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Abstract
In the context of Machine Learning(ML) and Artificial Intelligence (AI), the concepts of sufficiency
and necessity of features offer nuanced perspectives on the cause-and-effect relationships underly-
ing a model’s outputs. These concepts are, therefore, essential in Explainable AI (XAI) as they can
provide a more holistic understanding of a “black-box” AI model. Addressing this need, our study
explored the relationships between the XAI’s explanations and the sufficiency and necessity of fea-
tures in data. This is achieved by emphasising the impact of neighbourhoods, which are central in
generating explanations. By analysing a diverse set of neighbourhoods, we highlighted how they
influence the alignment between the feature rankings by XAI and the measures of sufficiency and
necessity. This work offers two contributions. First, it provides a comprehensive discussion on how
XAI frameworks relate to sufficiency and necessity with respect to their operating neighbourhoods;
and second, it empirically demonstrates the effectiveness of these neighbourhoods in conveying the
sufficiency and necessity of features by the XAI frameworks.
Keywords: Explainable AI, Necessity, Sufficiency, Neighborhoods, Evaluation

1. Introduction

The measures of sufficiency and necessity (S/N) are fundamental in understanding the cause-and-
effect relationships within AI decision-making processes Watson et al. (2021). The causality is
examined by assessing the impact of features in the data (the causes) on the outcome by an ML
model (the effect) Kommiya Mothilal et al. (2021). S/N are specific types of causal conditions —
a necessary condition is one that must be present for a certain outcome to occur, while a sufficient
condition ensures the outcome if present Watson et al. (2021). Understanding the causal effects of
features on a model’s outcomes is critical, particularly when AI models are used in sensitive sectors
like healthcare and finance Gade et al. (2020). Explainable Artificial Intelligence (XAI) serves as
a bridge between the complexity of AI models and human understanding, making the decision-
making processes of these models transparent Ribeiro et al. (2016). While XAI frameworks offer
various types of explanations, they lack in directly explaining whether a feature is necessary or
sufficient for a particular outcome Kommiya Mothilal et al. (2021).

Popular model-agnostic frameworks in XAI include Feature Importance (FI) frameworks such
as LIME (Local Interpretable Model-agnostic Explanations) Ribeiro et al. (2016), SHAP (Shapley
Additive Explanations) Palacio et al. (2021), and CounterFactual(CF) frameworks such as DiCE
(Diverse Counterfactual Explanations) Chou et al. (2022). The two main factors while generat-
ing explanations are the methodology of the framework and the local neighbourhoods used by the
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framework Han et al. (2022). To explicitly convey S/N measures, their relationship with popular
XAI frameworks has been discussed in many works Watson et al. (2021); Balkir et al. (2022). How-
ever, there was a lack of discussion on how these neighbourhoods in XAI associate with the S/N
measures of the features. Furthermore, the unified representations used for S/N measures and the
XAI explanations did not explicitly distinguish their core methodology and the neighbourhoods.

To evaluate existing XAI frameworks based on how well they convey S/N, Kommiya Mothilal
et al. (2021) empirically demonstrated that the top-ranked features by XAI frameworks are neither
necessary nor sufficient. However, the study was limited to the standard versions of XAI frame-
works and didn’t investigate other neighbourhoods with the frameworks. Furthermore, the proposed
methodology assessed the S/N of individual top-3 features versus the rest of the features. However,
for a more robust evaluation, the assessment should consider each feature present in the data and
also account for the relative ranking among features.

Overall, there is a lack of discussions and experimental evaluations that explore the influence
of neighbourhoods on feature rankings, as well as their links to S/N measures. This gap presents
an opportunity for further research in enhancing our understanding of widely used model-agnostic
XAI techniques, and this study aims to address this gap. Our research offers two main contributions.
First, we provide a clear, unified discussion that underscores the importance of neighbourhoods in
XAI frameworks and their connection to S/N measures. Second, we conduct empirical tests using
the Kendall correlation to reveal how neighbourhoods affect the way these frameworks interpret the
importance of features in terms of their sufficiency and necessity.

2. Related Work

Kommiya Mothilal et al. (2021) theoretically discussed SHAP, LIME, and DiCE frameworks with
respect to the S/N measures and experimentally evaluated them for their effectiveness in identify-
ing sufficient and necessary features. The study concluded that none of the frameworks explicitly
highlight the most sufficient or necessary features, and the frameworks should be utilised as com-
plementary tools to understand an ML model’s operation from different perspectives. However, the
study didn’t discuss and explore the relationship between the explanations and the neighbourhood
samples that are used for the analysis and how this could impact the evaluation.

