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Abstract

While a growing number of algorithms for causal discovery of directed acyclic graphs from ob-
servational and interventional data have been proposed, the robust identification of cyclic causal
graphs in particular remains an open problem. Solutions to this challenge would have a consider-
able impact in various application domains, including single-cell genomics, where gene regulatory
networks are known to contain feedback loops. Recent work has shown promise in addressing this
challenge by describing the expression states in a population of cells as the steady-state solution of
a stochastic dynamical system. However, the current formulation cannot account for information
on interventions in the population, and consequently, it ignores the associated causal inductive bi-
ases, which are key assets to fully exploit the potential of available data for obtaining meaningful
results and improving identifiability. In this work, we propose Bicycle, a method which (i) infers
cyclic causal relationships from i.i.d. data, (ii) explicitly accounts for information on the perturba-
tion state of cells by a realization of the independent causal mechanism principle and (iii) models
causal effects in a latent space rather than on observed data. We benchmark Bicycle in the context
of existing approaches, demonstrating improved recovery of simulated causal graphs and improved
out-of-distribution prediction performance on unseen perturbations in real single-cell datasets.

Keywords: Cyclic Graphs, Stochastic Dynamical Systems, Interventions, Gene Regulatory Net-
work Inference
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1. Introduction

The prediction of the effects of unseen interventions on a system is a crucial application across many
fields, such as climate modeling (Adachi et al., 2017), economics (Romer and Romer, 2010) and
drug discovery in biomedicine (Michoel and Zhang, 2023). In computational single-cell biology,
a central question is to infer how genes regulate each others’ expression (so-called gene regulatory
networks (GRNs)), and to predict the effects of perturbations – either gene knock-downs or activ-
ations. Accurate GRN inference models for these tasks would open vast opportunities for cell-fate
engineering, identifying complex disease mechanisms and prioritizing targets for potential thera-
peutic interventions (Nelson et al., 2015). However, current methods face critical limitations. In
particular, there is a lack of models that simultaneously account for cyclic dependencies and can
account for information on known perturbations.

Modern CRISPR-based perturbation screens allow for probing GRNs by perturbing thousands of
genes in millions of cells, followed by measuring the effects on the expression of mRNA from all
genes in each cell (Replogle et al., 2022; Datlinger et al., 2021; Norman et al., 2019). Nevertheless,
since known protein-coding human genes number around 20,000, and since GRNs can differ among
the roughly 200 cell types in humans, exhaustively perturbing all genes in all cell types is infeasible
with current technology. This is especially true when considering combinatorial interventions, i.e.,
those targeting more than one gene at a time. Therefore, it is of great interest to develop compu-
tational methods that can learn from a subset of all possible interventions to predict the response
of a cell to unseen interventions on one or more target genes. While black-box methods are achie-
ving increasing proficiency at this task (Roohani et al., 2023), a higher degree of explainability is
desired, especially in clinical settings. Thus, methods which identify a causal generative model of
the data-generating process, i.e., the underlying gene regulatory logic, offer a strong combination of
interpretability and robust predictive power on unseen interventions.

There exists a growing number of application-agnostic methods for causal discovery. Critically,
many methods make strong assumptions on the acyclicity of the underlying causal graph (Brouil-
lard et al., 2020; Lopez et al., 2022; Zheng et al., 2018; Lippe et al., 2022), an assumption that is
violated in biological GRNs due the presence of feedback loops (Paige et al., 2015; Dunn et al.,
2014; Freimer et al., 2022). The lack of robust, general-purpose inference schemes for cyclic GRNs
has resulted in a large number of biology-driven methods that seek to unravel GRNs from single-cell
omics data (Bravo González-Blas et al., 2023; Jiang et al., 2022; Kamal et al., 2023). While these
methods have been demonstrated to yield relevant biological insights, they either rely on additional
data modalities and prior information or make strong assumptions about the underlying mechan-
isms, which can result in biases towards well-studied pathways. Furthermore, these approaches are
typically not based on a well-defined generative model of the data and instead employ heuristics
to predict a cell’s response to unseen perturbations. Attempts to apply formal models for causal
inference that capture cyclic structures are currently scarce, primarily because it has proven difficult
to adapt existing concepts to single-cell genomics. A notable exception is the recently proposed
Dictys model (Wang et al., 2023), which models the distributions of cells as draws from the equi-
librium distribution of an unobserved continuous stochastic dynamical system, which is coupled
to observations via a technology-tailored noise model. However, a key limitation of the method is
that it does not account for perturbations, which precludes meaningful applications in the context of
high-throughput CRISPR perturbation screens.
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Figure 2: Given a set of observed single-cell samples in observational and interventional conditions
(left), we aim to learn the causal effects between genes (the GRN matrix, light blue back-
ground, middle). Bicycle employs an intervention-specific stochastic kinetic model that
can incorporate sparse changes in the model parameters based on the intervention target
(middle). The steady-state solution of the model, a set of multivariate normal distribu-
tions, is modelled in a latent space (right).

Figure 1: Bicycle uses data from multiple in-
terventions to estimate the underlying
causal graph and make predictions for
unseen interventions.

Here, we propose Bicycle, a new model
to infer causal graphs with cyclic structures
from observational and interventional data
(Fig. 1). Bicycle models the true (free of tech-
nical/measurement noise) causal relationships
using latent variables described by the steady-
state distribution of a dynamical system with
unknown governing equations. A key innova-
tion of Bicycle is that its stochastic differential
equations (SDEs) are parameterized in a hier-
archical fashion for each interventional condi-
tion. That is, the parameters of the SDE across
conditions are identical to those of an unper-
turbed system, except for those genes that gov-
ern the evolution of direct interventional target variables (Fig. 2). This approach can be interpreted
as an instance of the independent causal mechanisms principle (c.f., Scholkopf et al. (2021)). The
model can unravel causal relationships and predict the effect of unknown interventions while provid-
ing a directly interpretable representation of the system. We assess Bicycle using both simulated
and real data benchmarks, demonstrating improved causal structure recovery and prediction of per-
turbation effects of unseen interventions. The Bicycle package will be made publicly available upon
publication.

3211



ROHBECK CLARKE MIKULIK PETTET STEGLE UELTZHÖFFER

2. Related Work and Background

The goal of causal discovery is to infer the underlying causal graph and the functional relationships
between variables from observational or interventional data. In structural causal models (SCMs)
or structural equation models (SEMs), one assumes a deterministic relationship between variables
under the presence of noise. Due to their favorable statistical properties, acyclic causal models are
well-studied, but they cannot model feedback loops. Therefore, methods that can account for and
model cyclic causal graphs are of interest. Finally, many application-tailored methods for single-
cell data eschew the causal discovery problem, instead relying on known biological knowledge to
construct a graph of gene-gene interactions. In the following, we review existing approaches and
provide examples of representative methods.

Acyclic Models Acyclic causal models can be identified up to their Markov equivalence class
(MEC), which can be deduced given appropriate interventional data. Commonly, acyclic mod-
els can be classified as constraint-based, score-based or a combination thereof. Constraint-based
algorithms, such as FCI, PC (Spirtes et al., 1993) or nonlinear ICP (Heinze-Deml et al., 2018)
provide undirected graphs and make heavy use of conditional independence testing, leading to a
large search space because the conditioning sets explode quickly with the number of independent
variables. Scoring-based algorithms apply changes to the adjacency matrix to optimize a scoring
function. A major breakthrough in this was the NOTEARS algorithm (Zheng et al., 2018), which
led to multiple follow-up works (Lee et al., 2019; Brouillard et al., 2020; Lopez et al., 2022; Xue
et al., 2023). However, NOTEARS recovers acyclic graphs characterized by a high level of varsort-
ability, which quantifies the degree of overlap between the sequence of increasing marginal variance
and the topological arrangement (Reisach et al., 2021). DCDI (Brouillard et al., 2020) and its more
scalable successor DCD-FG (Lopez et al., 2022) model observational and interventional distribu-
tions by jointly learning a directed causal graph and deep neural networks to flexibly approximate
the functional form of the invariant causal relationships between downstream genes and their regu-
lators. However, these models rely on an explicit acyclicity constraint and therefore cannot model
cyclic graphs. Lippe et al. (2022) present a highly scalable method, ENCO, to infer directed, acyclic
causal graphs leveraging observational and interventional data. In contrast to NOTEARS, ENCO
does not include an explicit acyclicity constraint (instead relying on the empirical observation that
its learned sparse graphs rarely contain cycles) and learns the probability of edge existence and
direction parameterized with two independent parameters.

Neural Network Models for Perturbation Data GEARS (Roohani et al., 2023) is a deep learn-
ing model that predicts the cellular response to genetic perturbations (both single and multi-gene
interventions). It requires a knowledge graph of gene-gene relationships to prune the potential inter-
actions between genes. In contrast to our method, GEARS does not provide an interpretable GRN
but relies on a black-box, deep-learning-based architecture. Further methods to predict change in
gene expression without uncovering the underlying GRN are PerturbNet (Yu and Welch, 2022)
and CaML (Nilforoshan et al., 2023). PerturbNet is based on a conditional invertible neural net-
work (cINN), i.e., conditional normalizing flows, which learns the mapping between noise and
gene expression data. The model conditions the mapping on encoded perturbation data to allow for
generating data for unseen perturbations. In contrast, CaML is a zero-shot learning approach that
trains a meta-model to estimate the conditional average treatment effect (CATE) on individuals and
interventions and can be applied to unseen individuals.
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Simulation-based, Amortized Causal Discovery Recent work has shown promise in transfer-
ring the causal discovery problem to the setting of supervised deep learning by simulating known
ground-truth data from generative models and then training flexible transformer architectures in the
standard supervised setting to predict the causal graph (Ke et al., 2023a,b). While these simulation-
based amortized inference approaches show promise in recovering causal structure which fits the
distribution of the synthetic training data, in many fields, including molecular biology, there are no
broadly accepted simulators to generate the synthetic data required to train the deep-learning model,
as many aspects of the data-generating processes are still poorly understood.

