{Y1}}>

and the counterfactual output behavior of % and .4 are equal:

0=0.08 cos(20°)  —sin(20°)
[ o P T,,,,,,:_gpoZO) . cos(ZOr’)

0=0.08
0°
[ Hy =—034 Hy =0.94 ] cos —sin( cos( —sin(—20°) [ Hy =06 Hy =128 }
si )° cos( sin( cos( °)
[+ ]

In what follows we will assume that X are already vector spaces (which is true for neural nets)
and the functions R are rotation operators. In this case, the subspaces Y can be identified without
loss of generality with those spanned by the first [Yy| basis vectors for Yy, the next |Y|| basis vectors
for Y1, and so on. (The following methods would be well-defined for non-linear transformations, as
long as they were invertible and differentiable, but efficient implementation becomes harder.)

3.5. Distributed Alignment Search

The question then arises of how to find good rotations. As we discussed above, previous causal
abstraction analyses of neural networks have performed brute-force search through a discrete space
of hand-picked alignments. In distributed alignment search (DAS), we find an alignment between one
or more high-level variables and disjoint sub-spaces (but not necessarily subsets) of a large neural
representation. We define a distributed interchange intervention training objective, use differentiable
parameterizations for the space of orthogonal matrices (such as provided by PyTorch), and then
optimize the objective with stochastic gradient descent. Crucially, the low-level and high-level
models are frozen during learning so we are only changing the alignment.

In the following definition we assume that a neural network specifies an output distribution for a
given input, which can then be pushed forward to a distribution on output values of the high-level
model via an alignment function 7. We may similarly interpret even a deterministic high-level
model as defining a (e.g., delta) distribution on output values. We make use of these distributions,
after interchange intervention, to define a differentiable loss for the rotation matrix which aligns
intermediate variables.

Definition 4 Distributed Interchange Intervention Training Objective Begin with a low-level neural
network £, with low-level input settings Inputs;, a high-level algorithm 7, with high-level output
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settings Outy, and an alignment T for their input and output variables. Suppose we want to align
intermediate high level variables X; € Vars y» with rotated subspaces Y ; of a neural representation
N c Vars ¢ with learned rotation matrix R® : N — Y.

In general, we can define a training objective using any differentiable loss function Loss that
quantifies the distance between two total high-level settings.

T Loss (DII(z,R",{sj}’f,{Yﬁé)(b»ﬂ(%,{r(sj)}’f,{X;}’f)(r(b)))

b,si,....sy€lnputs;

For our experiments, we compute the cross entropy loss CE(-,-) between the high-level output
distribution P(outy| 7 (t(b))) and the push-forward under T of the low-level output distribution
P?(outy|-Z(b)). The overall objective is:

v CE<P<outH|H<ff,{r(s.;)}é,{Xj}’m(r(b))ff(outmml(z,Re,{sj}'f,{Yﬂé)(b)))

b,si,...,sy€Inputs;

While we still have discrete hyperparameters (N, |Yo|,...,|Yx|)—the target population and the
dimensionality of the sub-spaces used for each high-level variable—we may use stochastic gradient
descent to determine the rotation that minimizes loss, thus yielding the best distributed alignment
between .Z and J7.

3.6. Approximate Causal Abstraction

Perfect causal abstraction relationships are unlikely to arise for neural networks trained to solve
complex empirical tasks. We use a graded notion of accuracy:

Definition 5 Distributed Interchange Intervention Accuracy Given low-level and high-level causal
models £ and H with alignment (I1,7), rotation R : N — 'Y, and orthogonal decomposition {Y ;}X.
If we let Inputs; be low-level input settings and {Xj}ll‘ be high-level intermediate variables the
interchange intervention accuracy (IIA) is as follows

2 W[r(nn(y,Re,{sj}f;,{y,.}g)<b>) = 10, {(s)) 5, (X4 (2(b) |
b,si,....sy€lnputs;

ITA is the proportion of aligned interchange interventions that have equivalent high-level and low-
level effects. In our example with .4 and 7, IIA is 100% and the high-level model is a perfect
abstraction of the low-level model (Def. 1). When IIA is o <100%, we rely on the graded notion of
Qa-on-average approximate causal abstraction (Geiger et al., 2023), which coincides with ITA.