The relationship between XAI frameworks and concepts of S/N has been discussed comprehen-
sively using a unifying framework by Watson et al. (2021). To convey S/N, a novel XAI framework
- Local Explanations via Necessity and Sufficiency (LENS) was proposed by Watson et al. (2021).
This study also included experimental evaluations to compare LENS with other XAI frameworks,
focusing on the identification of sufficient and necessary features. However, it did not explore the
significant aspect of how neighbourhood samples affect the evaluations. This step is important, as
multiple studies, such as Slack et al. (2020); Rasouli and Yu (2020); Ribeiro et al. (2016), have
emphasised the considerable influence of neighbourhood sampling on the generated explanations.

Similarly, the study by Balkir et al. (2022) introduced a novel framework to provide two distinct
scores related to S/N, as opposed to using a single metric for feature importance. These complemen-
tary scores were shown to be effective in detecting model biases and offering clearer interpretations.
In this paper, we adopt the methodology from Balkir et al. (2022); Galhotra et al. (2021) to compute
S/N scores as the approach can be well integrated with tabular datasets.

The importance of neighbourhoods XAI frameworks is highlighted and formalised by Han et al.
(2022), which introduces a Local Function Approximation (LFA) framework. This LFA frame-
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work shows that various XAI frameworks can be viewed as specific instances that utilise different
local neighbourhoods and loss functions. To effectively evaluate the performance of popular XAI
frameworks in conveying S/N measures, it’s essential to rigorously assess key elements such as
neighbourhoods. This ensures that explanations from popular XAI frameworks are more purposeful
and contribute to the wider adoption of AI systems Freiesleben and König (2023).

3. Discussion - S/N measures and Explainable AI

In this section, we define and represent S/N measures and the FI scores by the selected XAI frame-
works in a unified format using Lebesgue integrals. The neighbourhoods used by different XAI
frameworks are highlighted, and their association with the S/N measures is discussed.

Notations and Background Information: An input sample u is classified as f(u) = y by an ML
classifier f , with the actual prediction value denoted by f̂(u). xj represents the values of j set of
features in a sample x and intervening x to alter some feature values results in x′. XAI frameworks
generate local explanations using neighbourhoods around the input sample. In this study, the local
neighbourhood is defined by the Mahalonobis distance of samples. In a neighbourhood, samples
are selected based on specific criteria and analysed to explain an individual classification. The
distribution of the selected samples within a neighbourhood of x using specific criteria is denoted
by R(x). This R(x) can be defined by various means, such as marginal or conditional distributions,
as it represents the distribution following specific interventions/perturbations after the samples are
drawn from a predetermined distribution Watson et al. (2021). In this study, we assume features are
independent and can be changed individually. Since the selected XAI frameworks don’t account for
causal relationships among features, this is noted for future work.

3.1. Sufficiency and Necessity (S/N)

The methodology to compute S/N scores of the features is adopted from Balkir et al. (2022); Gal-
hotra et al. (2021) as the approach can be well integrated with tabular datasets. We have used binary
classification examples to clearly demonstrate the concept of neighbourhoods in XAI. For repre-
senting the sufficiency of a feature (or a set of features), j, we define equation 1, where A is the local
neighbourhood and R(x) is its distribution. If x′j = uj ,

Sj(f, u) =

∫
A
I(f(x′) = y)R(x)dx (1)

For an input-output pair (u, y), Sj is the integral of an indicator function I(f(x′) = y) that is 1
if f(x′) = y and 0, otherwise. This is to count how many samples,x, are at the same classification as
the input’s (y) when the values of j feature(s) are changed to that of the original input’s (xj ← uj).
To ensure that the classification y is due to the specific intervention with original feature values
(uj), we consider samples from a different classification to count how many of them arrived at
the same classification as y after the intervention. The sufficiency is high if most samples in the
neighbourhood change their classification to be the same as y. Therefore, the Sj measure informs
the extent to which the j feature value is causing the current classification. The R(x) represents
the conditional probability of selecting a sample for estimation, given the preexisting distribution
and the conditions xj ̸= uj and f(x) ̸= y. In cases where xj = uj or f(x) = y, R(x) is set to
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zero, as such samples do not contribute any valuable information about feature j in maintaining the
classification.