Cyclic Causal Models There is a rich theoretical literature on cyclic causal models for observa-
tional steady-state data (Bongers et al., 2021; Mooij et al., 2013), which can be conceptualized as
sampled from the equilibrium distribution of an underlying continuous or discrete-time stochastic
dynamical system. LLC (Hyttinen et al., 2012) is a time-discrete model that infers cyclic dependen-
cies given linear relations between the variables. LLC assumes a time-independent, constant noise
covariance matrix that might contain nonzero off-diagonal elements (unobserved confounding) and
can work with interventional, but not with purely observational data. NODAGS-Flow (Sethuraman
et al., 2023) learns nonlinear cyclic causal graphical models from interventional data by making use
of ideas from residual normalizing flows, but does not (i) account for different data likelihoods, (ii)
model technical/measurement noise explicitly, (iii) allow confounders or (iv) model imperfect inter-
ventions. The closest work to ours, a steady-state, continuous-time linear dynamical model, and the
one we build upon, is Dictys (Wang et al., 2023). Dictys is a dynamic GRN inference method that
models latent, cyclic regulatory dynamics using a multivariate Ornstein–Uhlenbeck process, which
it couples to a modality-specific technical noise model. However, it does not make use of perturba-
tions, which are the workhorse of causal discovery. Instead, it requires prior knowledge to establish
the presence and direction of causal effects in the GRN. Dictys represents a class of models called
”continuous Lyapunov models” in the statistical literature (Varando and Hansen, 2020). While there
are algorithms and identifiability results for estimating the causal graph from purely observational
data (Dettling et al., 2022, 2023), to the best of our knowledge, we are the first to explicitly leverage
perturbation data via the independent causal mechanism principle to discover the causal structure
underlying a set of observational and perturbational data distributions using a continuous Lyapunov
model, particularly when modeling the true expression state coupled to a modality-specific technical
noise model.

3. Methods

In the following section, we first introduce the relevant notation and kinetic model in Sec. 3.1, before
we describe our core methodological extensions: (i) the integration of interventional conditions into
the kinetic model in Sec. 3.2, followed by (ii) an inference approach in Sec. 3.3.

3.1. Steady-State Model of Gene Regulation

We begin by following the notation used in Dictys (Wang et al., 2023) and use the GRN inference
task as motivation. Nevertheless, our method is more generally applicable, with the terms “cells”
and “genes” simply replaced with “samples” and “features,” together with using an appropriate
noise model to generate predicted observations from the underlying latent causal model. We note
the terminology transcription rate of a gene to refer to the production rate of mRNA from that gene.
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Assume a matrix x = (xng) ∈ NN×G
0 of observed mRNA counts from G genes in N cells, i.e.,

xng corresponds to the number of mRNA molecules from gene g in cell n. The observation xng
includes both biological and technical noise. We model the true expression state (free of technical
noise) of an unperturbed cell, z = (zng) ∈ RN×G, as a draw from the steady-state distribution of
an Ornstein-Uhlenbeck process of the form

dzg(t) =

αg +
∑
g ̸=h

βhgzh(t)− zg(t)

 dt+
∑
h

σghdWh(t), (1)

where we have omitted the cell index n for clarity. This represents the transcriptomic kinetics of
a cell, with αg ∈ RG denoting the net basal transcription rate for gene g, β ∈ RG×G the gene
regulatory matrix, Wh(t) a Wiener process modeling biological noise, and σ = (σgh) ∈ RG×G its
effect on gene g.

Defining B = IG − βT , it holds that iff the real parts of the eigenvalues of B are positive and σσT

is positive definite, a non-singular analytical steady-state solution pSS(z) = limt→∞ p(z(t)) to (1)
exists. It follows a multivariate normal distribution with mean z̄ = B−1α and covariance matrix ω,
where B and ω are given by the solution to the continuous Lyapunov equation

Bω + ωBT = σσT , (2)

i.e., pSS(z) = N (z̄, ω) (Wang and Uhlenbeck, 1945). We assume the latent, unobserved gene
expression state of the data corresponds to this equilibrium distribution, and we give the matrix β
causal semantics consistent with recent advances in cyclic causal discovery (Bongers et al., 2021).
That is, we interpret the parameter βhg as the direct causal effect of the expression of gene h on the
transcription rate of gene g.

This causal model of the latent expression state zng is linked to the measured expression count
values xng for each cell n using a Multinomial likelihood function:

p(xn·|zn·) = Multinomial(xn·; pn·), (3)

where pn· = Softmax(zn·). While we choose this likelihood function to accurately model count
data, our model is not restricted to a specific likelihood and could also leverage other common
distributions to model mRNA counts or other data modalities.

3.2. Implementing the Invariant Causal Mechanism Principle to Leverage Perturbation Data

Our main extension to the latent continuous Lyapunov model of Dictys comprises explicitly mod-
eling multiple perturbation conditions, i.e., multiple interventional distributions. In each interven-
tional condition i ∈ 1, . . . , I , we assume a strict known subset P i ⊂ 1, . . . , G of genes was targeted.
To leverage the perturbation information to identify causal mechanisms and generate predictions
for unseen perturbation conditions, we provide our model with a strong, causal inductive bias in the
form of the invariant causal mechanisms principle (Scholkopf et al., 2021). Specifically, we assume
sharing of most elements of α, β, σ between the interventional and unperturbed contexts – namely,
all parameters governing the evolution of a gene which was not the direct target of a given perturba-
tion, as illustrated in Figure 2. This hierarchy and parameter sharing, combined with the assumption
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that the number of perturbations executed in a condition i is sparse, i.e., |P i| ≪ G, implement the
idea of a sparse shift of independent causal mechanism as an inductive bias of our model.

The Bicycle model can be derived by constructing condition-specific dynamical parameters αi ∈
RG, βi ∈ RG×G, and σi ∈ RG×G in the following way:

αi
g =

{
αg if g /∈ P i,

α̂i
g else

, βi
hg =

{
βhg if g /∈ P i,

β̂i
hg else

, σi
gh =

{
σgh if g /∈ P i,

σ̂i
gh else

,

where α̂i
g ∈ RG is the perturbed base transcription rate of gene g in condition i, and similarly for

β̂i
hg and σ̂i

gh. Now we can calculate the mean z̄i = (Bi)−1αi and covariance matrix ωi of the
multivariate normal distribution pSS(z

i) = N (z̄i, ωi) for each intervention context i, based on the
parameters of the SDE

dzig(t) =

αi
g +

∑
g ̸=h

βi
hgz

i
h(t)− zig(t)

 dt+
∑
k

σi
ghdWh(t), (4)

analogously to in the unperturbed case. Denoting by in the perturbation carried out on cell n, we
model the latent expression state of a perturbed cell n as a sample from this distribution, zinn ∼
pSS(z

in), as illustrated in Fig. 2. In our experiments, we assume perfect interventions and hence set
β̂i
hg = 0 ∀h, g. Additionally, we assume independent noise processes per gene, i.e., σgg, σ̂i

gg > 0 ∀g
and σgh = σ̂i

gh = 0 ∀g ̸= h, which corresponds to assuming no latent confounders. Both of these
assumptions can, in principle, be relaxed by additionally learning β̂i

hg, σgh and σ̂i
gh from the data.

3.3. Inference

In the following, we index interventional conditions by i, with the unperturbed context denoted by
i = 0. Thus, α0 = α, z̄0 = z̄, etc.

To infer the model parameters αi, βi, σi, we maximize a loss function consisting of variational evid-
ence lower bound (ELBO) with additional penalties. We perform maximum likelihood estimation of
the parameters αi, βi and σi, and stochastic variational inference over the latent states z, using inde-
pendent normal distributions as the variational family. Thus, q(z | µz, σz) =

∏
N,GN (zng;µzng , σzng),

where we optimize a mean vector µz and a vector of standard deviations σz for each data point. The
complete loss function is:

Lγ,ξ,λ(x, α, β, σ, α̂, σ̂, µz, σz) =

1

N

N∑
n=1

[
⟨log p(xn | zn)⟩q(zn|µzn ,σzn )

− γKL(q(z | µzn , σzn) || N (z; z̄in , ωin) )

]

− ξ

I

I∑
i=0

∥Biωi + ωi(Bi)T − σi(σi)T ∥22 − λ ∥β∥1 (5)

∆ between LHS and RHS of Lyapunov Eq.