3.7. General Experimental Setup

We illustrate the value of DAS by analyzing feed-forward networks trained on a hierarchical equality
and pretrained Transformer-based language models (Vaswani et al., 2017) fine-tuned on a natural
language inference task. Our evaluation paradigm is as follows:

1. Train the neural network .4 to solve the task. In all experiments, the neural models achieve
perfect accuracy on both training and testing data.

2. Create interchange intervention training datasets using a high-level causal model. Each
example consists of a base input, one or more source inputs, high-level causal variables
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targetted for intervention, and a counterfactual gold label that will be output by the network
if the interchange intervention has the hypothesized effect on model behavior. This gold
label is a counterfactual output of the high-level model we will align with the network. (See
Appendix A.1 for details)

3. Optimize an orthogonal matrix to learn a distributed alignment for each high-level model that
maximizes IIA using the training objective in Def. 4. We experiment with different hidden
dimension sizes for our low-level model and different intervention site sizes (dimensional-
ity of low-level subspaces) and locations (the layer where the intervention happens). (See
Appendix A.2 for details)

4. Evaluate a baseline that brute-force searches through a discrete space of alignments and selects
the alignment with the highest ITA. We search the space of alignments by aligning each high-
level variable with groups of neurons in disjoint sliding windows. (See Appendix A.3 for
details)

5. Evaluate the localist alignment “closest” to the learned distributed alignment. The rotation ma-
trix for the localist alignment will be axis-aligned with the standard basis, possibly permuting
and reflecting unit axes. (See Appendix A.4 for details)

6. Determine whether each distributed representation aligned with high-level variables can be
decomposed into multiple representations that encode the identity of the input values to the
variable’s causal mechanism. We do this by learning a second rotation matrix that decomposes
learned distributed representation, holding the first rotation matrix fixed. (See Appendix A.5
for details)

The codebase used to run these experiments is at’>. We have replicated the hierarchical equality
experiment using the Pyvene library at’.

4. Hierarchical Equality Experiment

We now illustrate the power of DAS for analyzing networks designed to solve a hierarchical equality
task. We concentrate on analyzing a trained feed-forward network.

A basic equality task is to determine whether a pair of objects are the same (x = y). A hierarchical
equality task is to determine whether a pair of pairs of objects have identical relations: (w = x) =
(y = z). Specifically, the input to the task is two pairs of objects and the output is True if both pairs
are equal or both pairs are unequal and False otherwise. For example, (A,A,B,B) and (A,B,C,D)
are both assigned True while (A, B,C,C) is assigned False.

4.1. Low-Level Neural Model

We train a three-layer feed-forward network with ReLLU activations to perform the hierarchical
equality task. Each input object is represented by a randomly initialized vector. Specifically, our
model has the following architecture where k is the number of layers.

h = ReLU([xl;xz;x3;X4]W1 —l—bl) hj_l = ReLU(thj +bj) y= softmax(thk -I-bk)

The input vectors are in R”, the biases are in R*", and the weights are in R*"*#*, We evaluate our
model on held-out random vectors unseen during training, as in Geiger et al. 2022a.

2. https://github.com/atticusg/Interchangelnterventions/tree/zen
3. https://github.com/stanfordnlp/pyvene/blob/main/tutorials/advanced_tutorials/DAS_Main_
Introduction.ipynb
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Both Equality Relations Left Equality Relation Identity of First Argument Identity Subspace of

Left Equality
Hidden size Intervention size Layer1 Layer2 Layer3 Layer1 Layer2 Layer3 Layer1l Layer2 Layer3 Layer 1
IN] =16 1 0.88 0.51 0.50 0.85 0.54 0.50 0.51 0.52 0.50 0.51
IN] =16 2 0.97 0.54 0.50 0.85 0.55 0.50 0.50 0.52 0.51 0.50
IN| =16 8 1.00 0.57 0.50 0.90 0.56 0.50 0.52 0.53 0.51 0.51
IN] =32 2 0.93 0.63 0.49 0.92 0.65 0.50 0.52 0.55 0.52 0.50
IN] =32 4 0.97 0.63 0.49 0.94 0.65 0.50 0.51 0.55 0.52 0.51
IN| =32 16 0.99 0.67 0.53 0.99 0.65 0.50 0.49 0.55 0.52 0.51
Brute-Force Search 0.60 0.56 0.52 0.64 0.64 0.57 0.50 0.51 0.54
Localist Alignment 0.73 0.56 0.48 0.60 0.50 0.49 0.46 0.47 0.48