(a) (b)

Figure 1: a) Neighbourhoods for calculating S for - F1 and F2. b) After intervention, F2’s samples
shifted heavily towards the same class (green) as compared to F1’s.

As shown in figure 1(a), input u is highlighted in red, and the neighbourhood to estimate the
sufficiency of two features F1 and F2 is highlighted in blue ovals. The yellow dots represent train-
ing samples and grey ones represent perturbed samples. Notice that the input sample (green class)
and neighbourhood (blue class) lie on opposite sides of the decision boundary. If the sufficiency of
a feature is high, changing values of that feature in the neighbourhood should bring many samples
back to the same class as input, as shown for feature F2 in figure 1(b).

Similarly, we represent the necessity measure of a feature (or a set of features) j, in equation 2.
If x′j ̸= uj ,

Nj(f, u) =

∫
A
I(f(x′) ̸= y)R(x)dx (2)

Necessity measure Nj is the integral over an indicator function I(f(x′) ̸= y) that is 1 if
f(x′) ̸= y and 0 otherwise. This counts how many samples change their classification when the
j feature values are changed. The necessity is high if the majority of samples in the neighbour-
hood change their classification to be different from that of u. Therefore, the Nj measure informs
the extent to which the change in j feature value causes a change of classification. The values in
j are changed to any other values from the training data such that the new samples are within a
local neighborhood defined using the Mahalonobis distance. The R(x) represents the conditional
probability of selecting a sample, given the preexisting distribution and the conditions xj = uj and
f(x) = y. For samples where xj ̸= uj or f(x) ̸= y, R(x) is set to zero, as they do not contribute
meaningful information for assessing necessity.

(a) (b)

Figure 2: a) Neighbourhoods for calculating N of features - F1 and F2. b)After intervention, F1’s
samples shifted heavily towards the opposite class (blue) as compared to F2’s .
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In figure 2, the input and the neighbourhoods to calculate the necessity for features F1 and F2
lie on the same side of the decision boundary. If the necessity of a feature is high, changing its value
should shift a majority of the samples to the opposite class (blue), as shown for the feature F1 in
figure 2(b).

S/N are very interlinked concepts as the feature that has a value that is sufficient in keeping a
classification can also have a different value that is necessary for the opposite classification to occur.
The neighbourhood selection for both S/N is based on classification change and this guided us to
specifically explore neighbourhoods based on the number of same/different classes around an input
sample. This is elaborated later in section 4.2.

3.2. Explainable AI

The two most commonly used XAI techniques are FI and CFs Antoniadi et al. (2021). The following
section discusses the widely used XAI frameworks and their relationship with the S/N measures.

3.2.1. FEATURE IMPORTANCE (FI)

FI estimates the contribution of each feature in a classification and determines the importance of
each feature by assigning scores Ribeiro et al. (2016). For empirical evaluations, popular open-
source FI frameworks - SHapley Additive Explanations (SHAP)1 and Locally Interpretable Model-
agnostic Explanations (LIME)2, are considered in this evaluation.

SHAP To explain an input-output pair (u, y), SHAP Lundberg and Lee (2017) estimates the av-
erage marginal contribution of an individual jth feature considering all possible feature subsets.
This is done by analysing prediction difference by f̂ on including (x+j) and excluding(x−j) the
jth feature value in different feature subsets. Here, exclusion means replacing the feature value
by sampling from training data Palacio et al. (2021). The feature subsets are also constructed by
including the original value of the features belonging to the subset and replacing the values of other
features from the training data samples. SHAP can be approximated using Monte-Carlo sampling
as proposed in Štrumbelj and Kononenko (2014). The kernel used to weigh the samples is based on
the size of the feature subset used, i.e., how many feature values are common between the original
input and the sample. Higher weights are assigned to samples that have either few or too many
common features.

The neighbourhood in SHAP is generated after perturbing input u using training data and
weighting the samples using the kernel. Here, R(x) describes the kernel-weighted conditional
probability based on a given distribution that is adjusted for interventional effects due to feature
perturbations. Based on the kernel, higher values of R(x) are assigned to samples with very small
or very large replacement of features. Very small subsets of features enable an understanding of
the necessity of jth feature because the rest of the features are kept constant (small subset = few
features replaced). Very large subsets enable an understanding of its sufficiency as almost all fea-
tures are replaced, and f̂(x+j) − f̂(x−j) captures the effect of jth feature towards a prediction in
all samples. We define SHAP scores using equation 3. Here, SHAPj(f, u) represents how much a
specific feature j is contributing overall towards a prediction of u by f .