Log-Likelihood of observed counts

Steady-State distribution of latent expression

Sparsity

where γ, ξ, λ > 0 are scaling parameters and in denotes the intervention context of cell n. Since
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the causal effect matrix can be assumed to be sparse in many applications, we employ a sparsity
penalty. Depending on the dataset size (and GPU memory), we employ different approaches to
infer ωi: (i) for small datasets, we set ξ = 0 and solve the Lyapunov equation directly; (ii) for larger
datasets, this is not feasible anymore, so we learn ωi by minimizing the difference between the LHS
and RHS of the Lyapunov equation. To ensure we infer a valid covariance matrix in the second
case, we follow Wang et al. (2023) and parametrize ω as the sum of a positive diagonal matrix and
a low-rank positive semidefinite matrix, i.e., ω = ωdiag +ωfacω

T
fac. where we select the column rank

of ωfac to be much smaller than the number of genes. We use Adam (Kingma and Ba, 2015) as our
optimizer. We directly optimize a mean µzn and variance parameter σzn for each latent variable
zn ∈ RG individually.

4. Experiments

We assessed Bicycle using synthetic data and real single-cell RNA-seq datasets with interventions.
In each case, we carried out a hyperparameter search using the evidence lower-bound metric on a
validation set. Additional information regarding these experiments, including the hyperparameter
search grids and supplementary experiments, can be found in Appendix A.

4.1. Synthetic Data

First, to assess Bicycle’s ability to infer causal relationships from perturbation data, we constructed
synthetic datasets where the underlying causal graph is known. For comparison, we also considered
State-of-the-Art (SOTA) methods for causal graph inference, LLC (which models cyclic graphs with
linear SEMs) (Hyttinen et al., 2012), NOTEARS (which models acyclic graphs with linear SEMs)
(Zheng et al., 2018) and NODAGS-Flow (which models acyclic graphs with nonlinear SEMs) (Seth-
uraman et al., 2023). As these approaches do not explicitly model count-based data, we considered a
reduced variant of Bicycle for these experiments without its technical noise model, thereby allowing
for a like-with-like comparison assuming normally distributed data in all models.

In the first set of experiments, we assessed the model’s ability to (i) reconstruct the causal effect
graph and its parameters β, and (ii) predict the response to unseen interventional conditions, which
correspond to pairs of interventions. We sampled 20 intervention pairs at random for testing, and
hence, either 0, 1, or 2 interventions had been seen during training in the form of individual inter-
ventions. We assumed perfect interventions and known target nodes. Dataset sizes scaled linearly
with the number of interventions (250 samples per intervention; single node intervention), drawn
from a graph with 10 nodes. To study the effect of additional observational data, we considered
an augmented training dataset with 500 further observational (unperturbed) samples included for
selected models and experiments, i.e., these models were trained on k · 250+ 500 samples for k in-
terventions. Simulated graphs were derived from an Erdős–Rényi G(n, p) model, with an expected
edge density of 2. Error bars are standard deviations from five repeated experiments.

We considered synthetic datasets derived from one of two alternative SEMs: an Ornstein-Uhlenbeck
process (SEM1) as in Eq. (4) and a time-discrete linear SEM (SEM2), of the form

x(t) := Ukβx(t− 1) + Ukϵ+ c, (6)

where Uk ∈ RG×G is an indicator matrix with (Uk)gg = 1 if variable g was not perturbed and all
other entries 0. The interventional distribution, c ∼ η ·N (0, IG), representing the perturbation effect
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(with different effect sizes η), is only nonzero for the perturbed gene g, and ϵ ∼ 0.5 · N (0, IG),
i.e., no latent confounding is modeled. More experimental details can be found in Appendix A.
Compared to SEM1, in SEM2 we have a time-invariant effect of noise and perturbation throughout
the convergence to the equilibrium.

If hyperparameters needed to be tuned for a specific model, we retained 20% of the data as holdout
samples. Owing to the imbalanced number of existing vs. missing edges (approx. 10 vs 90), we
quantified the graph reconstruction quality using the area under the precision-recall curve (AUPRC)
(Davis and Goadrich, 2006). The predictive performance of hold-out interventions was quantified
using the negative log-likelihood (NLL).

Figure 3: Benchmarking of alternative methods, considering synthetic data sampled from a 10-node
Erdős–Rényi graph with cycles for a varying number of intervened variables (up to 10)
seen during training created using SEM1 (Ornstein-Uhlenbeck process). Left: AUPRC
of the recovered graph (higher is better); Right: NLL for unseen pairwise perturbations
(lower is better). Bars denote average values across 5 repeated experiments with error
bars corresponding to one standard deviation. The label ”+500 Ctrl.” indicates the model
receives 500 additional control samples independent of the number of interventions.

The result for SEM1 (Fig. 3) clearly demonstrates the advantages of Bicycle on this data generation
process (DGP). First, we note that Bicycle exploited the interventional data more effectively than
SOTA methods. Furthermore, a Bicycle model trained with an additional 500 control samples on top
of the interventional data (”Bicycle + 500 Ctrl.”) is on par with or outperforms the model trained
on interventional data only. For 0 interventional samples and 500 control samples (leftmost blue
bar), the model approximately corresponds to the generative model of Dictys, albeit without the ad-
ditional inductive bias of masking possible causal relationships based on additional data modalities.
Such a model, exclusively trained on unperturbed control samples, is already outperformed by Bi-
cycle with one additional intervention by +0.23 on AUPRC. As expected, the inclusion of additional
control samples generally helps, especially in the regime of smaller numbers of interventions. The
high standard deviations for both AUPRC and NLL in low-sample regimes indicate that Bicycle’s
inferences become more robust as data sizes increase. NOTEARS cannot model interventional data
but, on observational data, performed comparably to Bicycle on average, with a smaller standard
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Figure 4: Benchmarking of alternative models (5 repeated experiments), considering synthetic data
sampled from a 10-node Erdős–Rényi graph with cycles created using SEM2 (a time-
discrete linear). Left: AUPRC of the recovered graph, right: NLL for unseen pairwise
perturbations.

deviation. NODAGS-Flow and LLC show markedly lower performance compared to Bicycle under
this DGP and do not improve with more interventional data.

In the SEM2 scenario (Fig. 4), NODAGS-Flow shows a rapid improvement of AUPRC with increas-
ing numbers of interventional contexts, while LLC requires more interventional samples to reach
similar performance. These behaviours are in line with the results reported in the primary manu-
script of the NODAGS-Flow method. Although Bicycle was not designed for this DGP, it achieved
competitive performance in AUPRC, even with NODAGS-Flow. It performed slightly worse in
terms of the NLL, however, for biological applications, the AUPRC on the reconstructed GRN is
often the metric of greater interest. For complete details on numerical performance indicators, we
refer to Tab. 2 and Tab. 3.

4.2. Perturb-seq Data

Next, we set out to assess Bicycle on real-world data, leveraging three published single-cell per-
turbation screen datasets (Frangieh et al., 2021). Given that the true causal graph is unknown in this
setting, we focused on evaluating generalization to unknown perturbations. We evaluate the inter-
ventional mean average error (I-MAE, more details below) based on a single-cell RNA sequencing
perturbation screen (Perturb-seq) dataset, which contains targeted CRISPR knock-out perturbations
of 249 target genes. The perturbations were performed in tumor-infiltrating lymphocytes (TILs) of
melanoma patients in three different settings, which in the following were treated as separate data-
sets: a baseline culture of only TILs in a neutral medium (”Control”), a culture of TILs with the
immune stimulatory cytokine interferon-γ added (”IFN-γ”), and a co-culture of TILs with patient-
derived melanoma cells (”Co-Culture”).

The evaluation metric we use, I-MAE on the normalized count data, was previously considered to
benchmark causal discovery methods (Sethuraman et al., 2023). The I-MAE quantifies the recon-
struction error of a model, in an unseen interventional condition, when predicting expression levels
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Figure 5: Comparison of out-of-distribution generalisation of learned regulatory relationships in
terms of the interventional mean absolute error. I-MAE: Interventional mean absolute
error, Co-culture: Lymphocytes co-cultured with melanoma cells, IFN-γ: Lymphocytes
stimulated by interferon-γ, Control: Lymphocytes cultured in neutral medium. Box plots
show distribution (minimum, lower quartile, median, upper quartile, maximum, and out-
liers) over I-MAE for 5 runs with the best hyperparameter set.

of genes that were not directly targeted, based on the expression values of the inferred causal par-
ents. Thus, the I-MAE indirectly quantifies the accuracy of the reconstructed causal graph: A lower
I-MAE implies that the inferred causal relationships hold better in novel contexts. It is similar to the
interventional NLL (Lopez et al., 2022), but it allows to compare our method, which uses a discrete
likelihood function, to SOTA methods using continuous likelihood functions.

We compared Bicycle to four SOTA methods for causal graph discovery: NOTEARS, DCDI,
GOLEM, and NODAGS. We took the same subset of 61 genes and the exact training and test split as
reported in the NODAGS-Flow paper (Sethuraman et al., 2023): We used 90% of the interventions
for training and evaluated the I-MAE on the remaining 10% of held-out interventions, performing
separate analyses for each of the three datasets.

To train the comparison partners, the mRNA count data was normalized for library size to remove
technical noise and log(x + 1)-transformed to accommodate the uniform variance of the Gaussian
likelihood functions of the comparison partners (see Appendix B for details). Due to its count-
specific technical noise model, Bicycle was trained directly on the unnormalized count data. We
performed five runs of training Bicycle using the following, fixed hyperparameters (following the
nomenclature of Eq. 8): γ = 1.0, ξ = 1.0. To choose the optimal λ, we performed a search over
λ ∈ {0.01, 0.1, 1.0} on the training data.