Table 1: Hierarchical equality alignment learning results. The table can be read as follows: Layer
1, Layer 2, and Layer 3 indicate which layer of neurons is targeted, |N| is the number
of neurons in a layer, k is the number of neurons aligned with each intermediate variable
(red) where our subspace model occupies % with rounding up to the closest integer, and
the values in each cell are interchange intervention accuracies for the learned alignment
on training data. We report the best results from three runs with distinct random seeds for
training the rotation matrix (the same frozen low-level model is used for each seed).

4.2. High-Level Models

We use DAS to evaluate whether trained neural networks have achieved the natural solution to the
hierarchical equality task where the left and right equality relations are computed and then used to
predict the final label (Figure 2).

However, evaluating this high-level model alone is

insufficient, as there are obviously many other high-level @
models of this task. To further contextualize our results, Ch=w=n>  (h=0-9
we also consider two alternatives: a high-level model OHROENONRO

where only the equality relation of the first pair is repre-

sented and a high-level model where the lone intermediate  Figure 2: A causal model that computes
variable encodes the identity of the first input object (leav- the hierarchical equality task.
ing all computation for the final step). These alternative

high-level models also solve the task perfectly.

4.3. Discussion

The ITA results achieved by the best alignment for each high-level model can be seen in Table 1. The
best alignments found are with the ‘Both Equality Relations’ model that is widely assumed in the
cognitive science literature. For all causal models, DAS learns a more faithful alignment (higher
ITA) than a brute-force search through localist alignments. This result is most pronounced for ‘Both
Equality Relations’, where DAS learns perfect or near-perfect alignments under a number of settings,
whereas the best brute-force alignment achieves only 0.60 and the best localist alignment achieves
only 0.73. Finally, the distributed representation of left equality could not be decomposed into a
representation of the first argument identity. We see this in the very low performance of the ‘Identity
Subspace of Left Equality’ results. This indicates that models are truly learning to encode an abstract
equality relation, rather than merely storing the identities of the inputs.
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MONLI(p,h)

Sentence Pairs Label

o A < talkine t 1 4 taxi ” 1 lexrel < GET-LEXREL(p,h)
premise: A man is talking to someone in a taxi. entails 2 neg « CONTAINS-NOT(p, h)
hypothesis: A man is talking to someone in a car. 3 if neg:

. . - 4 return REVERSE (lexrel)
premise: The people are not playmg SltE.II'S. neutral s return lexrel
hypothesis: The people are not playing instruments.

(a) Two MoNLI examples. (b) A simple program that
solves MoNLI.

Figure 4: Monotonicity NLI task examples and high-level model.

4.4. Analyzing a Randomly Initialized Network

To calibrate intuitions about our method, we evaluate the
ability of DAS to optimize for interchange intervention Both Equality Relations
accuracy on a frozen randomly initialized networks that
achieves chance accuracy (50%) on the hierarchical equal-

‘ s ) ” Hidden size Intervention size Layer 1
ity task. This investigates the degree to which random

causal structures can be used to systematically manipulate m - éi kk B 382 828
the counterfactual behavior of the network. We evaluate IN| = 256 k= 128 0: 51
networks with different hidden representation sizes while  |N| = 1028 k=512 0.55
holding the four input vectors fixed at 4 dimensions, un-  |N| = 4096 k = 2048 0.64

der the hypothesis that more hidden neurons create more
random structure that DAS can search through. These re-
sults are summarized in Table 4.4. Observe that, in small
networks, there is no ability to increase interchange in-
tervention accuracy. However, as we increase the size of
the hidden representation to be orders of magnitude larger
than the input dimension of 16, the interchange interven-
tion accuracy increases. This confirms our hypothesis and
serves as a check that demonstrates DAS cannot construct
entirely new behaviors from random structure.

