
Proceedings of Machine Learning Research vol 236:1–21, 2024 3rd Conference on Causal Learning and Reasoning

The PetShop Dataset — Finding Causes of Performance Issues across
Microservices

Mila Hardt MILAHA@AMAZON.COM
Amazon

William R. Orchard* WILLIAM.ORCHARD@CRUK.CAM.AC.UK
University of Cambridge

Patrick Blöbaum BLOEBP@AMAZON.COM
Amazon

Elke Kirschbaum ELKEKI@AMAZON.COM
Amazon

Shiva Prasad Kasiviswanathan KASIVISW@GMAIL.COM

Amazon

Editors: Francesco Locatello and Vanessa Didelez

Abstract
Identifying root causes for unexpected or undesirable behavior in complex systems is a prevalent
challenge. This issue becomes especially crucial in modern cloud applications that employ numerous
microservices. Although the machine learning and systems research communities have proposed
various techniques to tackle this problem, there is currently a lack of standardized datasets for
quantitative benchmarking. Consequently, research groups are compelled to create their own
datasets for experimentation. This paper introduces a dataset specifically designed for evaluating
root cause analyses in microservice-based applications. The dataset encompasses latency, requests,
and availability metrics emitted in 5-minute intervals from a distributed application. In addition to
normal operation metrics, the dataset includes 68 injected performance issues, which increase latency
and reduce availability throughout the system. We showcase how this dataset can be used to evaluate
the accuracy of a variety of methods spanning different causal and non-causal characterisations
of the root cause analysis problem. We hope the new dataset, available at https://github.
com/amazon-science/petshop-root-cause-analysis, enables further development
of techniques in this important area.

1. Introduction

Identifying the origin of unexpected or undesired behavior of a system, also called root cause
analysis (RCA), is of extreme relevance in various disciplines. For example, in manufacturing
pipelines, if certain parts exceed failure rate thresholds during quality tests, it is crucial to identify
and resolve the root cause to avoid financial losses and reputational damage. The timely resolution
of such issues is vital as prolonged downtime can result in substantial monetary losses and erode
customer trust. Likewise, for online retailers, any decrease in website availability or prolonged page
load times directly impacts revenue and customer confidence, underscoring the urgency of RCA in
restoring normal operations. Identifying the root cause of such issues, however, can be extremely
cumbersome and time-consuming, particularly in complex applications composed of tens or hundreds
of microservices. Such microservice architectures have become extremely popular in recent years,
since decomposing an application into different microservices that communicate through agreed

* Work done while interning at Amazon Research in Tübingen, Germany

© 2024 M. Hardt, W.R. Orchard, P. Blöbaum, E. Kirschbaum & S.P. Kasiviswanathan.

236:957–978, 2024

https://github.com/amazon-science/petshop-root-cause-analysis
https://github.com/amazon-science/petshop-root-cause-analysis

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

upon application programming interfaces (APIs) enables clear ownership and rapid development.
Additionally, the most suitable hardware can be chosen for each component and scaled up or
down independently. These are great advantages compared to a monolithic application architecture.
However, when problems arise, identifying the cause in these complex systems is challenging and
requires not just knowledge of the individual components, but also about the interaction between the
components. Oncall engineers may need to look over hundreds of metrics, dig in terabytes of logs,
ping people from other teams responsible for various components, before they obtain a clear picture
of what went wrong.

To reduce the mean time to resolution, numerous methods have been proposed for automating
RCA using available system data. Some of these methods are specifically tailored for RCA in
microservice-based applications (e.g. Chen et al., 2014; Lin et al., 2018; Ma et al., 2020; Gan et al.,
2021; Liu et al., 2021; Ikram et al., 2022; Li et al., 2022), while others are designed for a broader
class of use cases (e.g. Budhathoki et al., 2022). Among these Ikram et al. (2022) has released a
dataset based on the Sock-shop application to evaluate such methods. In this paper we introduce a
similar dataset also based on microservice architecture with issues injected. However, the datasets
differ in a few crucial aspects: our dataset is collected from a microservice based application which
contains more than 3x as many components, we inject more issues, cover more types of issues beyond
the two considered in the Sock-shop dataset, and include multiple different traffic generation patterns.
This allows us to consider a greater diversity of scenarios to study which techniques work well in,
which we show in our experimental section.

The dataset encompasses latency, requests, and availability metrics, gathered from a distributed
application comprising 41 components, including databases, load balancers, queues, storage systems,
and containerized microservices. In addition to normal operation metrics, the dataset includes 68 in-
jected performance issues, such as request overload, memory leaks, CPU hog, and misconfigurations,
which increase latency and reduce availability throughout the system. The metrics are annotated
with the corresponding issues, serving as ground truth for the analysis. Interestingly, methods that
performed well on the Sock-shop data struggle on our dataset. This illustrates the value of having
this additional dataset to broaden our understanding of RCA methods, and motivates future research
in robust data-efficient RCA methods. This dataset addresses the concern of biased reporting by
avoiding selective focus on issues where the developed method demonstrates strong performance.

Our goal is therefore to accelerate research on RCA methods by allowing researchers to focus on
the development of new methods instead of generating data for their evaluation. The dataset is publicly
available, alongside code for running the experiments described in Section 5 below, at https:
//github.com/amazon-science/petshop-root-cause-analysis. The dataset is
designed with an easily extendable data format and accompanying tooling, encouraging broader
participation and contribution from others.

The remainder of the paper is organized as follows: next, we present an overview of the causal
formalization of root-cause-analysis, laying out the different approaches to answering the question,
‘what is a root cause?’ In Sec. 3 we describe some of the methods which have been developed for
RCA in the context of microservice-based applications and the datasets available to evaluating them.
We describe our dataset in Sec. 4 and compare existing methods on it in Sec. 5. After disclosing
limitations in Sec. 6 we conclude in Sec. 7.

2. Background

In this section we give a brief survey of different approaches to defining a ‘root cause’. Broadly,
methods can be categorized according to what layer of the Causal Hierarchy (Pearl and Mackenzie,

2958

https://github.com/amazon-science/petshop-root-cause-analysis
https://github.com/amazon-science/petshop-root-cause-analysis

THE PETSHOP DATASET

2018; Bareinboim et al., 2022) they pose the RCA problem. The causal hierachy delineates a
strict hierarchy wherein knowledge at each layer enables reasoning about different classes of causal
concepts. Layer 1, L1, is associational, layer 2, L2, is interventional, and L3 is counterfactual. The
problem setup is common: the value xn of target variable Xn has been flagged as anomalous. With
jointly observed values (x1, ..., xn) of variables (X1, ..., Xn), we must find the root cause(s), among
these variables, of the anomaly xn.