1. https://github.com/slundberg/shap
2. https://github.com/marcotcr/lime
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SHAPj(f, u) =

∫
A
(f̂(x+j − f̂(x−j))R(x)dx (3)

As shown in figure 3(a), neighbourhood for SHAP for explaining an input (highlighted in red)
are a set of samples(highlighted in grey) that contain a combination of feature values from original
input and training samples. These perturbed samples with few or many common feature values are
given higher weights represented by their size.

(a) (b) (c)

Figure 3: Neighbourhood representations a) SHAP, b) LIME, and c) DiCE.

LIME To explain an input-output pair (u, f(u)) locally, LIME Ribeiro et al. (2016) estimates the
FI scores by generating a local neighbourhood around u and training different interpretable linear
models G on the neighbourhood samples weighted using a distance metric, and their classifications
by f as ground truth. The coefficients of the linear model g ∈ G that best approximates f provide
the FI scores. These FI scores can be approximated using equation 4. LIMEj(f, u) represents how
much a specific individual feature value contributes to a prediction of u by f with respect to the
local samples. If xj ̸= uj ,

LIMEj(f, u) =

∫
A

(f̂(x)− f̂(u))

|xj − uj |
R(x)dx (4)

Small changes in feature values and large changes in the model’s prediction cause the larger mag-
nitude of FI scores. Here, R(x) serves as a weight that incorporates the conditional probability of a
sample given its perturbation from u and the condition xj ̸= uj , with an additional weighting based
on the sample’s proximity to u. Note that R(x) is 0 for samples where xj = uj .

The intuition behind LIME is based on linear regression. In a binary setting, it estimates the
probability of a data point being classified as positive (1) and assigns coefficients accordingly. Fea-
tures with positive coefficients indirectly inform how much sufficient their value is in keeping a
positive classification and how necessary a feature value is for a negative classification, as a minor
deflection in feature values can lead to a positive classification. This is vice versa for features with
negative coefficients. As shown in figure 3(b), LIME can use a local neighbourhood using training
samples (highlighted in yellow) as well as perturbed samples (highlighted in grey).

3.2.2. COUNTERFACTUALS (CFS)

CF explanations describe the smallest change to the feature values that changes the classification to
another class Poyiadzi et al. (2020). In Wachter et al. (2017), a loss function to minimise the distance
between the input sample and CF explanation while keeping a different classification was proposed,
and CFs generated using this classical technique are termed Watchter CFs. In Mothilal et al. (2020),
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an additional term is added to the loss function to ensure diversity in the CF explanations generated
(with values of multiple features to change). The CF explanations generated using the diversity-
based loss function are called Diverse Counterfactual Explanations (DiCE). In this empirical study,
the DiCE framework is used for the evaluation as it enables the generation of a diverse range of CFs
that can be used for the analysis of CF’s association with S/N.

To compare CF explanations with S/N measures, FI scores are generated by observing the num-
ber of times a feature is changed in the K number of CFs Kommiya Mothilal et al. (2021). If
I(xj ̸= uj) is the indicator function that is 1 if the feature j changes it’s value in a CF and 0 oth-
erwise, FI scores using CFs are represented by equation 5. CF FIj(f, u) represents the extent to
which a change in a feature j will occur while altering the classification with minimum changes.

CF FIj(f, u) =

∫
A
I(xj ̸= uj)R(x)dx (5)

where A is the neighbourhood of u and R(x) represents the conditional probability of selecting a
sample from a given distribution that has a different classification than that of the input u. R(x) = 0
for samples that belong to the same class as f(u). This approach is useful to effectively interpret
information from the CFs by capturing the likelihood that a specific feature change resulted in a
change of classification in a given local neighbourhood Von Kügelgen et al. (2023).

As shown in figure 3(c), multiple CFs (CF1 and CF2) are possible for explaining an instance u.
Both CF1 and CF2 are close to input u and lie on the other side of the decision boundary. The local
neighbourhood (blue oval) in CFs has samples that are classified differently than the original input.
CFs directly inform about the necessity of features. If a feature is repeatedly prompted to change
for changing a classification, it implies a higher necessity of that feature.

4. Empirical Evaluation

In this study, we aim to evaluate XAI frameworks using various neighbourhood types to convey
S/N measures of features. To achieve this, we first detail the components used in the experimental
methodology.