Figure 3: DAS on a random network
with a 16 dimension input.
An oversized hidden dimen-
sion allows DAS to manip-
ulate the model behavior by
searching through a large
space of random mechanisms.

5. Monotonicity NLI Experiment

In our second experiment, we analyze a BERT model fine-tuned on the Monotonicity Natural
Language Inference (MoNLI) benchmark (Geiger et al., 2020). A MoNLI example consists of a
premise sentence and hypothesis sentence and the output label is entails when the premise makes
the hypothesis true, and neutral otherwise. Two examples are in Figure 4(a). Every example is such
that a single word w), in the premise sentence was changed to a hypernym (more general term) or
hyponym (more specific term) wy, to create the hypothesis. About half of MoNLI examples contain a
negation that scopes over the word replacement site, and the remaining examples have no negation.
When no negation is present, the label for a premise—hypothesis pair is the lexical relation. When
negation is present, the label for a premise—hypothesis pair is the reverse of the lexical relation.
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Negation and Lexical Entailment Identity of Lexeme Lexeme Subspace of

Lexical Entailment Lexical Entailment
Hidden size Intervention size Layer7 Layer9 Layer11 Layer7 Layer9 Layer11l Layer7 Layer9 Layer11 Layer 9
IN| =768 64 0.65 0.96 091 0.88 1.00 0.97 0.88 0.94 0.93 0.97
IN| =768 128 0.65 0.99 0.92 0.88 1.00 0.99 0.89 0.93 0.92 0.97
IN| =768 256 0.67 1.00 0.86 0.91 1.00 1.00 0.88 0.96 0.88 0.98
Brute-Force Search 0.60 0.56 0.52 0.64 0.64 0.57 0.50 0.51 0.54
Localist Alignment 0.51 0.51 0.51 0.47 0.47 0.47 0.50 0.50 0.50

Table 2: Monotonicity NLI results. The table can be read as follows: Layer 7, Layer 9, and Layer
11 indicate which layer of neurons is targeted, |N| is the number of neurons in a layer, k is
the number of neurons aligned with each intermediate variable (red) where our subspace
model occupies % and the values in each cell are interchange intervention accuracies for the
learned alignment on training data. We report the best results from three runs with distinct
random seeds.

5.1. Low-Level Neural Model

We fine-tune an uncased BERT-base model (Devlin et al., 2019) finetuned on the MultiNLI dataset
(Williams et al., 2018).* Our BERT model has 12 layers and 12 heads with a hidden dimension of
768. We concatenate the tokenized sequences of the premise sentence and hypothesis sentence with a
[SEP] token. Because of the size of the rotation matrix, we can’t look for distributed representations
across all tokens; we look only at the representations of the [CLS] token because the final classification
is made from this token’s representation in the last layer.

5.2. High-Level Models

We use DAS to evaluate whether BERT fine-tuned on MoNLI will represent two boolean intermediate
variables. The first is an indicator variable for negation, which is true if and only if negation is present
in the premise and hypothesis. The second is a variable that is true if w), entails wj,. This model is
perhaps best expressed as a simple program (Figure 4(b)). Again, we also consider two alternative
high-level models to contextualize our results. One model represents only lexical entailment and not
negation. The other represents the identity of the premise word w,.

5.3. Results

The IIA results achieved by the best alignment for each high-level model can be seen in Table 2. There
is a perfect alignment between fine-tuned BERT and a symbolic algorithm with variables representing
the presence of negation and the lexical entailment relation between w), and wy,. In Table 2, this
is shown by the perfect IIA for layer 9 and intervention size 256, meaning 256 non-standard basis
dimensions of the [CLS] token representation in layer 9 of BERT encode the relation between w),
and wy, and 256 other non-standard basis dimensions encode negation. Across all alignments and
intervention types, DAS learns more faithful alignments (higher IIA) than a brute-force search
through alignments, and no localist alignment comes close to the learned distributed alignments in
terms of IIA.

4. The parameters are provided by the Hugging Face transformers library (Wolf et al., 2019), downloaded from
https://huggingface.co/ishan/bert-base-uncased-mnli.
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However, the distributed representation of the lexical entailment relation between w), and wy, can
be nearly perfectly decomposed into two representations that encode the identity of the word w), and
the identity of the word wy, respectively. This result is shown by the near perfect IIA in the final
column of Table 2. This tells us that what appeared to be a representation of the lexical entailment,
was in fact a “data structure” of two word identity representations.