While SOTA methods directly predict normalized counts, we used the following approach for Bi-
cycle: For a given set of perturbed genes Pi, the I-MAE is calculated by evaluating the expectation
value of the relative composition pnd = xnd∑

g xng
under the conditional probability p(xnd | xn¬d)

over observed count-values from our trained model for each out-of-distribution cell for all genes
d ∈ G\Pi, i.e., those which were not directly targeted by an intervention in the given context
i. Under the I-MAE, models capturing non-causal relationships in their conditional distribution
p(xnd | xn¬d) are expected to generalize worse to novel interventional conditions, where these
non-causal correlations may no longer be predictive. Then we normalized the relative composition
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values to a total number of 104 counts per cell, added one ”pseudo-count” per gene and took the
element-wise logarithm. More details are given in Appendix B.

Figure 6: Average estimate for the GRN
matrix β on the interferon-γ data-
set.

The results shown in Fig. 5 compare Bicycle to
SOTA methods in terms of out-of-distribution gen-
eralization of the learned causal graph to novel per-
turbation conditions. Bicycle compares favourably
to all of the SOTA methods on two of the three real-
world datasets. On the IFN-γ dataset it is com-
parable to all methods except for NODAGS-Flow,
which is the only nonlinear method leveraging per-
turbation data to discover cyclic causal structure in
this comparison. Nevertheless, we note the scale of
the x-axis in the plot, and that the difference between
all methods was least pronounced on this dataset.
Note that some of the runs produced outliers in the
resulting I-MAE values. To achieve the lowest vari-
ance in results, we recommend the user to train an
ensemble of Bicycle models (e.g., five models) and
use the median, which is more robust to outliers.

To explore the biological relevance of an inter-
pretable representation of the underlying inferred
causal structure, Fig. 6 shows the average estimate
of β over the runs with the best performing hyperparameters on the interferon-γ dataset. Note that
the strongest effect is from one member of the interferon-γ receptor family (IFNGR1) to a member
of the JAK/STAT signalling pathway (JAK1), which is in line with known biology (Horvath, 2004).

5. Discussion

Here, we have presented Bicycle, a new approach that can leverage data from both observational and
interventional conditions to estimate cyclic causal graphs by integrating the idea of sparse interven-
tional causal mechanisms into linear dynamical systems. Bicycle models the true expression values
in a latent space, which is particularly interesting in domains such as single-cell biology, where rel-
evant regulatory interactions have to be inferred from observations suffering from strong technical
noise. The model can be equipped with various observation noise models, e.g., to model count data
or other modalities. Synthetic experiments show that Bicycle performs on par with or better than
SOTA methods, including on data generation processes for which it was not specifically designed.
Experiments on real-world data show that Bicycle can successfully discover invariant causal mech-
anisms, which generalize well to novel contexts, improving over SOTA causal discovery methods
in two out of three datasets studied. Furthermore, in an important advantage over methods that use
priors on relationships between genes rather than inferring them, these experiments show that the
interpretable estimate of the causal graph estimated by Bicycle has the potential to provide import-
ant novel insights into gene regulatory networks and thereby enhance our current understanding of
biological systems. Bicycle lays the foundation for several future extensions and research directions:
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Causal Modeling of Transient Dynamical Systems: Bicycle approximates a dynamical process by
assuming that cells are in a steady state. However, in many datasets of interest, cells are undergoing
a developmental process. Beginning from stem cells they progress through progenitor cell types to
fully differentiated cell types over time. During this process, the causal GRN is constantly involved
in governing cell fate decisions and maintenance. Extensions to Bicycle will allow the modeling
of multiple cell types and explicitly account for the temporal causal dynamics of development and
disease at the single-cell level.
Imperfect and Unknown Interventions: Currently, we assume perfect, known interventions. By
introducing additional parameters, it will be possible to extend Bicycle to imperfect interventions,
as well as unknown intervention strengths and targets, both critical issues when trying to extract
insights from real-world single-cell perturbation screens.
Scalability and Large Datasets: Based on empirical observations from our study, it seems to be
beneficial to solve the Lyapunov equation directly (as we did for the smaller, synthetic datasets)
instead of using a loss component penalizing the difference between the left- and right-hand side
of the equation (as we did for larger, real-world datasets). A promising future direction will be to
exploit low-rank representations in Bicycle (e.g. (Kressner et al., 2019)) to more efficiently compute
direct solutions even for a large number of genes. Additionally, it is also possible to implement low-
rank representations of β to further improve the scalability and interpretability of large-scale causal
interaction matrices in terms of latent factors (Lopez et al., 2022). Finally, instead of optimizing
the sufficient statistics of latent variables for each gene and sample individually, it would be an
interesting direction of future work to build on amortized variational inference, using an encoder
model that directly predicts the latent variables given the input features and intervention context,
thereby allowing scalability to datasets with millions of cells.
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Württemberg for the Innovation Campus Health + Life Science alliance Heidelberg Mannheim as
well as EMBL IT Services HPC resources. We would like to thank Alexander Aivazidis, Jana
Braunger, Elizaveta Chernova, Jan Gleixner, Abdul Moeed and Marc-Jan Bonder for fruitful dis-
cussions.

References

Sachiho A. Adachi, Seiya Nishizawa, Ryuji Yoshida, Tsuyoshi Yamaura, Kazuto Ando, Hisashi
Yashiro, Yoshiyuki Kajikawa, and Hirofumi Tomita. Contributions of changes in climatology and
perturbation and the resulting nonlinearity to regional climate change. Nature Communications,
8(1):2224, December 2017. ISSN 2041-1723. doi: 10.1038/s41467-017-02360-z.

Constantin Ahlmann-Eltze and Wolfgang Huber. Comparison of transformations for single-cell
RNA-seq data. Nature Methods, 20(5):665–672, May 2023. ISSN 1548-7105. doi: 10.1038/
s41592-023-01814-1.

Andrew V. Anzalone, Luke W. Koblan, and David R. Liu. Genome editing with CRISPR–Cas
nucleases, base editors, transposases and prime editors. Nature Biotechnology, 38(7):824–844,
July 2020. ISSN 1546-1696. doi: 10.1038/s41587-020-0561-9.

13221



ROHBECK CLARKE MIKULIK PETTET STEGLE UELTZHÖFFER
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Philipp Dettling, Roser Homs, Carlos Améndola, Mathias Drton, and Niels Richard Hansen. Iden-
tifiability in Continuous Lyapunov Models. SIAM Journal on Matrix Analysis and Applications,
pages 1799–1821, December 2023. ISSN 0895-4798. doi: 10.1137/22M1520311.

S.-J. Dunn, G. Martello, B. Yordanov, S. Emmott, and A. G. Smith. Defining an essential tran-
scription factor program for naı̈ve pluripotency. Science, 344(6188):1156–1160, June 2014. doi:
10.1126/science.1248882.

Franklin M. Fisher. A Correspondence Principle for Simultaneous Equation Models. Econometrica,
38(1):73–92, 1970. ISSN 0012-9682. doi: 10.2307/1909242.

Chris J. Frangieh, Johannes C. Melms, Pratiksha I. Thakore, Kathryn R. Geiger-Schuller, Patricia
Ho, Adrienne M. Luoma, Brian Cleary, Livnat Jerby-Arnon, Shruti Malu, Michael S. Cuoco,
Maryann Zhao, Casey R. Ager, Meri Rogava, Lila Hovey, Asaf Rotem, Chantale Bernatchez,
Kai W. Wucherpfennig, Bruce E. Johnson, Orit Rozenblatt-Rosen, Dirk Schadendorf, Aviv
Regev, and Benjamin Izar. Multimodal pooled Perturb-CITE-seq screens in patient models define

14222



INTERVENTION-BASED CAUSAL DISCOVERY WITH CYCLES

mechanisms of cancer immune evasion. Nature genetics, 53(3):332–341, March 2021. ISSN
1546-1718 1061-4036. doi: 10.1038/s41588-021-00779-1.

Jacob W. Freimer, Oren Shaked, Sahin Naqvi, Nasa Sinnott-Armstrong, Arwa Kathiria, Christian M.
Garrido, Amy F. Chen, Jessica T. Cortez, William J. Greenleaf, Jonathan K. Pritchard, and Al-
exander Marson. Systematic discovery and perturbation of regulatory genes in human T cells
reveals the architecture of immune networks. Nature Genetics, 54(8):1133–1144, August 2022.
ISSN 1546-1718. doi: 10.1038/s41588-022-01106-y.

Christoph Hafemeister and Rahul Satija. Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression. Genome Biology, 20(1):296,
December 2019. ISSN 1474-760X. doi: 10.1186/s13059-019-1874-1.

Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. Invariant Causal Prediction for
Nonlinear Models. Journal of Causal Inference, 6(2), September 2018. ISSN 2193-3685. doi:
10.1515/jci-2017-0016.

Curt M. Horvath. The Jak-STAT pathway stimulated by interferon gamma. Science’s STKE : signal
transduction knowledge environment, 2004(260):tr8, November 2004. ISSN 1525-8882. doi:
10.1126/stke.2602004tr8.