4.1. Datasets and Classifier

We utilised three medical tabular datasets; all focused on binary classification. First is the cervical
cancer dataset containing 1,256 records and 24 features Kelwin Fernandes and Fernandes. Second,
is the heart disease dataset, with 297 records and 13 features Robert Detrano, and the third is the
diabetes dataset, with 768 records, consisting of 7 features Smith. The three binary classification
datasets are chosen for a consistent methodology and simplified calculations of the S/N measures
and the explanations. We employed a Support Vector Machine (SVM) classifier with a linear kernel
for our experiments. The accuracy scores achieved by the SVM classifier for cervical cancer, heart
disease, and diabetes datasets are 97.1%, 85.18%, and 75.6%, respectively. Since our paper primar-
ily aims to assess model-agnostic XAI frameworks across various neighbourhoods, the selection of
the classifier isn’t the main point of our discussion.
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4.2. Neighbourhoods

As discussed in section 3.2, XAI frameworks construct their neighbourhoods - labelled as the
standard. Since S/N measures are calculated from changes in classification, we examined dif-
ferent neighbourhoods characterised by distinct classification results. All the neighbourhoods used
random perturbation on the dataset using values from the training data. We used the Mahalonobis
distance to define locality and select those perturbed samples that are closer to the input, based on
the covariance established by the training data. With a specific type of neighbourhood, the appro-
priate conditional probability holds to reflect in R(x).

1. Perturbed(perturb) : In this, to create a local neighbourhood, the input is not perturbed
randomly but by altering features progressively: starting with one, then pairs, and progressing
to larger sets. This ensures that more samples have similar feature values.

2. Balanced: This neighborhood contains a balanced ratio of samples from each class.

3. Skewed opposite (skewed(opp)): This involves a skewed sample set: 75% from different
classes and 25% from the input’s class.

4. Skewed similar (skewed(same)): In this, the skew is towards the input sample’s class: 75%
of samples are from the input’s class and 25% from different classes.

5. Restricted Outside (outside): This contains samples classified differently than the input
sample.

6. Restricted Inside (inside): This contains samples classified the same as the input sample.

Based on the above taxonomy, multiple neighbourhoods were generated. For example, perturb balanced
uses the specific perturbation described above and selects an equal number of samples from both
(0/1) classes.

Application of neighbourhoods: The method for scoring features varies among XAI frame-
works, so not all neighbourhoods fit every framework. For LIME, all neighbourhoods except inside
and outside work, as it needs samples from both classes to train the interpretable classifier for ap-
proximating a feature’s importance. SHAP can use all types of neighbourhoods as it uses them
reconstruct its own one as discussed in the previous section. Conversely, DiCE needs an outside
restricted setting, so only corresponding neighbourhood combinations are considered.

4.3. Experimental Methodology

Our detailed methodology is illustrated in figure 4. Initially, the dataset is used to train the black-box
classifier. Post this training phase, each test data sample, along with its associated neighbourhood
defined by the “neighbourhood type”, is processed by the three XAI frameworks - SHAP, LIME
and DiCE, and the S/N measures computation block. The S/N scores are computed for individual
features, and rankings are generated. While SHAP and LIME generate explanations in the form of
FI scores, scores from the DiCE CFs are estimated by observing changes in feature values across
the nearest K-CFs, as discussed in section 3.2.2. Based on iterative experimentation, we chose a
K value of 200 to achieve an optimal correlation between CFs and S/N scores. We considered the
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Figure 4: Methodology for evaluating XAI for S/N using various neighbourhoods.

magnitude of FI scores to rank features as a higher magnitude implies a feature’s stronger influence
on the prediction, which can be interpreted in the context of its S/N.

To measure the alignment between the feature rankings (derived from FI scores’ magnitude)
and S/N rankings, we used the Kendall tau correlation coefficient. A high correlation coefficient in-
dicates a strong alignment of XAI’s feature rankings with the S/N measures of individual features.
These results are aggregated for every combination of neighbourhoods and XAI frameworks across
datasets. For simplification, we present the average correlation using different types of neighbour-
hoods to compare and analyse their impact.