6. Conclusion

We introduce distributed alignment search (DAS), a method to align interpretable causal variables
with distributed neural representations. We learn distributed alignments that are more interpretable
than localist alignments and do so with a gradient-descent based search method that improves upon
the state-of-the-art brute-force search. In our two experiments, we discovered perfect alignments of
distributed neural representations to binary high-level variables encoding simple equality and lexical
entailment relations. However, when we investigated the substructure of these representations, we
found that the lexical entailment representations could be decomposed into sub-representations of
word identity. This highlights the need to investigate the causal substructure of neural representations.
On the other hand, the presence of perfect representations of simple equality relations that cannot be
decomposed into representations of the entities in the relations is a foundational result that should
inform our understanding of how and when symbolic and connectionist architectures coexist.
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Supplementary Materials
Appendix A. Experimental Setup Details
A.1. Training Data for distributed alignment search (DAS)

For each task, we create training datasets for learning the rotation matrix of each high-level model.
As defined in Definition 2, each input—output pair for training the rotation matrix consists of a base
input that has two pairs of input values. Additionally, we have a set of source inputs mapping to
interventions on different intermediate variables, and the corresponding counterfactual outputs (i.e.,
the updated outputs under interventions). Note that only for cases where there are multiple high-level
intermediate variables involved, we sample more than one source input. For such cases, we randomly
choose to interchange two variables together from two source inputs or swap a single variable from a
single source input.

Hierarchical Equality Experiments For our high-level models abstracting both equality relations
and left equality relation, we sample a set of source inputs and interchange the equality relations of
the corresponding shape pairs from the source inputs with the equality relations from the base input.
For our high-level model abstracting the identity of the first shape, we sample a source input and
interchange the first change from the source input with the base input.

Monotonicity NLI Experiments For our high-level models abstracting negation or lexical entail-
ment, we sample a set of source inputs and interchange the boolean value for negative or the value for
lexical entailment from the source inputs with the base input. For our high-level model abstracting
only the identity of replacing lexeme from the hypothesis sentence, we sample another hypothesis
sentence from the one seen in training set and interchange its lexeme with the base input. To avoid
cases where entailment labels are invalid (e.g., the entailment relation between “car” and “tree” is
ambiguous), we specifically sample a valid English word that is either a hypernym or a hyponym
of the lexeme item in the premise sentence, and from a new lexeme pair. Then, we construct a new
pair of premise and hypothesis sentences by sampling a sentence template (i.e., a sentence with
replaceable lexeme position such as “a man is talking to someone in a [1exeme]”) from the training
dataset and replacing the lexeme items with new ones.

A.2. Reproducibility

Hierarchical Equality Experiment We randomly generate 1.92M input—output pairs for training
the model. We train our model for 10 epochs before reaching 100% training accuracy for the task.
We also evaluate model performance on a hold-out testing set with unseen input-output pairs, and our
model achieves 100% testing accuracy. For each high-level model, we then generate a training dataset
for learning the rotation matrix. For each high-level model, we construct 640K such input—output
pairs as our training data and 19.2K pairs as our testing data.

For both training phases, we use a batch size of 6.4K with a maximum training epoch of 10.
We set the learning rate to le > with an early stop patient step set to 10K. Training with a single
NVIDIA 2080 Ti RTX 11GB GPU takes less than ten minutes to converge. All datasets were
balanced across the two labels during standard and interchange intervention training objectives. We
run each experiment three times with distinct random seeds.

Monotonicity NLI Experiment We randomly sample 10K examples from the original MoNLI
dataset and use it to train our low-level models to solve MoNLI. We finetune our model for 5 epochs
before reaching 100% training accuracy for the task. We also evaluate model performance on a
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hold-out testing set, and our model achieves 100% testing accuracy. For training and evaluating the
rotation matrix of each high-level model, we create 24K examples as our training dataset for the first
high-level model, and 10K for the rest two high-level models. For evaluation, we create 1.92K for
the first high-level model, and 1K for the rest two high-level models.