Antti Hyttinen, Frederick Eberhardt, and Patrik O. Hoyer. Learning Linear Cyclic Causal Models
with Latent Variables. Journal of Machine Learning Research, 13(109):3387–3439, 2012. ISSN
1533-7928.

Junyao Jiang, Pin Lyu, Jinlian Li, Sunan Huang, Jiawang Tao, Seth Blackshaw, Jiang Qian, and
Jie Wang. IReNA: Integrated regulatory network analysis of single-cell transcriptomes and chro-
matin accessibility profiles. iScience, 25(11):105359, November 2022. ISSN 2589-0042. doi:
10.1016/j.isci.2022.105359.

Aryan Kamal, Christian Arnold, Annique Claringbould, Rim Moussa, Nila H Servaas, Maksim
Kholmatov, Neha Daga, Daria Nogina, Sophia Mueller-Dott, Armando Reyes-Palomares, Gio-
vanni Palla, Olga Sigalova, Daria Bunina, Caroline Pabst, and Judith B Zaugg. GRANIE
and GRANPA : Inference and evaluation of enhancer-mediated gene regulatory networks.
Molecular Systems Biology, 19(6):e11627, June 2023. ISSN 1744-4292, 1744-4292. doi:
10.15252/msb.202311627.

Nan Rosemary Ke, Silvia Chiappa, Jane X Wang, Jorg Bornschein, Anirudh Goyal, Melanie Rey,
Theophane Weber, Matthew Botvinick, Michael Curtis Mozer, and Danilo Jimenez Rezende.
Learning to induce causal structure. In International Conference on Learning Representations,
2023a.

Nan Rosemary Ke, Sara-Jane Dunn, Jorg Bornschein, Silvia Chiappa, Melanie Rey, Jean-Baptiste
Lespiau, Albin Cassirer, Jane Wang, Theophane Weber, David Barrett, Matthew Botvinick,
Anirudh Goyal, Mike Mozer, and Danilo Rezende. DiscoGen: Learning to discover gene reg-
ulatory networks. arXiv e-prints, (arXiv:2304.05823), April 2023b. doi: 10.48550/arXiv.2304.
05823.

15223



ROHBECK CLARKE MIKULIK PETTET STEGLE UELTZHÖFFER
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Appendix A. Synthetic Experiments

A.1. Data Generation

A.1.1. GRAPH GENERATION

The generated graphs were constructed using an Erdős–Rényi G(n, p) model, with an expected
edge density of 2 and n = 10 nodes. Edge weights were sampled uniformly from [−0.95,−0.25]∪
[0.25, 0.95].

A.1.2. STRUCTURAL EQUATION MODELS

We used two SEMs to generate data, which we elaborate in more detail here.

Ornstein–Uhlenbeck process (SEM1) The results shown in Fig. 3 use an Ornstein–Uhlenbeck
(OU) process to generate synthetic data.

The OU process is a stochastic model developed to describe the velocity of a massive Brownian
particle subject to friction. This process is a stationary Gauss–Markov process, meeting the criteria
of being Gaussian (characterized by a normal distribution), Markovian (future states depend only on
the present state, not on the sequence of events that preceded it), and temporally homogeneous (its
statistical properties do not change over time). It can be viewed as a modification of the continuous-
time random walk or Wiener process. Unlike a standard random walk, it tends to move back towards
a central location, reflecting the mean-reverting nature of the process. In one dimension, we can
write the OU process as

dz(t) = θ · (µ− z(t))dt+ σdW (t) with z0 = a, (7)

with µ, a ∈ R and σ, θ > 0. We make several remarks about this definition. (i) σ describes the
influence of stochasticity on the process. Without it (i.e., supposing σ = 0), z converges exponen-
tially quickly towards µ. (ii) µ is the mean reversion level, i.e., if z(t) is above this level, the drift
will drag it down, and vice versa. (iii) θ is the strength of this drift effect. The one-dimensional
process is a special case of the multi-dimensional process of Eq. (1).

This process is chosen as it is a common model of the transcriptional kinetics of gene expression,
i.e., the production of mRNA molecules. Hence, dependencies between nodes in the causal graph
(i.e., genes) are generated according to Eq. (4). We set the following values for our parameters:

αg = 1.0, α̂i
g = 0.1

β̂i
kg = 0

σgk = 0.1, σ̂i
gk = 0.001

We compute ω according to Eq. (2) for different interventions and sample our observed data from
the steady-state distribution pSS(x) = N (x̄, ω) with x̄ = B−1α.

General Linear SEM (SEM2) In addition to the data generation process presented above, we
ran experiments on a linear SEM as used in (Sethuraman et al., 2023; Hyttinen et al., 2012). For a
perturbation experiment k, we have:

x(t) = fk(x(t− 1)) + ϵ

= Ukβx(t− 1) + Ukϵ+ c,
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Then, we generated data specific for each sampling of noise from the corresponding equilibrium
state,

x = (IG − Ukβ)
−1(Ukϵ+ c).

As described in the main text, we set c ∼ η · N (0, IG), representing the perturbation effect (with
different effect sizes η) and ϵ ∼ 0.5 · N (0, IG). To guarantee asymptotic stability, we ensure that
all eigenvalues λi of Ukβ satisfy |λi| < 1 (Fisher, 1970) across all interventional conditions k. For
further details and explanations, we refer the reader to (Hyttinen et al., 2012).

A.1.3. DATASET CONSTRUCTION AND HYPERPARAMETER SELECTION

To allow a fair comparison across all models, we used the same dataset for all models and repeated
each experiment at least three times with different seeds and different graphs. In case the model
required tuning hyperparameters, we used an 80%/20% train-validation split of the samples and
selected the model that performed best on the validation set. For LLC, where no hyperparameter
tuning was necessary, we used all data for training. The reported values are predictions on a hold-out
test set that contains pairwise perturbations, containing perturbations where 0, 1 or 2 interventions
have been seen before – but only individually. Tab. 6 shows an overview of hyperparameters tuned
for each model.

The choice of 500 observational samples and 250 samples for each interventional context was
chosen to mirror the statistics of common single-cell perturbation datasets. These usually con-
tain on the order of 100-250 cells per perturbation context and a larger number of unperturbed
(observational) cells.

We use the implementations of LLC, NOTEARS and NODAGS-Flow as given in the NODAGS-
Flow paper (Sethuraman et al., 2023). The remaining parameters of the NODAGS-Flow model that
remained untuned were set according to the synthetic experiments in that paper – except for the
number of epochs, which we increased to 500 to ensure convergence.

Table 1: Tuned Hyperparamters

Model Hyperparameters Values/Range

LLC - -
NOTEARS λ (Sparsity Penalty) [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100]
NODAGS-Flow λc [1e-4, 1e-3, 1e-2, 1e-1, 1]

LR [1e-4, 1e-3, 1e-2, 1e-1, 1]
n-hidden [0, 1, 2, 3]
Func. Relation [gst-mlp, lin-mlp]

A.2. Computational complexity

Considering our objective function shown in Eq. (5), we can parallelize the training across interven-
tions and can iterate over batches of samples to update the latent variables. However, our method is
bounded by the complexity of inverting B = IG−βT to compute z̄ = B−1α, which is of complexity
O(n3) for n genes. The current memory footprint scales with O(max(m,n) · n), given m samples.
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Figure 7: Model comparison for different Bicycle models on SEM1 when the number of additional
control samples is varied. The number of perturbations per intervention is set to 200 per
perturbation.

Empirically, we can scale the current method to approximately 1,000 features/genes, several hun-
dred interventions and 100,000 samples/cells across multiple GPUs. Future work (cf. Sec. 5) will
evaluate ways to improve the scalability of Bicycle.

Empirical results show that we can use the analytical solution to the Lyapunov Equation (see Eq. (2))
for datasets of up to 50 features given a 24GB GPU. Note that this is independent of the number of
samples and only depends on the number of features. If the number of features per sample is higher,
we use the objective as shown in Eq. (5) to approximate the covariance matrix ω.

A.3. Details and Additional Results

Tab. 2 reports detailed results corresponding to Fig. 3.

A.4. Additional Experiments

A.4.1. INFLUENCE OF OBSERVATIONAL SAMPLES ON BICYCLE

We extended the experiment in Fig. 3 by adding one more set of models using 5000 observational
samples. The results presented in Fig. 7 and corresponding Tab. 4 show that the model benefits
greatly from additional observational samples in the regimes where few interventional samples are
available, but these become less relevant when more perturbation data is provided. Especially in
low-sample regimes, the standard deviations are high but shrink with more evidence about the pro-
cess. Hence, especially in single-cell studies, where large amounts of unperturbed data are available,
these should be included during training. However, this experiment confirms that a small amount of
interventional samples can already improve causal discovery significantly even when a large amount
of control samples are given.

A.4.2. IMPACT OF PRECISE PERTURBATION EFFECTS

To deepen our understanding of the performance of Bicycle and other methods on SEM2, we varied
the perturbation strength η in Eq. (6). By decreasing the value of η towards zero, we mimicked
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Table 2: Results for synthetic data generated from SEM1.