At L1, associational approaches (e.g. Shan et al., 2019) do not aim to provide causal explanations
for anomalies, but instead to simply prioritise a small number of variables as potential causes of
the anomaly so that they can each be manually investigated by an oncall engineer. The principle is
simple: the root cause of an anomaly in a target should have experienced anomalous behaviour at a
similar time. In some isolated settings this may be sufficient, the oncall engineer introduces causal
information through their domain knowledge and so long as a sufficiently small number of metrics
are prioritised for inspection the task is manageable in a timely manner. However, in general this
method is unlikely to be suitable. Associational approaches cannot distinguish metrics which are
anomalous as a result of the anomaly at the target versus being the root cause of it, nor can they
distinguish metrics whose association is due to having a common cause. As such, associational
approaches are susceptible to false positives which simply applying a stricter cut-off will not solve.

It is clear that when the goal is to extract actionable insight from the data (i.e. to learn which
variable needs to be fixed to address the occurrence of the anomaly) a causal approach is required
(i.e. at L2 or L3). Although there is not consensus on the way RCA should be characterised
as a causal problem, a number of works have proposed formalizations and provided algorithms
motivated by them (e.g. Budhathoki et al., 2021, 2022; Ikram et al., 2022; Li et al., 2022). We
assume that the data generating process can be modelled by a Structural Causal Model (SCM) whose
underlying causal graph is a directed acyclic graph (DAG). In particular, the SCM describes how
each variable Xi is generated from its parents PAi in the causal graph and an unobserved noise term
Ni, Xi := fi(PAi, Ni), where N1, ..., Nn are jointly independent (Pearl, 2009).

Common to all causal approaches to RCA is to treat the occurrence of an anomaly as being the
result of a change in the causal mechanism generating the root cause variable. Each method then
differs in how to define a root cause and what causal information we have available to us at time of
analysis. At L2 we assume we know the causal graph (or can learn it from data) and treat the mecha-
nism change as a distribution change. In particular, following the causal Markov assumption (Pearl,
2009), the joint distribution PX over (X1, ..., Xn) factorizes into causal mechanisms

PX =

n∏
i

PXi|PAi
.

The change in the joint distribution following the anomaly is then the result of mechanism changes
in a subset of variables XT , indexed by a change set T , where

P T
X =

∏
j∈T

P̃Xj |PAj

∏
j /∈T

PXj |PAj

is the joint distribution resulting from the change of causal mechanisms at each Xj in T from PXj |PAj

to P̃Xj |PAj
. A variable Xi is then considered a root cause if the change in the joint distribution can

be attributed to a change in the causal conditional for Xi. As a causal contribution problem, the task
is to quantify the extent to which the change in the joint distribution can be attributed to a change in
the causal conditional for a potential root cause (Budhathoki et al., 2021), with root causes being

3959

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

those whose contributions are, in some sense, large. Others reduce the task further and simply call a
variable Xi a root cause if its causal conditional has changed (Ikram et al., 2022).

At L3, the finest-grain approach, we assume we know the full SCM (or make suitable assumptions,
e.g. additive noise (e.g. Shimizu et al., 2006; Hoyer et al., 2008), such that we can learn it) and the
question of whether a variable Xi is a root cause is posed counterfactually. For example, Gan et al.
(2021) ask "would the anomaly at Xn have occurred had Xi been at a previously known to be ‘normal’
value?" Budhathoki et al. (2022) refine this further as a causal contribution problem, quantifying the
extent to which the counterfactual (tail) probability of the anomalous event xn increases owing to the
factual mechanism of Xi compared to if it had been as ‘normal’.

RCA at both layers L2 and L3 is substantially different from determining the behaviour of a
target variable Xn with respect to an intervention at Xi. By treating anomalies as the result of a
mechanism change, causal RCA asks which variable(s) take on an anomalous value which cannot be
explained by their parents. This rules out identifying a variable which simply ‘transmits’ the value of
its parent as a root cause.

3. Related Work

In this section, we examine techniques for RCA, split into those specifically targeted at microservice-
based applications and those focusing on other use cases, and discuss the content and availability of
the datasets on which the methods were evaluated.

RCA in microservice-based applications Pinpoint (Brewer et al., 2002; Kiciman and Fox, 2005)
is an early example of a method for anomaly detection and RCA in microservice-based applications
and is based on detecting changes in the interactions between application components via requests.
Pinpoint is also the first method to be evaluated by injecting faults into the Petstore application, upon
which our own dataset is based (see section 4), however no dataset was made publicly available.
Another early method for RCA in microservice architectures is CauseInfer (Chen et al., 2014) which
is based on a traversal of a causal graph between components in a distributed system. CauseInfer
was evaluated on a controlled distributed system of 5 machines injecting issues including a CPU hog,
memory leak, disk hog, overload, configuration change, and bugs. It has been extended in Lin et al.
(2018) which was evaluated on a Sock-shop application (Microservices-Demo, 2022) where CPU
hogs, traffic, and pauses were injected. A further extension was presented by Liu et al. (2021). This
system ranks the anomalous paths by the correlation of the anomaly index between the potential root
cause and a target service. It was evaluated on real issues in the e-commerce system of Alibaba. A
similar approach was used in Ma et al. (2020) who present AutoMAP which performs a random walk
on the causal graph with correlations between potential root causes and the target service serving as
edge weights. It was evaluated on simulations and on a real-world enterprise cloud system. Another
approach examined using actual operational data from an e-commerce platform (eBay) is the GRANO
system (Wang et al., 2019). None of these datasets are publicly available.

A counterfactual approach RCA was presented by Gan et al. (2021) who proposed Sage. Coun-
terfactuals are evaluated by making use of conditional variational autoencoders (Sohn et al., 2015).
Sage is evaluated on a few different microservice architectures developed in DeathStarBench (Gan
et al., 2019) reflecting a social network, a hotel reservation system, and a media system. However,
again these datasets are not publicly available.

More recently, Li et al. (2022) proposed CIRCA which models an issue as an intervention on
the root cause node. The method was evaluated in experiments on synthetic data and a banking
application. Ikram et al. (2022) extended this line of work and proposed a method for identifying
root causes in microservice architectures without relying on a service map. The method was tested

4960

THE PETSHOP DATASET

by injecting issues into a Sock-shop application (Microservices-Demo, 2022) with data released
Ikram (2023). Our dataset complements this dataset and presents new challenges to identify root
causes. In our experiments (Sec. 5) we see that methods that perform well on the Sock-shop data do
not necessarily perform well on our dataset.