Grouped Feature Analysis: Based on the neighbourhood that shows the best correlation with the
S/N rankings, the correlation is again analysed with respect to subsets of features. This analysis
provides insights into how the top-n ranked features associate with their collective S/N. By evaluat-
ing both individual and grouped feature rankings; we aim to present a more layered understanding
of the feature rankings provided by the XAI frameworks. As denoted by the dotted lines in figure
4, the analysis evaluates n-sized feature subsets for their S/N. For instance, if n equals 2, the top-2
ranked features (ranked 1st and 2nd), followed by the subsequent two features (ranked 2nd and 3rd,
and so on), are assembled and ranked. This grouped ranking is compared to the collective S/N of
these feature subsets of size - 2 via the Kendall correlation. This is repeated for n =1,2,3 and 4. The
code to reproduce results using our methodology is available on Github3.

5. Results and Discussion

In this section, we present the average correlation between S/N measures and the feature rankings
(individual and grouped) from the XAI frameworks - SHAP, LIME, and DiCE. Our goal is to eval-
uate this correlation across various neighbourhoods and pinpoint those best at conveying the S/N
measures. Subsequent subsections delve into the correlation analysis for each XAI framework.

3. Link to the code - https://github.com/UrjaPawar/NeceSuffXAI
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5.1. Correlations of Individual Feature Rankings with S/N Measures

In this section, the mean correlation between individual feature rankings by each XAI framework
and S/N scores are presented using plots with neighbourhoods listed on the x-axis and correlation
values on the y-axis.

Correlations with SHAP rankings Figures 5(a) and (b) show the average Kendall τ between
SHAP rankings and S and N rankings, respectively, across the three datasets. Both the results are
similar to each other because S/N measures are closely linked.

(a) (b)

Figure 5: Mean Kendall correlation coefficient (τ ) between SHAP and a)Sufficiency, and
b)Necessity rankings in different neighbourhoods across datasets.

Across the datasets, the mean correlations with S/N using various neighbourhoods showed sim-
ilar patterns, and we discuss the results derived from averaging these values from all datasets.
For sufficiency in figure 5 (a), neighbourhoods with perturb show around 4.47% higher aver-
age correlation than those without perturb. The balanced neighbourhoods show 10.90% lower
average correlation than those skewed towards the opposite class and 17.31% higher than those
skewed towards the same class. On average, skewed(opposite) showed 31.66% higher correla-
tion than skewed(same). An important observation is that the neighbourhoods based on inside
showed 51.35% lower average correlation than outside. The highest correlation was observed in
perturb outside that showed approximately 30% higher correlation as compared to the standard
SHAP. This is intuitive as the concept of sufficiency is based on the notion of keeping the classi-
fication as it is, and derivation of the scores in outside neighbourhoods is done by estimating the
FI in achieving the same classification when compared to feature values that caused an opposite
classification.

Similarly, correlations with the necessity scores (figure 5 b) were also the highest with
perturb outside with outside neighbourhoods performing 39.14% higher than inside ones, on
average. As necessity measures the impact of features on changing the classification, the outside
neighbourhoods enable an analysis of high-impact feature values that resulted in classification
change with respect to any change in their own values.

Correlations with LIME Rankings Figure 6(a) and (b) present the average correlation between
LIME rankings and S and N rankings, respectively. For sufficiency, there was no significant differ-
ence in the correlations between perturb neighbourhoods and those without perturb. However, on
average, balanced neighbourhoods showed 11.77% higher average correlation than skewed to the
opposite class and 6.59% higher than those skewed to the same class. While the difference is not
very significant, it shows that a balanced neighbourhood provides insights into a local interpretable
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(a) (b)

Figure 6: Mean Kendall correlation coefficient (τ ) between LIME and a)Sufficiency, and
b)Necessity rankings in different neighbourhoods across datasets.

model for identifying sufficient features that don’t lead to a change of classification when other
feature values are changed. Overall, the perturb balanced neighbourhood showed the best average
correlation across the datasets with 33% higher average correlation as compared to the standard
LIME. Similarly, for necessity, the perturb balanced neighbourhood provided the best correlations
such that the local interpretable model can effectively capture the necessary feature values that drive
the classification change.

(a) (b)

Figure 7: Mean Kendall Tau correlation Coefficient (τ ) between DiCE and a)Sufficiency, and
b)Necessity rankings in different neighbourhoods across datasets

Correlations with DiCE Rankings: Figure 7(a) and (b) present the average correlation between
DiCE importance scores and S and N scores, respectively. For S/N, perturb outside neighbour-
hood showed the best average correlation (150% higher than standard DiCE) across the datasets
as the perturbation ensures more samples with common feature values and, therefore, a more local
neighbourhood for estimating individual features’ S/N with respect to the classification.

