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Abstract
We consider a bandit recommendations problem in which an agent’s preferences (representing
selection probabilities over recommended items) evolve as a function of past selections, according
to an unknown preference model. In each round, we show a menu of k items (out of n total) to the
agent, who then chooses a single item, and we aim to minimize regret with respect to some target
set (a subset of the item simplex) for adversarial losses over the agent’s choices. Extending the
setting from Agarwal and Brown (2022), where uniform-memory agents were considered, here we
allow for non-uniform memory in which a discount factor is applied to the agent’s memory vector
at each subsequent round. In the “long-term memory” regime (when the effective memory horizon
scales with T sublinearly), we show that efficient sublinear regret is obtainable with respect to the
set of everywhere instantaneously realizable distributions (the “EIRD set”, as formulated in prior
work) for any smooth preference model. Further, for preferences which are bounded above and
below by linear functions of memory weight (we call these “scale-bounded” preferences) we give
an algorithm which obtains efficient sublinear regret with respect to nearly the entire item simplex.
We show an NP-hardness result for expanding to targets beyond EIRD in general. In the “short-term
memory” regime (when the memory horizon is constant), we show that scale-bounded preferences
again enable efficient sublinear regret for nearly the entire simplex even without smoothness if
losses do not change too frequently, yet we show an information-theoretic barrier for competing
against the EIRD set under arbitrary smooth preference models even when losses are constant.
Keywords: bandits, online learning, recommender systems, preference models

1. Introduction

Recommendation systems are an integral part of online platforms for e-commerce, social networks,
and content sharing. It it well-documented that user preferences change over time in response to
content recommendations (Flaxman et al., 2016; Curmei et al., 2022; Abdollahpouri et al., 2019;
Mansoury et al., 2020), leading to self-reinforcing patterns of content consumption which can have
a variety of unintended consequences for the user, platform, and society, including but not limited
to loss of revenue and creation of “filter-bubbles” and “echo-chambers” that drive polarization.
Hence, it is important for recommendation systems to incorporate these adaptivity patterns into user
modeling to capture the long-run effects of recommendations on agent preference dynamics.

The approach we take to this problem, building on the framework from Agarwal and Brown
(2022), is to formulate online recommendation as a nonlinear reinforcement learning problem over
the space of agent preferences. Often the objective of recommendation systems is to optimize
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some function of agent behavior, e.g. item purchases or ad revenue, but we cannot force the agent
to choose any individual option we present them with. When preferences are adaptive, the menu
of recommendations we present to a agent in each interaction determines not only our expected
immediate rewards (given the agent’s current choice distribution over the menu), but also affects
the agent’s downstream choice likelihoods over subsequent recommendations (via updates to their
preferences), and hence our future landscape of feasible rewards. This causal effect occurs on a
per-agent basis, breaking the distributional assumptions required by classical approaches such as
collaborative filtering. This motivates the importance of establishing rigorous foundations for the
dynamics of such problems at the level of individual agents. To evaluate long-run interactions, the
framework of regret minimization is then natural to consider, which further allows accommodation
of adversarial changes to per-item rewards over time. While some recent work has adopted the
regret minimization perspective for multi-agent recommendation problems (Gaitonde et al., 2021;
Dean and Morgenstern, 2022; Jagadeesan et al., 2022), strong assumptions are required on the rec-
ommendation setting and model of preference evolution, in which only a single recommendation
is given each round, which then results in a linear update to preferences. In contrast, the setting
we consider allows for unknown and potentially highly nonlinear preference dynamics which can
express the complex interactions often present between items (e.g. substitute and complement ef-
fects, relevant sequential orderings, or genre correlations), as well as to accommodate the practical
constraint faced by many systems in which an agent must be shown a menu of multiple items to
choose from. This yields a problem which is non-trivial even in the case of a single agent.

While the setting of Agarwal and Brown (2022) accommodates many of these considerations
by allowing for multi-item recommendation menus and nonlinear preference dynamics, several ma-
jor limitations remain present. There, it is assumed that the agent’s relative preferences for each
item, as functions of the empirical distribution of past item selections, are determined by functions
from a known parametric class which satisfies a somewhat strong learnability condition (including
e.g. constant-degree polynomials), and their algorithm involves learning each function explicitly.
Further, the target set considered for regret minimization is fairly restrictive, only containing item
distributions which are always feasible regardless of the agent’s current preferences (when an appro-
priate menu distribution is chosen). We show that both of these restrictions can be removed nearly
entirely, while also enabling flexibility for the speed at which agent preferences may evolve, with
only minor adjustments which are well-justified from the perspective of preference modeling.