RCA for other applications Attariyan et al. (2012) identify causes of performance issues in servers
such as a configuration setting. They experiment on Apache, lighttpd, Postfix, and PostgreSQL.
Budhathoki et al. (2022) extend the counterfactual question of Gan et al. (2021) and account for
interactions using Shapely values (Shapley, 1953). They use data on river flows for evaluation.
Broadly related is also explainable AI (see e.g. Ribeiro et al., 2016; Sundararajan et al., 2017;
Lundberg and Lee, 2017) that tries to explain why a machine learning model returned a certain
output and which input features were most relevant for this outcome. While most methods aim to
explain any output of the model, Idé et al. (2021) focus on explaining anomalous outcomes. They
evaluate their approach on a building-energy prediction task. These datasets are very different from
data collected in applications based on microservice-architectures.

4. Dataset Description

In this benchmark, we build on an application that has been publicly released in AWS-Samples
(2023) and features a pet site for adoptions of different kinds of pets. This application composed
of microservices is running on Amazon Web Services (AWS) (AWS.Amazon.com, 2023a). These
microservices include storage (distributed file systems, databases), publish-subscribe systems, load
balancers, and custom application logic built in a container and deployed using Kubernetes (Kuber-
netes.io, 2023). The application offers search over pets based on different attributes and permits
transactions to adopt and pay for a pet. See the Appendix A for a screenshot of the landing webpage.
Furthermore, the release of the application comes with a traffic generator that we use to simulate user
interactions with the website. Since our application is build on AWS infrastructure and uses AWS
services, in the following, we will refer to them to explain our construction. Note, however, that
no prior knowledge or active usage of AWS infrastructure is required to use this dataset. To learn
more about the application and its microservices, see AWS-Samples (2023). We injected artificial
performance issues into various microservices.

4.1. Data Structure

The dataset contains multiple scenarios, each with a set of issues to diagnose. The graph.csv
describes the service map across microservice nodes obtained from tracing. The service map refers
to a graphical representation of the flow of function calls within the system, and it visualizes the inter-
actions between different microservices. The metrics at these nodes are recorded in metrics.csv
for both a normal period (during which no issues were injected) as well as a range of issues in folders
named issues0, issues1, etc. The issues are split evenly at random into train and test sets
according to the microservice they originated from. This separation allows practitioners to conduct
any optimizations for their RCA on train and report performance separately on test. Each
split-folder contains directories with issues. Each issue contains a metrics file and a target file with
the ground truth root cause described next. The full directory structure is listed in the Appendix B.

4.2. Service Map

We obtain the service map of the application from AWS X-Ray (AWS.Amazon.com, 2023c) by
tracing user requests through the application. An edge from A to B indicates that A calls B.

5961

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

Figure 1: Overview of pet adoption site built on microservices. We injected issues at the highlighted
nodes that cause SLO violations of high latencies and low availability at the PetSide node.

Notably, this does not describe the causal graph that connects the metrics originating from those
microservices. Nevertheless, it can be useful in constructing a causal graph as noted in Li et al. (2022);
Gan et al. (2021); Eulig et al. (2023). The service map can be loaded from graph.csv, which
contains the adjacency matrix indicating the dependencies of the microservices of the application,
as follows: nx.from_pandas_adjacency(pd.read_csv(’graph.csv’, index_col=0),
create_using=nx.DiGraph).

Figure 1 shows the service map of the pet adoption application with directed edges going from
left to right. We also highlight nodes in which we injected issues.

4.3. Service-level Objectives (SLOs)

We consider the customer-facing PetSite (see Figure 1) as the target node for which we defined
service level objectives (SLOs) on what latencies and availabilities are desired to ensure a good
end-user experience. For example, a response time SLO at PetSite might be: “Ensure 95% of all
API requests respond within 200 milliseconds.” This SLO sets a performance target for the response
time of an API. It specifies that at least 95% of all requests should have a response time of 200
milliseconds or less. This means that the system is expected to meet this performance target for the
majority of requests, providing a reliable and responsive user experience. We modified the original
code of the application to inject performance issues that lead to violations of such SLOs.

The file target.json contains information about the SLO violation at a target node including
the name of the node and the metric as well as a time stamp when the issue was injected. Notably,
the SLO violation may happen with a certain delay from this injection times. This delay is due
to the time for the change to take effect. Some issues are injected through changes in the Simple
System Management service through feature flags, that may be cached locally and polled frequently.

6962

THE PETSHOP DATASET

Table 1: We list the scenarios that vary in their request traffic. Here, we report quantiles of the
number of requests per 5-minutes.

Traffic Scenario mean quantile 0.1 quantile 0.5 quantile 0.9

low-traffic 484 464 483 503
high-traffic 690 668 688 714
temporal-traffic 571 376 497 884

Furthermore, the file also lists the actual node from which the issue originated and optionally detailing
the metric responsible at that node. It also contains some additional metadata containing details for
reproducibility that can be ignored when determining the root cause.

Example 1 The following describes an example of a SLO violation at the PetSite microservice
with an increase in average latency. The time of the issue injection is recorded as unix timestamp
1681390208, corresponding to 04/13/2023 at 12:50:08pm. The correct root cause for this issue is
the PetSearch node. No additional information about what happened to cause the issue at that
node is given. For this case, the file content is the following:

{
"target": {

"node": "PetSite",
"metric": "latency",
"agg": "Average",
"timestamp": 1681390208

},
"root_cause": {

"node": "PetSearch",
"metric": null

},
"metadata": {

"reproducibility": {
"command": "aws ssm put-parameter --name

’/petstore/searchdelay’ --value ’500’ --overwrite"
}

}
}

4.4. Traffic Scenarios

We generated different traffic patterns using a traffic generator: We have a high-traffic, a low-traffic,
and a temporal traffic scenario, in which the traffic varies over the course of a day.

Under the low-traffic scenario we have on average 485 requests per 5-min, for the high-traffic
scenario we have 690 and for the temporal traffic scenario the number of requests vary and average
at 571, see Table 1 for quantiles (see also Tables 5 and 6 in Appendix B for summary statistics of the
latency and availability across traffic scenarios, before and after fault injection).

4.5. Metrics

In our pet adoption application we collect the number of requests, their latency (average and dif-
ferent quantiles) and average availability at each microservice always over 5 minute windows.

7963

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

Figure 2: Exemplary printout of the metrics for two microservices with 5 measurements each. The
multi-column format contains the node, the metric, and different statistics for the aggregation of the
metric over 5 minute time windows.