5.2. Grouped Feature Analysis

To understand the correlation of top-n ranked features and their collective S/N scores, the correla-
tions were also calculated for feature sets using the best-performing neighbourhoods as mentioned
in the section 4.3. Figure 8(a) and (b) presents the average correlation between the XAI frameworks
with their corresponding best-performing neighbourhood and S/N rankings of the feature sets. For
SHAP and DiCE - perturb outside neighbourhood was selected, and for LIME, perturb balanced
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was selected. Note that, among the three XAI frameworks, SHAP provides the highest average cor-
relation for individual feature S/N (with n=1). This can be attributed to SHAP’s kernel assigning
a higher weight to samples with very few or too many common features that enable the ranking to
correlate with the individual S/N of the the feature.

(a) (b)

Figure 8: Mean correlation coefficient between rankings of feature subsets using optimal neigh-
bourhoods in XAI frameworks and a) necessity scores b) sufficiency scores

As shown in figure 8(a), the average correlation of LIME and DiCE rankings with necessity
rankings was almost the same as the size of feature subsets was increased. This is intuitive given
the strong correlation of XAI frameworks with the necessity of using their respective neighbour-
hoods. If a high-ranked feature was indeed necessary for the classification, then changing even
one feature in the subsets of high-ranked features should change the classification. SHAP’s correla-
tion decreased slightly at the feature subset length =2 due to SHAP’s kernel facilitating the ranking
based on individual feature’s importance. Generally, if high-ranked features by XAI frameworks
are necessary, then their subsets are also necessary.

For sufficiency, in figure 8(b), the average correlations of LIME and DiCE slightly increased
with the increasing size of feature subsets as the subsets of sufficient features are sufficient as well.
Similar to necessity, SHAP’s correlation with sufficiency didn’t increase with larger feature subsets
as it’s kernel provides importance score with respect to the whole set of features and not subsets of
features. Generally, if high-ranked features by XAI frameworks are sufficient, then their subsets are
also sufficient.

6. Limitations and Future work

Our study offers valuable insights into the role of neighbourhoods in XAI frameworks in relation
to the S/N rankings of the features. However, there are certain limitations to our work. First, our
methodology assumes causal independence among input features and did not capture the complex-
ity of causal inter-dependencies that exist in real-world systems. Second, our research relied on a
limited range of datasets. Third, the study focused on a specific set of neighbourhoods for gener-
ating explanations. Although these were carefully chosen, they do not cover the entire spectrum
of possible neighbourhoods that could be used with XAI frameworks. In future work, we aim to
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address these limitations by investigating methods to incorporate causal relationships, expanding
the datasets and exploring additional types of neighbourhoods to present more robust conclusions
and granular insights.

7. Conclusions

In this study, we assessed the effectiveness of three prominent XAI frameworks — SHAP, LIME,
and DiCE — correlating with S/N measures. Our study offers valuable insights into how differ-
ent types of neighbourhoods influence the rankings by XAI frameworks. Our findings suggest that
conveying the S/N of features by XAI frameworks can be improved using specific neighbourhoods,
underscoring their utility in XAI frameworks. For conveying individual feature sufficiency and ne-
cessity, SHAP performed best with neighbourhoods based on samples belonging to the opposite
class. LIME performed best with well-balanced neighbourhoods, and DiCE with more locally de-
fined neighbourhoods. Among the three widely used XAI frameworks, SHAP is the most effective
in conveying the S/N of individual features. Additionally, our investigation into grouped sets of
features has shown that if top-ranked features are individually necessary/sufficient, their subsets are
also necessary/sufficient for a given classification.

The proposed methodology can be extended to multi-class classification of tabular datasets as
the concepts of sufficiency and necessity focus only on two types of classes - one associated with
the input sample and ones that are not. The methodology can also be used to observe correlations
among evaluation metrics such as metrics related to fidelity that are often not aligned with each
other. This can enable us to identify the types of input samples (the neighborhoods) for which
these metrics demonstrate stronger correlation with each other, thereby indicating a higher level of
trustworthiness in these metrics.