Our first change is to allow for agents with non-uniform memory, where a discount factor γ ≤ 1
is applied to the vector of past selections in each round. Initially we assume that γ approaches 1 as T
grows, yielding an effective memory horizon (i.e. the window of rounds whose influence dominates
memory) which is Θ(T c), for some c ∈ (0, 1]. For such cases, we show that the parametric learn-
ability assumption can be replaced by assuming only that each function is Lipschitz, and we give
an algorithm which obtains sublinear regret with respect to same target set considered by Agarwal
and Brown (2022), recovering their T 3/4 rate in the uniform-memory case (when γ = 1). Next,
we identify a property for the agent’s preference functions which captures a regime of interpolation
between linearly increasing and arbitrary functions, with a multiplicative factor bounding the dis-
tance from linearity at each point; we say that such functions are “scale-bounded”. For agents with
such preferences and strictly sublinear memory horizons (i.e. with c ∈ (0, 1)) we give an algorithm
which obtains sublinear regret with respect to nearly the entire item simplex. The distance from
our target set here to the simplex boundary is a function of the agent’s “exploration term” λ > 0,
which may be arbitrarily small in this case. These conditions can be interpreted as requiring that
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(i) agents are recency-biased, and (ii) preferences generally increase with familiarity, both of which
are widely assumed in modeling of agent preferences (see Curmei et al. (2022) for an overview).
We give a number of other results regarding efficient menu selection and constant-memory agents,
as well as negative results for further relaxations.

1.1. Setting

As in Agarwal and Brown (2022), in each round t ∈ [T ], we (the recommender) must choose k out
of n items to show in a menu Kt to the agent, who will choose one of the k items probabilistically.
The choice probability of each item depends on the agent’s memory vector vt ∈ ∆(n), which
encodes their history of prior item selections, as well as their preference model, which maps memory
vectors to preference scores via functions fi(vt) ∈ [0, 1] for each item; selection probabilities for
each i ∈ Kt are proportional to these scores. We receive bandit adversarial rewards rt(it) ∈ [0, 1]
for the agent’s item choice it in each round.

Observe that for k = 1 this collapses to the classical adversarial multi-armed bandit problem,
as the agent will choose the single shown item deterministically. Here we take k > 1 to be fixed as
an input to the problem, which yields drastically more intricate selection dynamics than single-item
recommendations due to the role of the preference model; we are playing a bandit problem in which
we cannot pull arms (items) directly, and the set of instantaneously realizable distributions of items
we may induce (when considering any distribution over menus we may choose in each round) is
shifting as a function of the history according to unknown and nonlinear dynamics. As a result, in
general it will not be possible to do as well as the best individual item in terms of reward. Even if
scores were always uniform, an agent would never choose an item more than once every k rounds
even if it was shown in every menu; hence, we must be careful in selecting benchmark target sets
(as subsets of the item simplex) with which we can feasibly compete in terms of sublinear regret.

1.2. Our Results

We give a series of algorithmic and barrier results for the online recommendations problem of
Agarwal and Brown (2022) for discounted-memory agents, where the memory vector updates as
vt+1 ∝ it + γvt/(1 − γ), for some γ ∈ [0, 1]. We formalize the recommender-agent interaction
model and introduce key preliminaries in Section 2.

In Section 3, we give an algorithm which obtains o(T ) regret to the “EIRD set” (as introduced
by Agarwal and Brown (2022)) for agents with an effective memory horizon of Ω(T c) for any
c ∈ (0, 1]. This target set consists of the everywhere instantaneously realizable distributions of
items, i.e. item distributions pt ∈ ∆(n) such that for any memory vector vt ∈ ∆(n) and resulting
preference set {fi(vt)} there is some menu distribution zt which yields it ∼ pt in expectation.
Here, we also introduce a new characterization of the set of instantaneously realizable distributions
for any vt, enabling a computationally efficient menu selection step which removes the exponential
dependence on k from the linear programming subroutine in prior work.

In Section 4, we formulate our notion of scale-bounded preference models and consider a target
set which we call the ϕ-smoothed simplex, denoted ∆ϕ(n), corresponding to any point in the simplex
∆(n) mixed with ϕ uniform noise. We give an algorithm which obtains o(T ) regret with respect to
∆ϕ(n) for agents with a memory horizon of Θ(T c), for any c ∈ (0, 1), where is ϕ is a function of
other parameters (notably, the agent’s exploration term λ > 0) which here can be arbitrarily small.
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This contrasts with theresults for EIRD, where λ must be bounded away from 0 in order to ensure
that the target set is non-empty.