Here, availability is defined as 1 − #errors
#requests . We obtained these metrics from Amazon Cloud-

Watch (AWS.Amazon.com, 2023b), a tool to collect and analyze resource and application data.
Figure 2 illustrates the metrics for two exemplary nodes and five time stamps. The metrics.csv
file can be loaded using pandas with pd.read_csv(’metrics.csv’, header=[0, 1, 2],
index_col=0).

4.6. Injected Issues

We list out the different issues we injected below, including two of the most common issues in cloud
systems: memory leaks and CPU hogs (see Mariani et al., 2018; Ikram et al., 2022), and provide a
summary in Appendix B (Table 4). We parameterized many of these issues by the time delay or
the random fraction of traffic for which they would occur. Further, we added AWS System Manager
parameters to many of the nodes that we can modify on the fly to turn on and off issues of varying
severity without requiring a deploy. Overall, we made sure the error percent or delay in milliseconds
were large enough to lead to noticeable spikes on the PetSite for at least some traffic scenarios.
We repeated each issue twice so that we can study variability. Overall, we also cover a wide range of
anomaly severities, from mild deviations from normality (∼1-2 standard deviation events) to rare
extreme events (>3 standard deviations) (see Table 7 and Figures 5 and 6 in Appendix B for summary
statistics and the distributions IT anomaly scores for latency and availability metrics at PetSite).
This will enable practitioners at companies to see how closely the severities of issues explored in our
dataset match those they observe during issues, and determine whether or not our work is relevant
for their setting.

Requests Overload: We overload the database with external requests hitting the throttling limit.
This causes issues in the petInfo DynamoDB Table node marked in Figure 1. This issue is
mimics a real issue we encountered.

Memory Leak: The application comes with a memory leak that may trigger for requests of a spe-
cific type (concerning the adoption of bunnies only). This causes errors in the payforadoption
ECS Fargate service that propagates to the PetSite. Memory leaks are common issues in
cloud systems (see Mariani et al., 2018; Ikram et al., 2022).

CPU hog: We introduce a CPU hog in the lambdastatusupdater Lambda Function
that keeps the CPU busy for a certain duration of time through multiplications of random numbers,
which leads to an increased latency that propagates to the PetSite. CPU hogs represent common
issues in cloud systems (see Mariani et al., 2018; Ikram et al., 2022).

Misconfiguration: The application comes with a misconfigured storage bucket in the PetSearch
ECS Fargate microservice. This reflects a common problem of insufficient permissions. We
randomly select 1% - 2% of requests subject to this error. We additionally trigger a miscon-

8964

THE PETSHOP DATASET

Figure 3: Example showing how delays in the payforadoption ECS Fargate microservice
reflect in the response times at the PetSite.

figured database table name in the lambdastatusupdater Lambda Function and the
petlistadoptions ECS Fargate microservice. These misconfigurations lead to a decrease
in availability of PetSite. For the lambdastatusupdater Lambda Function this er-
ror affects requests for kittens. For the petlistadoptions ECS Fargate microservice the
percentage of requests that used an invalid database table ranges from 2% to 10%.

Other Delays: We also introduced delays in PetSearch ECS Fargate and payforadoption
ECS Fargate through sleep statements. An example for such a delay and its propagation to
PetSite is shown in Figure 3. These naive sleep statements are meant to model performance
regressions of microservices that can be introduced by code changes.

To instrument delays in PetSearch ECS Fargate we introduced a Systems Manager pa-
rameter that governs the delay in milliseconds (between 500 and 2000) that is injected for search
requests of bunnies. In order to limit the impact from retrieving this parameter we implemented
a caching layer of the parameters refreshing them once a minute. That way we limit requests to
the Systems manager while guaranteeing some freshness. As a consequence though there can be
some time that passes between the trigger time (when we turn on the parameter) and the service
refreshes the parameter. The fact that the delay only impacts the bunny requests means that its
not all latency percentiles are effected the same way. To instrument delays in payforadoption
ECS Fargate we introduced a Systems Manager parameter that governs the delay in milliseconds
(between 250 and 1000) that is injected for all requests.

In total we have 68 issues triggered at 5 different nodes across the three traffic scenarios causing
SLO violations due to high latency or low availability at the PetSite node. For each of the 68 issues,

9965

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

Table 2: We list the number of issues affecting the latency and availability at the PetSite node for
each of the distinct traffic scenarios.

Traffic Scenario number of latency issues number of availability issues

low-traffic 14 12
high-traffic 14 12
temporal-traffic 8 8

there is exactly one ground-truth root cause, based on where we inject the issue. Table 2 lists how
they are split across the three traffic scenarios and latency and availability performance measures.

4.7. Evaluation

A method for RCA can take as input the service map, the metrics, and information about the SLO
violation (including the target node and metric) and needs to output a list of potential root causes
composed of a node and potentially a metric with a confidence score. This could look as follows:

def analyze_root_causes(graph: nx.DiGraph, target_node: str,
target_metric: str, target_statistic: str, normal_metrics:
pd.DataFrame, abnormal_metrics: pd.DataFrame) ->
List[PotentialRootCause]:
"""Finds root causes of a performance issue in target_node."""

Using these outputs, we provide a method to evaluate the given RCA approach on the dataset.
We compute the top-1 and top-3 recall. Given that there is a unique root cause that represents the
ground truth the top-1 recall captures the accuracy of the method to determine the correct root cause.
In practice, a method can be used to present an oncall engineer with a ranked list of root-causes.
The engineer can then investigate further. To capture the quality of this ranked list, we additionally
compute the top-3 recall. An approach can be evaluated calling the following method:

def evaluate(analyze_root_causes, dir: str, split: str=None) ->
pd.DataFrame:
"""Computes the top-k recall of the method to analyze root causes."""

5. Experiments

We provide an initial comparison of proposed RCA methods on the 68 injected issues.
Methods

We test both methods relying on the causal graph and those that do not. The causal formalization
of RCA makes clear that we would expect methods which are given causal information, in the form
of the causal graph, to perform better than those which are either not causal (owing to false positives)
or which must learn the causal graph or SCM from the data (owing to needing to make strong
assumptions and the statistical challenge of learning with limited data). However, as in practice we
often do not know the causal graph, we also assess methods that do not require it.
Methods that require a causal graph Inspired by Chen et al. (2014); Lin et al. (2018); Liu et al.
(2021), the traversal method identifies a node as a root cause under two conditions: 1) none of its
parent nodes exhibits anomalous behavior, and 2) it is linked to the SLO violating node exclusively
through nodes showing anomalous behavior. This thereby encodes the requirement that the anomalous
behaviour at a root cause should not be explained by its parents, as follows from the formalism that

10966

THE PETSHOP DATASET

an anomaly occurs due to a mechanism change at the root cause, and that it should contribute to the
anomalous behaviour at the target. Although simple, traversal is therefore an L2 method. For labeling
a node X as anomalous based on a given observation x, we use the MAD-score with a threshold of 5.
This score is the normalized distance to the median defined as |x−median[X]|

MAD[X] , where MAD[X] denotes
the median absolute deviation. We have experimented with other anomaly scores implemented within
the Python library DoWhy (Blöbaum et al., 2022) that we describe in the Appendix C.1 from which
MAD-score performed best.