We finetune our model for 5 epochs with a learning rate of 2¢~> before reaching 100% task
accuracy with a batch size of 32. For the learning rotation matrix, we use a batch size of 64 with a
learning rate of 2¢ 3 for a fixed epoch number of 5. Training with a single NVIDIA 2080 Ti RTX
11GB GPU takes less than ten minutes to converge for both training phases. We run each experiment
three times with distinct random seeds.

A.3. Brute-Force Search Baseline

Without additional training, our brute-force search baseline finds the best IIA by searching over
possible alignments (IT, ) as in Definition 5. For simple feed-forward networks, we map a high-level
variable to a set of low-level variables within a sliding window with a size equal to the intervention
size. We then incrementally search for the sliding window achieving the best IIA score starting from
the first index of the intervened representation in the network. For Transformer-based networks,
we avoid searching over all possible windows to make computation tractable, by only looking at
windows with a starting index from {0, 64, 128,256,512} of the [CLS] token representation. Instead
of targeting a specific set of layers in neural networks, we perform searches over all layers. Note that
for the worst-case scenario, the number of hypotheses for the brute-force search approach becomes
intractable and can be estimated as Cj, where n is the total dimension size of the neural representation,
and m is the variable dimension size.
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A 4. Localist Alignment Baseline

Without additional training, our localist alignment baseline finds a local optimal localist alignment
matrix based on the learned rotation matrix. We pick the rotation matrix with the best IIA result from
each category for evaluation. To find a localist alignment matrix, we follow Algorithm 1 to get our
localist alignment matrix .Z from any orthogonal matrix %Z. We then use . as our rotation matrix

and evaluate IIA following our evaluation paradigm.

Algorithm 1 Finding Localist Alignment Matrix

FINDLOCALISTALIGNMENT(Z)

/ % is an orthogonal matrix.

Ry = X .aboslute_value()

Z = torch.zeros_like(Z)

7 =]

fori=0;i < % .shapel[0];i++
P +=[(#y = torch.max(#,)).nonzero()]
Ro| P[—1].row,:] =0.
Ry P[—1].col] =0.

for pe &
Z|p.row,p.col] =1.

P =P «get_sign(#)

return &
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A.5. Subspace DAS

After learning a rotation matrix, we can fix it and learn another rotation matrix on top of it to do
subspace high-level variable alignment. For instance, in the case of our MoNLI experiment, we fix
the rotation matrix aligning the Lexical Entailment representation and further test whether we can
learn another rotation matrix to align word identity. To achieve this, we initialize the first rotation
matrix which aligns a larger subspace and freezes its weights along with the rest of the model. Then,
we train another rotation matrix by taking the output representations from the first one with the
same training objective as the first one as defined in Definition 4. The training data for the second
rotation matrix is not the same as the first one, where we use the training data for the high-level
model hypothesized to align with the subspace (e.g., the training data for the identity of first argument
for the hierarchical equality task, and the training data for the identity of lexeme for the MoNLI
task). Note that for both of our experiments, the subspace dimension is half of its parent subspace for
simplicity.

Appendix B. Runtime Comparison: Brute-force Search Baseline vs. DAS

Table 3 shows the runtime comparison between our method and brute-force search under the same
settings for each task. Only our approach requires training. We underestimate the runtime for
the brute-force search approach by only considering a limited set of possible alignments without
exhaustively searching over the entire combination, which leads to intractable computations (See the
BFSax column of Table 3). The runtime of our approach can be further optimized if we deploy early
stopping or optimized training data size, and it is invariant with the number of testing hypotheses.

Table 3: Estimated runtime comparison between our method and brute force search (BFS) baseline
(the number of testing hypotheses) for finding an alignment in a single targeted layer
measured under the same settings. The runtime of DAS is invariant with the number of
testing hypotheses.

Runtime (sec)
Task BFS BFS .x DAS

Hierarchical Equality 31 (32) 6€® (C32) 502

Monotonicity NLI 198 (5) 2¢°%(CI5%) 1105

Appendix C. Remarks on Learned Rotation Matrix

Figure 5 shows the rotation in degree(s) of eigenvectors® of our learned rotation matrix for each task.
We pick the best-performing oracle low-level model for each task for analyses. Our results suggest
that learned rotations are not trivial, as the majority of basis vectors are rotated. These results suggest
that the representations of high-level variables are highly distributed where direct probes over learned
activation may fail to reveal the actual causal role of the representation effectively.