Int. Contexts Model AUPRC NLL

0 Bicycle (+500 Ctrl.) 0.51 ± 0.14 0.65 ± 1.05
0 NODAGS (+500 Ctrl.) 0.21 ± 0.12 5.24 ± 3.6
0 NOTEARS (+500 Ctrl.) 0.51 ± 0.13 0.24 ± 0.06

1 Bicycle (+0 Ctrl.) 0.33 ± 0.03 1.58 ± 1.88
1 Bicycle (+500 Ctrl.) 0.74 ± 0.07 -0.28 ± 0.84
1 LLC 0.2 ± 0.07
1 NODAGS (+0 Ctrl.) 0.23 ± 0.11 2.44 ± 1.09
1 NODAGS (+500 Ctrl.) 0.2 ± 0.05 2.44 ± 1.45

2 Bicycle (+0 Ctrl.) 0.55 ± 0.13 0.54 ± 1.28
2 Bicycle (+500 Ctrl.) 0.72 ± 0.07 -0.13 ± 1.16
2 LLC 0.16 ± 0.01 80.81 ± 24.52
2 NODAGS (+0 Ctrl.) 0.21 ± 0.09 3.08 ± 1.82
2 NODAGS (+500 Ctrl.) 0.33 ± 0.02 4.2 ± 0.82

4 Bicycle (+0 Ctrl.) 0.82 ± 0.08 -0.86 ± 0.93
4 Bicycle (+500 Ctrl.) 0.87 ± 0.05 -1.15 ± 0.57
4 LLC 0.19 ± 0.01 80.63 ± 25.91
4 NODAGS (+0 Ctrl.) 0.14 ± 0.06 1.72 ± 0.51
4 NODAGS (+500 Ctrl.) 0.19 ± 0.11 1.71 ± 0.6

6 Bicycle (+0 Ctrl.) 0.93 ± 0.02 -1.5 ± 0.22
6 Bicycle (+500 Ctrl.) 0.92 ± 0.03 -1.58 ± 0.27
6 LLC 0.21 ± 0.03 79.57 ± 24.01
6 NODAGS (+0 Ctrl.) 0.28 ± 0.14 1.82 ± 0.95
6 NODAGS (+500 Ctrl.) 0.2 ± 0.14 1.51 ± 1.1

8 Bicycle (+0 Ctrl.) 0.99 ± 0.01 -1.82 ± 0.14
8 Bicycle (+500 Ctrl.) 0.99 ± 0.01 -1.99 ± 0.04
8 LLC 0.18 ± 0.02 79.56 ± 24.66
8 NODAGS (+0 Ctrl.) 0.2 ± 0.11 0.88 ± 0.34
8 NODAGS (+500 Ctrl.) 0.19 ± 0.09 0.99 ± 0.28

10 Bicycle (+0 Ctrl.) 1.0 ± 0.0 -2.11 ± 0.01
10 Bicycle (+500 Ctrl.) 1.0 ± 0.0 -2.12 ± 0.0
10 LLC 0.23 ± 0.06 80.22 ± 24.58
10 NODAGS (+0 Ctrl.) 0.24 ± 0.12 0.51 ± 0.44
10 NODAGS (+500 Ctrl.) 0.17 ± 0.01 1.0 ± 0.04

a perfect CRISPRi experiment, where genes were knocked down, or inactivated, i.e., do(xg = 0).
Fig. 8 show results for η = 0.5, and Fig. 9 show results for η = 0.1. We observed empirically
that LLC suffered more the smaller the variation of the effects, while Bicycle and NODAGS lost
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Table 3: Results for Synthetic Data generated from SEM2.

Int. Contexts Model AUPRC NLL

1 Bicycle (+0 Ctrl.) 0.56 ± 0.15 1.0 ± 0.01
1 LLC 0.34 ± 0.07
1 NODAGS (+0 Ctrl.) 0.54 ± 0.13 0.71 ± 0.02

2 Bicycle (+0 Ctrl.) 0.61 ± 0.06 0.94 ± 0.01
2 LLC 0.42 ± 0.08 0.73 ± 0.01
2 NODAGS (+0 Ctrl.) 0.75 ± 0.11 0.65 ± 0.01

4 Bicycle (+0 Ctrl.) 0.88 ± 0.06 0.92 ± 0.01
4 LLC 0.53 ± 0.01 0.71 ± 0.02
4 NODAGS (+0 Ctrl.) 0.85 ± 0.15 0.63 ± 0.02

6 Bicycle (+0 Ctrl.) 0.94 ± 0.06 0.91 ± 0.01
6 LLC 0.75 ± 0.01 0.68 ± 0.01
6 NODAGS (+0 Ctrl.) 0.88 ± 0.15 0.62 ± 0.02

8 Bicycle (+0 Ctrl.) 0.97 ± 0.03 0.9 ± 0.02
8 LLC 0.85 ± 0.08 0.66 ± 0.01
8 NODAGS (+0 Ctrl.) 0.96 ± 0.06 0.62 ± 0.02

10 Bicycle (+0 Ctrl.) 1.0 ± 0.0 0.9 ± 0.02
10 LLC 1.0 ± 0.0 0.62 ± 0.02
10 NODAGS (+0 Ctrl.) 1.0 ± 0.01 0.61 ± 0.02

Figure 8: AUPRC and NLL on SEM2 for η = 0.5 in Eq. (6).

reconstruction and predictive power compared to more noisy knock-down, but still maintained good
performance.
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Table 4: Results for Synthetic Data generated from SEM1

Int. Contexts Model AUPRC NLL

0 Bicycle (+500 Ctrl.) 0.51 ± 0.14 0.65 ± 1.05
0 Bicycle (+5000 Ctrl.) 0.65 ± 0.19 0.74 ± 2.2

1 Bicycle (+0 Ctrl.) 0.33 ± 0.03 1.58 ± 1.88
1 Bicycle (+500 Ctrl.) 0.74 ± 0.07 -0.28 ± 0.84
1 Bicycle (+5000 Ctrl.) 0.87 ± 0.07 -1.07 ± 0.83

2 Bicycle (+0 Ctrl.) 0.55 ± 0.13 0.54 ± 1.28
2 Bicycle (+500 Ctrl.) 0.72 ± 0.07 -0.13 ± 1.16
2 Bicycle (+5000 Ctrl.) 0.88 ± 0.1 -1.71 ± 0.19

4 Bicycle (+0 Ctrl.) 0.82 ± 0.08 -0.86 ± 0.93
4 Bicycle (+500 Ctrl.) 0.87 ± 0.05 -1.15 ± 0.57
4 Bicycle (+5000 Ctrl.) 0.99 ± 0.02 -1.84 ± 0.32

6 Bicycle (+0 Ctrl.) 0.93 ± 0.02 -1.5 ± 0.22
6 Bicycle (+500 Ctrl.) 0.92 ± 0.03 -1.58 ± 0.27
6 Bicycle (+5000 Ctrl.) 0.99 ± 0.01 -1.94 ± 0.05

8 Bicycle (+0 Ctrl.) 0.99 ± 0.01 -1.82 ± 0.14
8 Bicycle (+500 Ctrl.) 0.99 ± 0.01 -1.99 ± 0.04
8 Bicycle (+5000 Ctrl.) 0.98 ± 0.03 -1.92 ± 0.14

10 Bicycle (+0 Ctrl.) 1.0 ± 0.0 -2.11 ± 0.01
10 Bicycle (+500 Ctrl.) 1.0 ± 0.0 -2.12 ± 0.0
10 Bicycle (+5000 Ctrl.) 1.0 ± 0.0 -2.12 ± 0.01

Figure 9: AUPRC and NLL on SEM2 for η = 0.1 in Eq. (6).

A.4.3. INFLUENCE OF PERTURBATION STRENGTH

The corresponding mean and standard deviations can be found in Tabs. 5 and 6.
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Table 5: Results for Synthetic Data generated from SEM2 using η = 0.5

Int. Contexts Model AUPRC NLL

1 Bicycle (+0 Ctrl.) 0.61 ± 0.16 0.83 ± 0.0
1 LLC 0.24 ± 0.06
1 NODAGS (+0 Ctrl.) 0.49 ± 0.22 0.67 ± 0.0

2 Bicycle (+0 Ctrl.) 0.72 0.78
2 LLC 0.39 ± 0.0 0.75 ± 0.0
2 NODAGS (+0 Ctrl.) 0.94 0.63

4 Bicycle (+0 Ctrl.) 0.64 ± 0.13 0.78 ± 0.03
4 LLC 0.52 ± 0.04 0.7 ± 0.01
4 NODAGS (+0 Ctrl.) 0.8 ± 0.21 0.61 ± 0.02

6 Bicycle (+0 Ctrl.) 0.57 ± 0.18 0.8 ± 0.05
6 LLC 0.66 ± 0.07 0.71 ± 0.03
6 NODAGS (+0 Ctrl.) 0.89 0.59

8 Bicycle (+0 Ctrl.) 0.87 ± 0.18 0.76 ± 0.04
8 LLC 0.79 ± 0.03 0.69 ± 0.03
8 NODAGS (+0 Ctrl.) 0.95 0.59

10 Bicycle (+0 Ctrl.) 1.0 ± 0.0 0.75 ± 0.02
10 LLC 0.96 ± 0.01 0.67 ± 0.02
10 NODAGS (+0 Ctrl.) 0.95 ± 0.11 0.6 ± 0.02
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Table 6: Results for Synthetic Data generated from SEM2 using η = 0.1