In Section 5, we show that determining the reward of the best distribution which is instanta-
neously realizable from itself, given a circuit which encodes an agent’s preference model, is NP-
hard even for fixed rewards. We argue that this represents strong evidence that competing with any
target set nontrivially larger than EIRD requires additional structural assumptions on preferences
(such as our scale-bounded property).

Finally, in Section 6 we consider agents with an effective memory horizon of O(1). Here we
again highlight the usefulness of the scale-bounded property, and give an algorithm which obtains
o(T ) regret with respect to ∆ϕ(n) whenever rewards do not change too frequently; in contrast, for
general preferences, we show a regret lower bound over the EIRD set which is quasipolynomial in
n, even when rewards are fixed (our algorithmic regret bounds are polynomial in all parameters).

Taken as a whole, in addition to providing several new algorithms for efficient regret minimiza-
tion in online recommendations, our results highlight a number of delicate tradeoffs between the
choice of target set, the speed at which an agent’s memory is updated, and structural assumptions
on preference functions, which may be informative for agent preference modeling more broadly.

1.3. Related Work

Stochastic bandits with changing rewards Problems where future rewards are causally affected
by actions have been studied in the stochastic multi-armed bandit setting (Gittins, 1979; Heidari
et al., 2016; Levine et al., 2017; Kleinberg and Immorlica, 2018; Shah et al., 2018; Leqi et al., 2021;
Laforgue et al., 2022; Awasthi et al., 2022; Papadigenopoulos et al., 2022). Most recent work on
such problems has focused on specific models for reward evolution with motivations such as agent
satiation, agent boredom, and congestion, and considers a single action being chosen in each round.
In contrast, our setting allows for adversarial rewards, and preference evolution is determined by
interplay between the multiple items we choose in each menu.

Models of preference dynamics There has also been substantial work in understanding prefer-
ence dynamics in recommendation systems, with an emphasis on linear update models. Hazla et al.
(2019); Gaitonde et al. (2021) consider a model for political preference dynamics where vector
preferences drift towards the agreement or disagreement on randomly drawn issues, and Dean and
Morgenstern (2022) study a similar model in the context of personalized recommendations for a
single item. A related model is also considered by Jagadeesan et al. (2022) to study the influence
of recommendations on genre formation. Further, interactions between payment incentives and
self-reinforcing preferences are studied in a bandit setting by Zhou et al. (2021).

Reinforcement learning and recommendation systems There is prior work leveraging rein-
forcement learning for recommendations to maximize long-run rewards (Ie et al., 2019; Zhan et al.,
2021; Chen et al., 2019), typically with a focus on empirical evaluation. There is also a long line
of work on studying bias, feedback loops, and “echo-chamber” effects at the population level in
recommendation systems (Flaxman et al., 2016; Curmei et al., 2022; Abdollahpouri et al., 2019;
Mansoury et al., 2020).

Dueling bandits The “dueling bandits” framework studies a recommendation problem similar to
ours in which multiple items are chosen in each trial and relative feedback is observed, representing
agent selections (Yue and Joachims, 2009; Yue et al., 2012; Agarwal et al., 2020; Rangi et al., 2021).
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However, in contrast to our setting, these works consider preference models which are fixed a priori,
and do not change as a function of item history.

2. Preliminaries

Throughout, we use ∆(n) to denote the simplex over n items, un for the uniform distribution on
n items, and dTV (v, v

′) for the total variation distance between distributions. We use the ℓ2 norm
unless specified otherwise (e.g. as ∥x∥1), and we use Bϵ(x) to denote the ball of radius ϵ around x.

2.1. Interaction Model

We recall the setup from Agarwal and Brown (2022) for the online recommendations problem for
an agent with adaptive preferences. At any time, there is some memory vector v ∈ ∆(n), which
expresses some function of the prior selections of the agent. The preference model of an agent is
a mapping M : ∆(n) → [0, 1]n which assigns scores M(v)i = fi(v) according to preference
functions fi : ∆(n) → [0, 1] for each item. An instance of the problem is specified by a universe
of n items, a menu size k < n, a preference model M , a memory update rule U , and a sequence of
reward vectors r1, . . . , rT . In each round t ∈ [T ]:

• the recommender chooses a menu Kt, consisting of k distinct items from [n], which is shown
to the agent;

• the agent selects one item it ∈ Kt, chosen at random according to the distribution given by:

pt(i;Kt, vt) =
fi(vt)∑

j∈Kt
fj(vt)

;

• the memory vector is updated to vt+1 = U(vt, it, t) by the update rule;

• the recommender receives reward rt(it) ∈ [0, 1] for the chosen item.