CIRCA (Li et al., 2022) likewise requires a causal graph, and identifies root causes by testing
which causal conditional distributions have changed. Practically this is achieved by fitting a linear
Gaussian SCM to the data from the normal period, and comparing the predicted value of each variable
given its parents to the true value in the abnormal period. CIRCA is therefore does not treat RCA
counterfactually and is an L2 method.

Counterfactual Attribution (Budhathoki et al., 2022), like CIRCA, requires an input causal graph
which is then used to fit an SCM, but instead treats RCA as a counterfactual contribution problem (as
described in Sec. 2), returning Shapley value-based contribution scores for each potential root cause.
This is therefore an L3 method.
Methods that do not require a causal graph Without a causal graph we must either learn one from
the data or else rely on associational, L1, methods. A simple heuristic used in practice is to rank
potential root causes according to their correlation with the target in the abnormal period. In this
study we filter for nodes which have been detected as anomalous using the MAD-score, use the
Pearson correlation coefficient and rank according to its p-value as a simple baseline.

ϵ-Diagnosis (Shan et al., 2019) constructs a test statistic based on the energy distance correlation
coefficient (Székely and Rizzo, 2014) and performs a two-sample test to identify which services
changed significantly from the normal to abnormal periods. As this does not assess whether the
change in a service can be explained by its parents, this is a L1 method.

RCD (Ikram et al., 2022) exploits the fact that mechanism changes can be modelled as soft
interventions, and thereby applies work on causal discovery with unknown interventions (Jaber
et al., 2020) to identify root causes. More precisely, by introducing a binary ‘intervention indicator’
variable, testing which variables’ causal conditional distributions have changed between the normal
and abnormal periods amounts to checking conditional independence statements involving the
indicator: for the variables which cannot be made conditionally independent of the intervention
indicator it must also be the case that their ‘anomalousness’ cannot be explained by their parents.
These variables are therefore the children of the intervention indicator in an extended causal graph,
which can be identified under faithfulness and causal sufficiency. RCD is therefore an L2 method.

For evaluation we use the implementation by Salesforce (2023) for the methods CIRCA, ϵ-
Diagnosis and RCD and the implementation by (Blöbaum et al., 2022) for the counterfactual
attribution method. We opensource (link to be added upon acceptance) implementations of the
traversal and the correlation methods. In the Appendix C.2 we describe the configuration options we
tested for each method and which one performed best and is used in the results below.
Results. As expected the results presented in Table 3 illustrate that methods with access to a causal
graph typically perform better than those without. However, counterfactual attribution struggles at
identifying root causes for drops in availability. This is likely due to the low variability in availability
across the normal period, making learning an SCM challenging. By comparison, as traversal needs
only to perform anomaly detection, it is robust to low variability in the normal period and to small
numbers of data points in the abnormal period.

When it comes to methods that do not have access to the graph, however, the performance drops
dramatically. In fact, none of the proposed approaches outperform the basic ranked correlations. This

11967

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

Table 3: Top-3 recall of the RCA methods measuring the accuracy of including the correct root-cause
node in the top-3 results.

graph given graph not given

traffic metric traversal circa counter- ϵ-diagnosis rcd correlation
scenario factual

low latency 0.57 0.86 0.71 0.00 0.21 0.57
low availability 1.00 1.00 0.42 0.00 0.75 0.92
high latency 0.79 1.00 0.86 0.00 0.07 0.79
high availability 1.00 0.00 0.00 0.33 0.00 0.92
temporal latency 1.00 1.00 0.50 0.12 0.75 0.75
temporal availability 1.00 1.00 0.25 0.12 0.75 0.75

calls for more research into the development of robust causal attribution methods which to not depend
on knowing the causal graph. While RCD and ϵ-diagnosis achieved good performances on hundreds
of data-points (e.g. 1 second aggregated metrics) as illustrated by Ikram et al. (2022) they are not
designed to handle limited data as present in this dataset. It is noteworthy, that in the top-1 recall
(see Table 8 in Appendix C.3) ranked correlation outperforms all other methods including those with
access to the graph. We hypothesize that both the data size and the graph structure play a role here.
Pairwise-correlations work better with little data compared to estimating SCMs or discovering graph
structures. Additionally, in these experiments we focus on SLO violations at the PetSite node, which,
in the causal graph, is a leaf and does not share a common cause with another node. As a result
false positives arising from being unable to distinguish its causes and effects, and association due to
common causes, are not an issue. We hope future work sheds more light on error sources (including
errors arising from finite samples, and causal graph misspecification). To investigate whether method
performance would vary according to the severity of the injected issue, we additionally evaluated
performance stratified by IT anomaly score (see Appendix C.1), and find that most methods do
not consistently perform better across both latency and availability issues when the strength of the
observed anomaly is larger (see Tables 9 and 10).

Additionally, we tested the specificity on normal data but found that all methods fabricate root-
causes during normal operations. We leave the adaption of the methods for improved specificity for
future work. Setting a threshold on the scores can be a first starting point.

6. Limitations

This dataset is generated from an Web application running on cloud infrastructure created for
demonstration. It is not an application running in production with real user traffic. The traffic is
generated artificially. This is a crucial limitation in our dataset. In real applications it is possible that
issues affect user behavior. In case of errors or increased latencies users may refresh a page, restart
an application or abandon their session. These reactions lead to a change in request which in turn can
affect metrics across all microservices of an application. As such, causal approaches which assume
the underlying causal graph is acyclic may perform well on our benchmark but not in the presence of
such feedback loops. Work on extending causal formalizations of RCA to non-recursive models is an
important future direction.

Additionally, we do not consider cases where there is more than one root cause as discussed in
Oesterle et al. (2023). While two services independently failing at once is rather unlikely, multiple
root causes can still occur in practice e.g. due to failures at unmeasured confounders.