Our research makes two important contributions to the XAI domain. First, it presents an easy-
to-follow discussion on the interplay between XAI frameworks and the S/N measures, particularly
focusing on the role of neighbourhoods. Second, we provide empirical evidence confirming the
effectiveness of certain types of neighbourhoods in conveying S/N measures. These findings are
important to use XAI in practical settings, as they offer a more nuanced view of how black-box
models make particular decisions.
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Julius Von Kügelgen, Abdirisak Mohamed, and Sander Beckers. Backtracking counterfactuals. In
Conference on Causal Learning and Reasoning, pages 177–196. PMLR, 2023.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

David S Watson, Limor Gultchin, Ankur Taly, and Luciano Floridi. Local explanations via necessity
and sufficiency: Unifying theory and practice. In Uncertainty in Artificial Intelligence, pages
1382–1392. PMLR, 2021.

Appendix A. Additional Results

The distribution of the correlation τ in each dataset was analysed and a higher variance was observed
in all the results of the diabetes dataset as compared to much lower variance in the results of the
cervical cancer dataset. This can be attributed to the number of features. With lesser number
of features each feature has a greater influence on the Kendall correlation that can lead to more
fluctuations in the correlation values. The diabetes dataset has only 7 features while cervical cancer
used 24 features.

Table 1 and 2 present the average correlation with sufficiency and necessity, respectively, across
various selections of neighbourhoods.
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(a) (b) (c)

Figure 9: Mean Kendall Tau correlation Coefficient (τ ) between SHAP and sufficiency Scores in
different neighbourhoods across datasets

(a) (b) (c)

Figure 10: Mean Kendall Tau correlation Coefficient (τ ) between SHAP and necessity Scores in
different neighbourhoods across datasets

(a) (b) (c)

Figure 11: Mean Kendall Tau correlation Coefficient (τ ) between LIME and Sufficiency Scores in
different neighbourhoods across datasets

(a) (b) (c)

Figure 12: Mean Kendall Tau correlation Coefficient (τ ) between LIME and Necessity Scores in
different neighbourhoods across datasets
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(a) (b) (c)

Figure 13: Mean Kendall Tau correlation Coefficient (τ ) between LIME and Sufficiency Scores in
different neighbourhoods across datasets

(a) (b) (c)

Figure 14: Mean Kendall Tau correlation Coefficient (τ ) between DiCE and Necessity Scores in
different neighbourhoods across datasets

XAI Datasets Avg. Corr
Restricted inside/outside Random/Perturbed Balanced/Skewed
Inside Outside Random Perturbed Balanced Skewed(Opposite) Skewed(Similar)

SHAP
Heart Disease 0.46 0.21 0.62 0.44 0.47 0.48 0.56 0.40

Cervical Cancer 0.33 0.17 0.44 0.29 0.37 0.38 0.42 0.32
Diabetes 0.67 0.17 0.44 0.66 0.37 0.38 0.42 0.32

LIME
Heart Disease 0.30 NA NA 0.32 0.28 0.31 0.31 0.30

Cervical Cancer 0.17 NA NA 0.15 0.19 0.19 0.11 0.15
Diabetes 0.57 NA NA 0.55 0.59 0.61 0.59 0.60

DICE
Heart Disease 0.42 NA NA 0.35 0.51 NA NA NA

Cervical Cancer 0.27 NA NA 0.23 0.34 NA NA NA
Diabetes 0.35 NA NA 0.22 0.54 NA NA NA

Table 1: Average correlation with sufficiency scores across various types of neighbourhoods

XAI Datasets Avg. Corr
Restricted inside/outside Random/Perturbed Balanced/Skewed
Inside Outside Random Perturbed Balanced Skewed(Opposite) Skewed(Similar)

SHAP
Heart Disease 0.45 0.20 0.61 0.45 0.46 0.47 0.55 0.39

Cervical Cancer 0.44 0.37 0.45 0.44 0.44 0.47 0.46 0.42
Diabetes 0.65 0.50 0.80 0.65 0.66 0.66 0.74 0.56

LIME
Heart Disease 0.28 NA NA 0.28 0.26 0.29 0.29 0.28

Cervical Cancer 0.16 NA NA 0.16 0.18 0.18 0.12 0.16
Diabetes 0.56 NA NA 0.56 0.56 0.58 0.57 0.58

DICE
Heart Disease 0.42 NA NA 0.45 0.50 NA NA NA

Cervical Cancer 0.16 NA NA 0.18 0.25 NA NA NA
Diabetes 0.35 NA NA 0.37 0.51 NA NA NA

Table 2: Average correlation with necessity scores across various types of neighbourhoods
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