The initial v1 ∈ ∆(n) can be chosen arbitrarily. We assume each fi is unknown to the recommender,
but U is known. The goal of the recommender is to minimize regret over T rounds with respect to
some target set S ⊆ ∆(n). For any such S, the regret of an algorithm A with respect to S is

RegS(A;T ) = E

[
max
x∈S

T∑
t=1

⟨rt, x⟩ − rt(it)

]

where it is the agent’s item choice at time t resulting from A, and where the expectation is taken
over internal randomness of A as well as the agent’s choices.

2.2. Realizable Distributions

For a preference model M and memory vector v, let IRD(v,M) denote the set of instantaneously
realizable distributions for v, given by

IRD(v,M) = convhull

{
p(K, v) : K ∈

[(
n

k

)]}
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where K is a k-item subset of [n] and p(K, v) denotes the item selection distribution of an agent
with memory v conditioned on being shown a menu K, which is given by

p(i;K, v) =
fi(v)∑

j∈K fj(v)

for each item i in K (and 0 otherwise), where fi is the preference scoring function for any item i.
Note that this expresses the possible item choice distributions of an agent with memory v resulting
from all possible menu selection strategies by the recommender, as any distribution over menus
yields a convex combination of item distributions p(K, v). The set of everywhere instantaneously
realizable distributions is given by

EIRD(M) =
⋂

v∈∆(n)

IRD(v,M).

This is the target set considered by Agarwal and Brown (2022), and which we will consider for
several of our results. As a toy example, consider the case where preferences are fixed at fi(v) = 1
for all v; here, every IRD set is equivalent to EIRD, which is given by the convex hull of all vectors
in ∆(n) with mass 1/k on exactly k items. We note that there are several natural reasons to consider
regret benchmarks in “item space” rather than “menu space”; in addition to previously-shown linear
regret lower bounds for the best fixed menu distribution, our rewards are determined by the items
chosen by the agent rather than our recommendations, and choice distributions are not guaranteed
to quickly stabilize even if we hold menu distributions fixed. We will assume that scoring functions
fi are in fact bounded in the range [λ, 1] for some constant λ > 0 which captures exploration on
behalf of the agent; in Section 3.3 we will assume λ ≥ k/n, which ensures that EIRD is non-empty
(and contains the uniform distribution), yet in Section 4.1 we allow λ to be arbitrarily small.

2.3. Discounted Memory Agents

Throughout, we consider agents whose memory update rules are γ-discounted.

Definition 1 (Discounted Memory Updating) Under the γ-discounted memory update rule Uγ ,
for some γ ∈ [0, 1], when an item it is selected at round t, the memory vector vt is updated to
vt+1 = Uγ(vt, it, t), with

vt+1(i) =

∑t
s=1 γ

t−s · 1(i = is)∑t
s=1 γ

t−s
.

Taking γ = 1 yields the uniform memory update rule considered by Agarwal and Brown (2022). As
in many settings involving discount factors, we can think of values of γ closer to 1 as corresponding
to larger “effective horizons” for memory; for any γ ≤ 1− o(1) we refer to the quantity 1/(1− γ)
as simply the effective memory horizon. We assume throughout that γ is known.

2.4. Smooth Preference Models

Many of our results consider preference models with the property that each scoring function is
Lipschitz, in addition to being bounded above 0, which we refer to as smooth preference models.
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Definition 2 (Smooth Preference Models) A preference model M is (λ, L)-smooth if each scoring
function fi takes values in [λ, 1] and is L-Lipschitz over ∆(n) with respect to the ℓ1 norm.

This property allows for quite a broad class of functions, and is satisfied by each of the classes in
Agarwal and Brown (2022) (e.g. low-degree polynomials) with appropriate parameters. Despite its
generality, we show in Section 3 that this assumption alone is sufficient to enable us to always main-
tain an accurate local approximation of the model, provided that the agent’s memory vector does
not change too quickly, by periodically implementing a query learning rountine. For convenience,
we assume that preference scores are always normalized to have a constant sum

∑
i fi(v) = C for

some C and any v, yet this can be relaxed for each of our results up to poly(n,L) factors.