Int. Contexts Model AUPRC NLL

1 Bicycle (+0 Ctrl.) 0.55 ± 0.22 0.52 ± 0.02
1 LLC 0.17 ± 0.08
1 NODAGS (+0 Ctrl.) 0.43 ± 0.17 0.7 ± 0.03

2 Bicycle (+0 Ctrl.) 0.65 ± 0.07 0.45 ± 0.02
2 LLC 0.22 ± 0.04 0.71 ± 0.03
2 NODAGS (+0 Ctrl.) 0.58 ± 0.13 0.61 ± 0.02

4 Bicycle (+0 Ctrl.) 0.81 ± 0.03 0.44 ± 0.02
4 LLC 0.2 ± 0.04 0.72 ± 0.03
4 NODAGS (+0 Ctrl.) 0.67 ± 0.22 0.61 ± 0.02

6 Bicycle (+0 Ctrl.) 0.74 ± 0.16 0.44 ± 0.01
6 LLC 0.19 ± 0.02 0.72 ± 0.03
6 NODAGS (+0 Ctrl.) 0.82 ± 0.09 0.62 ± 0.01

8 Bicycle (+0 Ctrl.) 0.9 ± 0.05 0.43 ± 0.02
8 LLC 0.31 ± 0.09 0.73 ± 0.02
8 NODAGS (+0 Ctrl.) 0.83 ± 0.14 0.61 ± 0.01

10 Bicycle (+0 Ctrl.) 0.93 ± 0.02 0.43 ± 0.02
10 LLC 0.35 ± 0.01 0.72 ± 0.03
10 NODAGS (+0 Ctrl.) 0.85 ± 0.13 0.61 ± 0.02
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Appendix B. Biological Experiments with Gene Knock-Outs

B.1. Preprocessing for single-cell RNA-seq data

Here we employ data processing strategies commonly used in the scRNA-seq community. In
scRNA-seq experiments different cells might have different library sizes (number of unique mo-
lecular identifiers (UMI)), depending on the fraction of molecules captured in an experiment or the
size differences between cells (Luecken and Theis, 2019; Hafemeister and Satija, 2019). To normal-
ize library sizes between single cells, the number of raw counts for each gene is commonly divided
by the total number of counts in a cell c̃ng =

cng∑
g cng

, where cng corresponds to raw counts for gene

g in cell n. The fractions are then scaled with a size factor of 104, which corresponds to the order
of magnitude of average total counts found per cell in a scRNA-seq experiment c̃

′
ng = 104 · c̃ng.

In addition to library size normalization we also account for the heteroskedasticity of the data. The
variance of the expression of a given gene scales with the mean expression of that gene (i.e. the gene
expression follows a Poisson/Gamma-Poisson distribution). Since most methods assume normal
distribution and, consequently, uniform variance, several variance-stabilizing transformations have
been proposed in the field. The one most commonly used is the logarithm with a pseudo-count of
one: log(x+1) (Luecken and Theis, 2019; Ahlmann-Eltze and Huber, 2023). According to a recent
benchmark it also shows the most reliable performance (Ahlmann-Eltze and Huber, 2023). For a
more comprehensive overview of different normalization strategies we refer the interested reader to
Luecken and Theis (2019); Ahlmann-Eltze and Huber (2023); Hafemeister and Satija (2019).

B.2. CRISPR interventions

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) in combination with Cas9
(CRISPR-associated protein 9) is a commonly used tool for genome editing. In CRISPR-Cas9
knock-out experiments, the target gene’s DNA sequence is cut and altered by the Cas9 nucleases
in such a way that the protein encoded by the target gene becomes non-functional (Bock et al.,
2022; Anzalone et al., 2020). The three data sets used in the experiments above employ a pooled
CRISPR-Cas9 experiment called Perturb-seq (Frangieh et al., 2021).

Interventions in causal modeling are usually categorized into perfect interventions, which remove
the dependencies on their causal parents, and imperfect interventions, which only alter the causal de-
pendencies on their parents (Brouillard et al., 2020). Here, we assume CRISPR-Cas9 knock-outs to
be perfect interventions. These methods usually target the translated region of genes. Consequently,
a knock-out might not be directly reflected in the mRNA expression levels, even though it affects
the functionality of the translated protein. Assuming perfect interventions is justified by the fact that
the protein will be non-functional, independent of upstream regulators of the gene’s mRNA levels.

However, it should be mentioned that CRISPR-Cas9 experiments are limited by off-target effects,
the uncertainty of success of the perturbation and the stress the experiments induce on cells. (Schraivo-
gel et al., 2023; Tejada-Lapuerta et al., 2023). Additionally, compensatory pathways can be activ-
ated, which might mitigate the perturbation effect (Bock et al., 2022). In such cases, assuming
perfect interventions might not be justified anymore.

Conversely, CRISPR intervention (CRISPRi), as used in (Replogle et al., 2022), is a tool to knock-
down (reduce the expression of) target genes using deactivated Cas9 nucleases (dCas9) (Bock et al.,
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2022; Anzalone et al., 2020). dCas9 proteins can still recognise their target DNA sequences, but
cannot cut the DNA sequence. Instead, they are combined with other proteins, so-called transcrip-
tional repressors. CRISPRi experiments do not target the translated region of a gene, but rather
its regulatory regions, thereby repressing mRNA expression of the target gene without altering the
DNA sequence (Bock et al., 2022).

The effect of genetic perturbations in pooled CRISPR screens can be read out using single-cell RNA
sequencing (scRNA-seq), which captures a noisy image each cell’s transcriptomic state by counting
the number of mRNA transcripts for each gene in each cell. For a recent, comprehensive overview
of single-cell perturbation screen approaches, interested readers are referered to Schraivogel et al.
(2023)

B.3. Evaluation of I-MAE

We evaluate the I-MAE on hold-out cells of an unseen interventional condition Pi in the following
way: We assume the interventions completely cut the incoming causal edges of the perturbed gene
and therefore set β̂i

gt = 0 for each direct target gene t ∈ Pi and all genes g ∈ G. As the aim of
our model is to make good predictions for the effects of given interventions on target genes t ∈ Pi

on all other genes d ∈ G\P i, we optimize α̂i
t and σ̂i

tt for each direct target gene t ∈ Pi to fit the
corresponding marginal distribution.

To see how well the learned causal relationships hold in the condition Pi, we then evaluate the I-
MAE on the genes d ∈ G\P i, i.e., those which were not directly perturbed. To this end, we evaluate
p(xnd|xn¬d), i.e., the distribution over the measured expression-count value of each gene and cell,
conditioned on the measured count-values of all the other genes for that specific cell. If our model
succeeds in identifying invariant causal mechanisms, this distribution should also work in unseen
contexts. In contrast, the breaking of non-causal correlations in the training conditions due to novel
interventions in the test conditions would severely impair predictions based on such correlations.

The calculation of the conditional probability p(xnd|xn¬d) in a latent variable model requires a
marginalization over the latent variables zng:

p(xnd|xn¬d) =
p(xnd, xn¬d)

p(xn¬d)

=

∫
p(xnd, xn¬d|zn·)p(zn·)dz

p(xn¬d)

=

∫
p(xnd|xn¬d, zn·)p(xn¬d|zn·)p(zn·)dz

p(xn¬d)

=

∫
p(xnd|xn¬d, zn·)p(zn·|xn¬d)dz

(8)

As the marginalization over the high-dimensional latent variables zng is infeasible, we approximate
the exact conditional probability by a variational approximation, where we replace the exact pos-
terior p(zn·|xn¬d) with a variational distribution q(zn·|xn¬d) =

∏
g∈GN (zng;µng, σng) under a

mean-field assumption. We optimize the mean and standard deviation parameters µng, σng using
the following ELBO:

ELBO(µn, σn) = ⟨log p(xn¬g|zn¬g)⟩q(zn·|µzn ,σzn· )
−KL(q(zn·|µzn· , σzn·) || N (zn·; x̄

i, ωi))
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where N (zn·; x̄
i, ωi) is the steady-state distribution derived from the dynamical parameters αi, βi,

and σi for intervention condition P i, and p(xn¬g|zn¬g) = Multinomial(xn¬g|pxn¬g) for pn¬g =
Softmax(zn¬g).

Now, we can calculate the expected relative composition pnd = xnd∑
g xnd

under the approximate
conditional probability distribution

p̂(xnd|xn¬d) = p(xnd|µn·)

over observed count-values from the trained model for each out-of-distribution cell for all genes
d ∈ G\Pi.

Data is then normalized and log(x + 1)-transformed, as mentioned in Sec. 4.2. In detail, we scale
count values to a total sum of 104 counts per cell, add one ”pseudo-count” per gene and take the
element-wise logarithm. This procedure is standard in the single-cell field to make count-data amen-
able to fit by models with Gaussian likelihood functions (Ahlmann-Eltze and Huber, 2023), see also
(Sethuraman et al., 2023). This allows us to compare our prediction of the normalized expression
value for each cell and gene, based on our model and the expression values of all other genes, to the
corresponding predictions of SOTA methods, as shown in Fig. 5.

Appendix C. Identifiability results for Bicycle

The upcoming section provides an overview and establishes the conditions necessary for Bicycle to
converge to the true causal model, i.e. recovering the true underlying parameters α, α̂, β, σ, and σ̂.