12968

THE PETSHOP DATASET

Further, the issues we have injected into microservices are likely to be different from issues
encountered in real-world applications. While they include some common issues in cloud systems
(i.e. memory leaks and CPU hogs) (see Mariani et al., 2018; Ikram et al., 2022) in addition to request
overloads and misconfigurations, they lack coverage and are not representative. Furthermore, we
performed some tuning of the parameters for issue injection (the fraction of requests to be affected or
the delay in ms) to make sure that they have a pronounced effect in the system, and thereby introduce
a bias for stronger anomalous events. We might expect therefore that the dataset not give a complete
picture of method performance for weak anomalous events, however, when the evaluation is stratified
by anomaly severity, we do not see that methods perform consistently better for stronger anomalies
(see Tables 9 and 10 in Appendix C.3).

Lastly, the methods we experimented with have not been tuned or massaged. That way they give
us a sense for the performance they can give out-of-the-box for this new dataset. Moreover, we have
not included all RCA methods in the comparison.

7. Conclusion

In this paper, we introduced a dataset that encompasses metric data from a microservices-based
application during both normal and anomalous operational periods. We believe that this dataset could
serve as a valuable resource for evaluating and benchmarking RCA techniques. For illustration, we re-
port the top-3 recall for a selection of published RCA methods. These methods approach the problem
of defining a root cause following different formalizations spanning the causal hierarchy (Bareinboim
et al., 2022). We find that causal methods perform well when we provide the causal graph, but that
methods relying on learning the causal graph or the full SCM do not yield satisfactory performance
when data is limited. In this case the simple baseline of ranking potential root causes according to
the p-value for correlation with the target, and filtering for variables detected as anomalous, provides
a strong baseline against which new causal methods should be evaluated. We thus hope that with this
dataset we can enable future research into robust methods for root cause analysis that work well with
limited data. In order to work in practice, such methods should not require access to the causal graph
and should be able to work with a handful of abnormal measurements to make a timely diagnosis.

We anticipate that this dataset will inspire further exploration and advancement in the field of
RCA methods. Additionally, we encourage the community to contribute by expanding this dataset to
cover other applications and supplement it with performance issues observed in real-world production
systems.

13969

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

References

Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating root-cause diagnosis of
performance anomalies in production software. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12, page 307–320, USA, 2012. USENIX
Association. ISBN 9781931971966.

AWS-Samples. One observability demo, 2023. URL https://github.com/aws-samples/
one-observability-demo.

AWS.Amazon.com. Amazon web services (aws), 2023a. URL https://aws.amazon.com/.

AWS.Amazon.com. Amazon cloudwatch, 2023b. URL https://aws.amazon.com/
cloudwatch/.

AWS.Amazon.com. Aws x-ray, 2023c. URL https://aws.amazon.com/xray/.

Elias Bareinboim, Juan Correa, Duligur Ibeling, and Thomas Icard. On pearl’s hierarchy and the
foundations of causal inference (1st edition). In Hector Geffner, Rina Dechter, and Joseph Y.
Halpern, editors, Probabilistic and Causal Inference: the Works of Judea Pearl, pages 507–556.
ACM Books, 2022.

Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti A. Mastakouri, and Dominik Janzing.
Dowhy-gcm: An extension of dowhy for causal inference in graphical causal models, 2022.

E. Brewer, M. Y. Chen, E. Fratkin, A. Fox, and E. Kiciman. Pinpoint: Problem determination
in large, dynamic internet services. In Proceedings International Conference on Dependable
Systems and Networks, page 595, Los Alamitos, CA, USA, June 2002. IEEE Computer Society.
doi: 10.1109/DSN.2002.1029005. URL https://doi.ieeecomputersociety.org/
10.1109/DSN.2002.1029005.

Kailash Budhathoki, Dominik Janzing, Patrick Bloebaum, and Hoiyi Ng. Why did the dis-
tribution change? In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, volume 130 of Pro-
ceedings of Machine Learning Research, pages 1666–1674. PMLR, 13–15 Apr 2021. URL
https://proceedings.mlr.press/v130/budhathoki21a.html.

Kailash Budhathoki, Lenon Minorics, Patrick Bloebaum, and Dominik Janzing. Causal structure-
based root cause analysis of outliers. In ICML, 2022.

Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. Causeinfer: Automatic and distributed
performance diagnosis with hierarchical causality graph in large distributed systems. In IEEE
INFOCOM 2014 - IEEE Conference on Computer Communications, pages 1887–1895, 2014. doi:
10.1109/INFOCOM.2014.6848128.

Elias Eulig, Atalanti A Mastakouri, Patrick Blöbaum, Michaela Hardt, and Dominik Janzing. Toward
falsifying causal graphs using a permutation-based test. arXiv preprint arXiv:2305.09565, 2023.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno,
Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett
Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo
Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delimitrou. An open-source

14970

https://github.com/aws-samples/one-observability-demo
https://github.com/aws-samples/one-observability-demo
https://aws.amazon.com/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/xray/
https://doi.ieeecomputersociety.org/10.1109/DSN.2002.1029005
https://doi.ieeecomputersociety.org/10.1109/DSN.2002.1029005
https://proceedings.mlr.press/v130/budhathoki21a.html

THE PETSHOP DATASET

benchmark suite for microservices and their hardware-software implications for cloud & edge
systems. In Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, page 3–18, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450362405. doi: 10.1145/3297858.
3304013. URL https://doi.org/10.1145/3297858.3304013.

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage: Practical and
scalable ml-driven performance debugging in microservices. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’21, page 135–151, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383172. doi: 10.1145/3445814.3446700. URL https://doi.
org/10.1145/3445814.3446700.

Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlin-
ear causal discovery with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21. Curran Asso-
ciates, Inc., 2008. URL https://proceedings.neurips.cc/paper_files/paper/
2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf.

Tsuyoshi Idé, Amit Dhurandhar, Jiří Navrátil, Moninder Singh, and Naoki Abe. Anomaly attribution
with likelihood compensation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 4131–4138, 2021.

Azam Ikram. Sock-shop data, 2023. URL https://github.com/azamikram/rcd/tree/
master/sock-shop-data.

Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and Murat
Kocaoglu. Root cause analysis of failures in microservices through causal discovery. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 31158–31170. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf.

Amin Jaber, Murat Kocaoglu, Karthikeyan Shanmugam, and Elias Bareinboim. Causal dis-
covery from soft interventions with unknown targets: Characterization and learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neu-
ral Information Processing Systems, volume 33, pages 9551–9561. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf.

E. Kiciman and A. Fox. Detecting application-level failures in component-based internet services.
IEEE Transactions on Neural Networks, 16(5):1027–1041, 2005. doi: 10.1109/TNN.2005.853411.

Kubernetes.io. Kubernetes, 2023. URL https://kubernetes.io/.

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’22, page 3230–3240, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450393850. doi: 10.1145/3534678.3539041. URL https://doi.org/10.1145/
3534678.3539041.