Appendix D. Common Questions

In this section, we answer common questions that may be raised while reading this report.

Is the learned orthogonal matrix orthonormal?

5. The eigenvectors of a rotation matrix are the vectors that remain unchanged after the rotation.
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Figure 5: Rotation measured in degree(s) of eigenvectors of the learned rotation matrix for each task.

Yes. We use the trainable orthogonal matrix implementation from PyTorch’s torch.nn.utils.
parametrizations. It guarantees the resulting matrix is orthonormal when the rotation matrix is a
full square matrix. Keeping the matrix orthonormal is crucial since it ensures we focus on rotation
rather than scaling. Details can be found at https://pytorch.org/docs/stable/generated/
torch.nn.utils.parametrizations.orthogonal.html.

How stable is the optimization process of the orthogonal matrix?

We rely on the default initialization of the orthogonal matrix in pytorch. The initialization
step is important for finding the local optimal of the rotation matrix. In our experiment, we use
random seeds and pick the best results out of our distinct runs to address this issue. However, we
may consider different initialization schemes in the future.

Is an orthogonal matrix required to find distributed alignments?

In principle, the transformation is not required to be an orthogonal matrix. In fact, an orthogonal
matrix assumes a linear transformation before aligning with a high-level variable, which may not
be optimal if the aligning variable is represented in a non-linear sub-manifold of the representation
space. In such cases, an orthogonal transformation results in imperfect interchange intervention
accuracy, and an invertible and differentiable non-linear transformation may be more suitable (e.g.,
normalizing flow or invertible neural network). In practice, this transformation is computationally
difficult to find, and the linear connections within neural networks also make them unlikely to be
required to find alignments. We leave these investigations to future works.

What are the prerequisites to deploy this analysis method in practice?

We assume a partial or complete causal graph of the data generation process. Specifically, we
assume to have interchangeable high-level variables defined for the causal graph. Additionally, we
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assume we can sample counterfactual data (i.e., base and source inputs where they differ in values of
high-level variables) based on the causal graph.

How to interpret the result if the interchange intervention accuracy is not 100%?

When IIA is o <100%, we rely on the graded notion of a-on-average approximate causal
abstraction Geiger et al. (2023), which directly coincides with IIA. More importantly, the relative ITA
rankings between the high-level models also show which high-level model is a better approximation
of the low-level model.

Does DAS scale with large foundation models?

Currently, the number of learnable parameters of the rotation matrix groups in polynomial time
with the size of hidden representations. For instance, if our intervention site size is 512 in the
lower-level model, the number of parameters of the rotation matrix is 512 x 512, which is about
0.26M. If we want to rotate concatenated token sequence embeddings of a BERT-BASE model in any
layer, the number of parameters of the full rotation matrix is about 15.4B which becomes intractable
for standard training infrastructure. To make computation tractable, DAS should be further reducible
by representing only the aligned subspace, not the full rotation matrix. For instance, to find a 2-dim
distributed representation within a 512-dimensional representation space, we approximately only
need to learn 512 x 2 parameters. In addition, we may use a low-rank approximation of the rotation
matrix.

What are some practical usage of DAS?

Practically, DAS transforms representations into an operatable state where interchange interven-
tion results in interpretable model behaviors. DAS, itself, is a powerful tool for conducting causal
abstraction analysis of a neural network.

Appendix E. Task Performance & Interchange Intervention Accuracy Over Training
Epochs

We additionally measure task performance (Task Acc.) as well IIA (Int. Acc.) of our alignments over

training epochs for both seen training examples as well as unseen testing examples. Our results are

shown from Figure 6 to Figure 11.
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Figure 9: Accuracy over training epochs of the high-level model abstracting both negative and lexical
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Figure 10: Accuracy over training epochs of the high-level model abstracting lexical entailment with
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Figure 11: Accuracy over training epochs of the high-level model abstracting the identity of lexeme
with |[N| = 768 for monotonicity NLI experiment.
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