C.1. Assumptions

In each of the following theorems, we consider samples from different distributions: (i) In the first
theorem, we consider N samples from the observational distribution. (ii) In the second theorem,
we consider samples from the G interventional conditions P¬i = G \ {i} ∀i ∈ G, i.e., from all
conditions in which all but one variable was directly perturbed. (iii) In the last theorem, we consider
samples from the G interventional conditions P i = {i}, i ∈ G, i.e., from all conditions in which a
single variable was directly perturbed.

Moreover, we assume that we can get a perfect estimate of z̄i and the positive-definite covariance
matrices ωi of the multivariate normal distributions representing the steady-state distributions for
all observed conditions.

Additionally, we again assume perfect interventions, i.e., ˆbeta
i
= 0, and we assume independent

noise processes per gene, i.e., σgg, σ̂i
gg > 0 ∀g and σgh = σ̂i

gh = 0 ∀g ̸= h, which corresponds to
assuming no latent confounders.

Theorem 1 Purely observational datasets are not sufficient for recovering ground-truth paramet-
ers.

In general, there is a many-to-one mapping from underlying dynamical parameters to the parameters
(mean and covariance matrix) of the steady state distribution for t → ∞. E.g., all changes to the
dynamical parameters which rescale the time-axis or add a divergence-free flux to the final steady
state leave the steady-state distribution invariant. The identifiability of the dynamical parameters
from the observational steady-state distribution alone is discussed in detail in Dettling et al. (2023).
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Theorem 2 Assume we observe data generated from a bicycle model with unknown parameters
for all conditions, in which all genes but gene i were directly perturbed, i.e., P¬i = G\{i} ∀i ∈ G.
If we the data suffice to estimate the corresponding covariance matrices ω¬i ∀i ∈ G, the GRN β
and the noise parameters σ, σ̂ of the data generating model can be identified. If additionally the
corresponding mean vectors z̄¬i can be estimated, the baseline transcription rate parameters α, α̂
can be identified.

Considering the causal effect/GRN matrix β, where βhg corresponds to the effect from h → g, we
additionally define ¬i as the intervention in which all genes except for gene i were knocked down.
Now we have to show that given these data we can identify the true generative dynamical system in
terms of its parameters α, α̂, β, σ, and σ̂. In this (rather unrealistic real-world) setting, we have G
interventional distributions leading to G coupled Lyapunov equations:

B¬iω¬i + ω¬i (B¬i)T =



σ̂2
1 . . . 0

. . .
...

σ̂2
i−1

σ2
i

σ̂2
i+1

...
. . .

0 . . . σ̂2
G


.

If all genes but gene i are perturbed, the resulting modified causal graph can only contain edges
from other genes to i. Or, in other words, gene i is the only remaining gene which can have causal
parents in this intervention graph. Therefore, we can define B¬i as B¬i = I − (S¬i)T , where S¬i

is the modified matrix of causal effects in which only column i is non-zero:

S¬i =



0 β1,i 0
...

...
...

0 βi−1,i 0
0 . . . . . . 0 . . . . . . 0
0 βi+1,i 0
...

...
...

0 βG,i 0


=

(
0 . . . 0 bi 0 . . . 0

)
.

Here the column vector bi denotes the vector of dynamical coefficients which determine the influ-
ences of the current transcriptomic state on the transcription rate of gene i. We use the notation
Thus, if we observe nonzero entries of the corresponding covariance matrix ω¬i, they have to cor-
respond to direct causal influences from other genes on i and we can determine all entries of the
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vector bi from this context. Using the definitions above, we observe the following identity:

B¬iω¬i + ω¬i (B¬i)T = (I− (S¬i)T )ω¬i + ω¬i(I− S¬i)

= 2ω¬i − (S¬i)Tω¬i − ω¬iS¬i

= 2ω¬i −



0
...
0

(bi)Tω¬i

0
...
0


−
(
0 . . . 0 ω¬ibi 0 . . . 0

)

=



σ̂2
1

. . .
σ̂2
i−1

σ2
i

σ̂2
i+1

. . .
σ̂2
G


= Σ¬i

Element-wise inspection of this equation yields the following identities:

1. 2ω¬i
j,j = σ̂2

j ∀ j ̸= i

2. 2ω¬i
i,j = (ω¬ibi)j ∀ j ̸= i

3. 2ω¬i
i,i = σ2

i + 2(ω¬ibi)i.

Introducing the notation of a lower index ¬i as dropping the i-th row or column of a matrix, we
observe in identity (2) that 2ω¬i

i,j = (ω¬ibi)j for j ̸= i is equivalent to 2ω¬i
¬i,i = ω¬i

¬i,¬ib
i
¬i, because

bii = 0 by definition. As the (G− 1)× (G− 1) submatrix ω¬i
¬i,¬i of the positive-definite matrix ω¬i

is also positive definite, we can uniquely solve this system for the non-zero entries of bi, which we
can use to compute σi using identity (3) afterwards:

bi¬i = 2(ω¬i
¬i,¬i)

−1ω¬i
¬i,i

Furthermore, using B¬i = I− (S¬i)T , we can calculate the parameters α and α̂ via α¬i = B¬iz̄¬i.
In summary, given the coupled Lyapunov equations B¬iω¬i + ω¬i (B¬i)T = Σ¬i for all i, corres-
ponding to perfectly observing the multivariate normal distributions of the latent expression states
in all conditions in which all but one gene was perturbed, we can uniquely recover the generating
parameters.

Theorem 3

Assume we observe data generated from a bicycle model with unknown parameters for all condi-
tions, in which a single gene i was directly targeted, i.e., P i = {i} ∀i ∈ G. If the data suffice to
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estimate the corresponding covariance matrices ωi, ∀i ∈ G and if the submatrices ωI
¬j,¬j ∀j ∈ G

of the matrix ωI =

ω1
1,:
...

ωG
G,:

 are invertible, the GRN β and the noise parameters σ, σ̂ of the data gen-

erating model can be identified. If additionally the corresponding mean vectors z̄i can be estimated,
the baseline transcription rate parameters α, α̂ can be identified.

Now, we consider the scenario where we are given interventions on each node/gene individually.
This is a more realistic real-world case, found in most of the existing Perturb-seq datasets (e.g.,
Replogle et al. (2022)). If we assume we have access to the true resulting covariance matrices ωi

and means z̄i of the steady-state distributions of the latent expression variables for all contexts in
which a single gene i was perturbed, we can give a criterion on these covariance matrices which is
sufficient to identify the true underlying dynamical system in terms of its parameters α, α̂, β, σ, and
σ̂.
Given G coupled Lyapunov equations for each gene i = 1, . . . , G:

Biωi + ωi
(
Bi

)T
=



σ2
1 . . . 0

. . .
...

σ2
i−1

σ̂2
i

σ2
i+1

...
. . .

0 . . . σ2
G


,

Bi can be written as Bi = I−
∑

j ̸=i(S
j)T , where Sj is the is the modified matrix of causal effects

in which only column j is non-zero:

Sj =



0 β1,j 0
...

...
...

0 βj−1,j 0
0 . . . . . . 0 . . . . . . 0
0 βj+1,j 0
...

...
...

0 βG,j 0


=

(
0 . . . 0 bj 0 . . . 0

)
.

Here the column vector bj denotes the vector of dynamical coefficients which determine the in-
fluences of the current transcriptomic state on the transcription rate of gene j. Plugging these
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definitions into the Lyapunov equation, we obtain:

Biωi + ωi
(
Bi

)T
= (I−

∑
j ̸=i

(Sj)T )ωi + ωi(I−
∑
j ̸=i

Sj)

= 2ωi −
∑
j ̸=i

(Sj)Tωi − ωi
∑
j ̸=i

Sj

= 2ωi −
∑
j ̸=i



0
...
0

(bj)Tωi

0
...
0


−
∑
j ̸=i

(
0 . . . 0 ωibj 0 . . . 0

)

=



σ2
1

. . .
σ2
i−1

σ̂2
i

σ2
i+1

. . .
σ2
G


= Σ¬i

Again, element-wise inspection of this equation yields the following identities:

1. 2ωi
i,i = σ̂2

i ∀ i

2. 2ωi
j,j = 2(ωibj)j + σ2

j ∀ i ̸= j

3. 2ωi
i,j = (ωibj)i ∀ i ̸= j

4. 2ωi
j,k = (ωibj)k + (ωibk)j ∀ pairwise distinct i, j, k

If we make use of identity (3) for all i ̸= j for a given j, we obtain:



ω1
1,:
...

ωj−1
j−1,:

ωj+1
j+1,:
...

ωn
G,:


bj¬j = 2



ω1
1,j
...

ωj−1
j−1,j

ωj+1
j+1,j

...
ωG
G,j


,
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which we can rewrite using the notation introduced in Theorem 2 as ωI
¬j,¬jb

j
¬j = 2ωI

¬j,j , where

ωI =

ω1
1,:
...

ωG
G,:

 .

Thus, if all ωI
¬j,¬j are invertible, we can find a unique solution of bj (again leveraging bjj = 0),

which allows us to determine σj using identity (1) and αj via αj = Bj z̄j . In conclusion, we have
shown that if all the sub-matrices ωi

¬j,¬j of the matrix ωI , which is composed of the i-th rows of the
covariance matrices ωi of the conditions in which the individual gene i was perturbed, is invertible,
we can uniquely identify the true parameters of the generative dynamics.
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