15971

https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3445814.3446700
https://doi.org/10.1145/3445814.3446700
https://proceedings.neurips.cc/paper_files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/f7664060cc52bc6f3d620bcedc94a4b6-Paper.pdf
https://github.com/azamikram/rcd/tree/master/sock-shop-data
https://github.com/azamikram/rcd/tree/master/sock-shop-data
https://proceedings.neurips.cc/paper_files/paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf
https://kubernetes.io/
https://doi.org/10.1145/3534678.3539041
https://doi.org/10.1145/3534678.3539041

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

Jinjin Lin, Pengfei Chen, and Zibin Zheng. Microscope: Pinpoint performance issues with causal
graphs in micro-service environments. In Claus Pahl, Maja Vukovic, Jianwei Yin, and Qi Yu,
editors, Service-Oriented Computing, pages 3–20, Cham, 2018. Springer International Publishing.
ISBN 978-3-030-03596-9.

Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang Li, Jiayu
Ou, and Zheshun Wu. Microhecl: High-efficient root cause localization in large-scale mi-
croservice systems. In Proceedings of the 43rd International Conference on Software En-
gineering: Software Engineering in Practice, ICSE-SEIP ’21, page 338–347. IEEE Press,
2021. ISBN 9780738146690. doi: 10.1109/ICSE-SEIP52600.2021.00043. URL https:
//doi.org/10.1109/ICSE-SEIP52600.2021.00043.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Systems,
NeurIPS’17, pages 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 978-1-
5108-6096-4.

Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping Wang. Automap:
Diagnose your microservice-based web applications automatically. In Proceedings of The
Web Conference 2020, WWW ’20, page 246–258, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450370233. doi: 10.1145/3366423.3380111. URL
https://doi.org/10.1145/3366423.3380111.

Leonardo Mariani, Cristina Monni, Mauro Pezzé, Oliviero Riganelli, and Rui Xin. Localizing faults
in cloud systems. In 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), pages 262–273, 2018. doi: 10.1109/ICST.2018.00034.

Microservices-Demo. Sock-shop - a microservice demo application, 2022. URL github.com/
microservices-demo/microservices-demo.

Michael Oesterle, Patrick Blöbaum, Atalanti A Mastakouri, and Elke Kirschbaum. Beyond single-
feature importance with icecream. arXiv preprint arXiv:2307.09779, 2023.

Judea Pearl. Causality. Cambridge University Press, Cambridge, second edition, 2009.

Judea Pearl and Dana Mackenzie. The Book of Why. Basic Books, New York, 2018. ISBN
978-0-465-09760-9.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the
predictions of any classifier. pages 97–101, 02 2016. doi: 10.18653/v1/N16-3020.

Salesforce. Pyrca, 2023. URL https://github.com/salesforce/PyRCA.

Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He, Min Li, and
Wei Ding. ϵ-diagnosis: Unsupervised and real-time diagnosis of small- window long-tail la-
tency in large-scale microservice platforms. In The World Wide Web Conference, WWW ’19,
page 3215–3222, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450366748. doi: 10.1145/3308558.3313653. URL https://doi.org/10.1145/
3308558.3313653.

16972

https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1145/3366423.3380111
github.com/microservices-demo/microservices- demo
github.com/microservices-demo/microservices- demo
https://github.com/salesforce/PyRCA
https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1145/3308558.3313653

THE PETSHOP DATASET

L. S. Shapley. 17. A Value for n-Person Games, pages 307–318. Princeton University Press,
Princeton, 1953. ISBN 9781400881970. doi: doi:10.1515/9781400881970-018. URL https:
//doi.org/10.1515/9781400881970-018.

Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-gaussian
acyclic model for causal discovery. Journal of Machine Learning Research, 7(72):2003–2030,
2006. URL http://jmlr.org/papers/v7/shimizu06a.html.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/
2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 3319–3328. PMLR,
06–11 Aug 2017.

Székely and Rizzo. Partial distance correlation with methods for dissimilarities. 42, 2014. doi:
10.1214/14-aos1255.

Hanzhang Wang, Phuong Nguyen, Jun Li, Selcuk Kopru, Gene Zhang, Sanjeev Katariya, and Sami
Ben-Romdhane. Grano: Interactive graph-based root cause analysis for cloud-native distributed
data platform. Proc. VLDB Endow., 12(12):1942–1945, aug 2019. ISSN 2150-8097. doi:
10.14778/3352063.3352105. URL https://doi.org/10.14778/3352063.3352105.

17973

https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1515/9781400881970-018
http://jmlr.org/papers/v7/shimizu06a.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://doi.org/10.14778/3352063.3352105

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

Appendix A. Application

Figure 4 shows a screenshot of the pet adoption webpage. It supports search and purchasing features
powered by different microservices.

Figure 4: Screenshot of the landing webpage of the pet adoption application.

Appendix B. Dataset

The data is stored according to the following structure:

scenario/
graph.csv
noissue/

metrics.csv
train/

issue0/
metrics.csv
target.json

issue1/
metrics.csv
target.json

...
test/

issue0/
metrics.csv
target.json

Table 4 gives a detailed breakdown of each of the injected issues.

18974

THE PETSHOP DATASET

N
ode

Type
ofN

ode
TargetM

etric
Type

ofIssue
R

elevance
Traffic

Im
pacted

Param
eter

R
ange

TotalC
ount

D
escription

petInfo
database

availability
traffic

spike
/throttling

as
practitioners

w
e

have
run

into
this

type
ofissue

a
fraction

oftraffic
w

illbe
throttled

-
6

W
e

generate
m

any
read

re-
quests

directly
hitting

the
database,triggering

throt-
tling.

petSearch
containerized
m

icro-service
on

E
C

S
availability

hum
an

configuration
error

configurations
are

often
done

m
anually

and
cannot

be
tested

as
easily

as
code

random
fraction

ofalltraffic
1%

,2%
,3%

10

A
random

fraction
of

re-
quests

attem
pts

to
access

a
directory

in
the

file
system

thatdoes
notexist.

petSearch
containerized
m

icro-service
on

E
C

S
latency

perform
ance

degradation

perform
ance

degradations
can

happen
due

to
deploy-

ing
less

perform
ant

code,
change

in
hardw

are,over-
allresource

exhaustion

bunny
requests

0.5sec,1sec,2sec
10

B
unny

requests
are

de-
layed

by
som

e
num

berof
seconds.

payforadoption
containerized
m

icro-service
on

E
C

S
availability

m
em

ory
leak

am
ong

the
m

ostcom
m

on
issues

in
cloud

system
s,

see
M

arianietal.(2018);
Ikram

etal.(2022)

bunny
requests

n/a
6

A
m

em
ory

leak
is

trig-
gered

forallrequests.

payforadoption
containerized
m

icro-service
on

E
C

S
latency

perform
ance

degradation

perform
ance

degradations
can

happen
due

to
deploy-

ing
less

perform
ant

code,
change

in
hardw

are,over-
allresource

exhaustion

all
0.25sec,0.5sec,1sec

10
A

ll
requests

are
delayed

by
som

e
num

ber
of

sec-
onds.

statusupdater
serverless

data-
processing

system
on

lam
bda

availability
hum

an
configuration

error
configurations

are
often

done
m

anually
and

cannot
be

tested
as

easily
as

code
kitten

requests
n/a

6
K

itten
requests

attem
ptto

access
a

database
table

thatdoes
notexist.

statusupdater
serverless

data-
processing

system
on

lam
bda

latency
perform

ance
degradation

perform
ance

degradations
can

happen
due

to
deploy-

ing
less

perform
ant

code,
change

in
hardw

are,over-
allresource

exhaustion

allrequests
0.25sec,0.5sec,1sec

10
A

ll
requests

are
delayed

by
som

e
num

ber
of

sec-
onds.

Table
4:B

reakdow
n

ofinjected
issues.In

allcases,issues
w

ere
repeated

tw
ice.

19975

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

traffic scenario condition mean (ms) std
low normal 9.49 0.57
low abnormal 13.46 8.53
high normal 9.82 0.42
high abnormal 14.42 11.38

temporal normal 10.04 0.90
temporal abnormal 24.10 21.34

Table 5: Mean and standard deviations of latency across traffic scenarios and normal and abnormal
conditions.

traffic scenario condition mean (%) std
low normal 99.74 2.48
low abnormal 98.60 1.85
high normal 99.91 0.23
high abnormal 98.66 1.80

temporal normal 99.85 0.95
temporal abnormal 98.19 2.37

Table 6: Mean and standard deviations of availability across traffic scenarios and normal and abnormal
conditions.

traffic scenario metric min max
low latency 1.05 7.07
low availability 2.70 5.97
high latency 3.71 7.07
high availability 1.52 7.07

temporal latency 5.27 8.10
temporal availability 4.25 5.53

Table 7: Minimum and maximum IT anomaly scores across each traffic scenario and metric.

Figure 5: Distribution of IT anomaly scores at PetSite for latency issues.

Appendix C. Experiments

C.1. Anomaly Scores

For the anomaly traversal we experimented with the following anomaly scores:

20976

THE PETSHOP DATASET

Figure 6: Distribution of IT anomaly scores at PetSite for availability issues.

• z-score: This is a measure of the normalized distance from the mean, calculated as |x−E[X]|√
Var[X]

.

• MAD-score: This score is the normalized distance to the median defined as |x−median[X]|
MAD[X] ,

where MAD[X] denotes the median absolute deviation.

• IT-score: This approach translates the scores defined above into an information theoretic
quantity, as per Budhathoki et al. (2022), −log(g(X) ≥ g(x)). Here, g is a ’feature’ map that
functions as an anomaly scorer, producing a score such as the z-score or MAD-score.

• Median quantile-score: This score resembles the log-probability of the 2-sided quantile
calculated by −log(2 · min{Pr[X >= x],Pr[X <= x]}).

C.2. Methods

We experimented with a few options for the various methods and report the best results. In particular,
for RCD we ran it with the global option, on all metrics, and with a mean imputation scheme. Best
worked the interpolation as imputation method that we report in the results. For ϵ-diagnosis we also
tried setting the significance level α to 0.01, using interpolation, and selecting only metrics of the
same type as the target metric (e.g. latency or availability) vs using both. Using both performed
better and is shown in the results. For CIRCA, we also tried both mean and interpolation for the
imputation, both max and sum aggregation, and with and without the descendant adjustment. We
include the best performing setting with the mean imputation and the max aggregation in the results.

For correlation we experimented with using the coefficient for ranking and/or the p-value.
The counterfactual method had the longest run-time owing to the method’s reliance on Shapley

values.

C.3. Results

Table 8 shows top-1 recall for identifying the root cause. Tables 9 and 10 show the top-3 recall
for each method stratified according the strength of the anomaly detected at the target (PetSite). In
particular, small anomalies are those with an IT anomaly score (see Appendix C.1 above) lower
than the median score across issues of the same type (either latency or availability), whereas large
anomalies are those with a score greater than the median.

21977

HARDT ORCHARD BLÖBAUM KIRSCHBAUM KASIVISWANATHAN

graph given graph not given

traffic metric traversal circa counter- ϵ-diagnosis rcd correlation
scenario factual

low latency 0.57 0.36 0.36 0.00 0.07 0.43
low availability 0.50 0.42 0.00 0.00 0.58 0.75
high latency 0.57 0.50 0.57 0.00 0.00 0.64
high availability 0.33 0.00 0.00 0.00 0.00 0.83
temporal latency 1.00 0.75 0.38 0.12 0.25 0.62
temporal availability 0.38 0.38 0.00 0.00 0.50 0.62

Table 8: Top-1 recall of the RCA methods measuring the accuracy of identifying the correct root-
cause node.

graph given graph not given

traffic anomaly traversal circa counter- ϵ-diagnosis rcd correlation
scenario size factual

low small 1.00 1.00 0.25 0.00 1.00 0.88
low large 1.00 1.00 0.75 0.00 0.25 1.00
high small 0.75 0.00 0.00 0.25 0.00 1.00
high large 0.75 0.00 0.00 0.38 0.00 0.88
temporal small 1.00 1.00 0.33 0.17 0.67 0.67
temporal large 1.00 1.00 0.00 0.00 1.00 1.00

Table 9: Top-3 recall for methods for availability issues stratified by the size of the anomaly at the
target. Small: IT anomaly score < median score for availability issues, large: IT anomaly score >
median for availability issues.

graph given graph not given

traffic anomaly traversal circa counter- ϵ-diagnosis rcd correlation
scenario size factual

low small 0.40 1.00 0.80 0.00 0.20 0.20
low large 0.67 0.78 0.67 0.00 0.22 0.78
high small 0.67 1.00 0.83 0.00 0.00 0.50
high large 0.88 1.00 0.88 0.00 0.12 1.00
temporal small 1.00 1.00 0.50 0.00 0.67 0.67
temporal large 1.00 1.00 0.50 0.50 1.00 1.00

Table 10: Top-3 recall for methods for latency issues stratified by the size of the anomaly at the target.
Small: IT anomaly score < median score for latency issues, large: IT anomaly score > median for
latency issues.

22978