3. Targeting EIRD for Agents with Long Memory Horizons

We begin by considering cases where γ = 1 − o(1), with an effective memory horizon of Ω(T c)
for some c ∈ (0, 1]. Here, memory vectors change slowly, and every point in ∆(n) is well-
approximated some sequence of item selections. In Section 3.1 we give a result on the structure
of IRD sets, which enables efficient menu selection in our o(T )-regret algorithm for EIRD in 3.3.

3.1. Characterizing IRD via Menu Times

We introduce a notion of the menu time required by each item in order to induce a particular item
distribution x, which allows us to directly characterize IRD sets, as well as efficiently construct
menu distributions at each round with a greedy approach, avoiding the exponential dependence on
k from the linear programming routine in Agarwal and Brown (2022) which enumerates all

(
n
k

)
menus. At a memory vector v, for a target item distribution x, the menu time for item i is given by

µi =
k · xi

fi(v)∑n
j=1

xj

fj(v)

.

Observe that these quantities always satisfy
∑

i µi = k for any v and x. We show that a distribution
x can be realized from a memory vector v if and only if maxi µi ≤ 1.

Lemma 3 An item distribution x belongs to IRD(v,M) if and only if we have that the menu
time µi for each item is at most 1. If this condition holds, there is a poly(n) time algorithm
MenuDist(v, x,M) for constructing a menu distribution z such that EK∼z[p(K, v)] = x.

Proof Sketch If x ∈ IRD(v,M), there exists some menu distribution z which yields x; converting
this menu distribution to µi values by “crediting” a menu in proportion with its mass and the inverse
of the sum of its item scores results in a menu time vector satisfying

∑
i µi = k and maxi µi ≤ 1.

Given a menu time vector satisfying these conditions, we can construct such a distribution by
greedily choosing a menu of the k items with highest remaining menu time and “charging” their
remaining menu times at the same rate, breaking ties for the kth highest by charging and including
at fractional rates. The number of items tied for kth highest remaining µi increases by 1 at each
stage, and the highest initial k−1 items (with µi ≤ 1) will be included non-fractionally until tied for
kth highest. The mass of each added menu in our final distribution z will be allocated proportionally
to the sum of scores of items in the menu. This allows cancellation of the terms for sums of menu
scores, resulting in a menu distribution where the selection probability of an item is proportional to
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its score fi(v) and the number of (fractional) stages in which it was added to the menu. As the latter
number of stages in which an item is added to a menu is proportional to its menu time, and its menu
time is proportional to xi/fi(v), the induced item choice distribution is then proportional to xi.

MenuDist(v, x,M) directly implements this menu distribution construction, and is used by
our algorithms in Section 3.3 and Section 4.1. Further details are given in Appendix B.1.

3.2. A Useful Algorithm for Adversarial Bandits

Here, we introduce a new algorithm for adversarial bandit problems with a number of useful ro-
bustness properties, which serves as the centerpiece of our approach in Section 3.3. Our algorithm,
Deferred Bandit Gradient, can tolerate unobserved adversarial perturbations ξt to the action dis-
tribution xt in each round (where xt is corrupted to yt = xt + ξt prior to sampling), and can
accommodate contracting decision sets (where the action distribution xt chosen in each round must
lie in a set Kt, with Kt ⊆ Kt−1). Both of these properties were identified as being useful in this
setting by Agarwal and Brown (2022), as preference scoring estimates will inevitably have some
imprecision, and we generally will not know the shape of the EIRD set in advance. For online opti-
mization in general, the contracting domains property appears challenging to obtain with algorithms
resembling Follow the Regularized Leader (such as Hedge or EXP3), yet is much more straightfor-
ward with approaches resembling (projected) Online Gradient Descent. In contrast to Agarwal and
Brown (2022), who extend the “OGD-style” FKM algorithm for bandit convex optimization which
obtains O(T 3/4) regret (Flaxman et al. (2004)), our algorithm operates directly in the adversarial
bandit setting for linear losses over the simplex, and leverages linearity to decrease the variance in
gradient estimates (which bottlenecks the regret of FKM) by “deferring” the contribution of each
reward observation across several future rounds, enabling runtime improvements.

Algorithm 1 Deferred Bandit Gradient
Input: sequence of rewards rt, perturbation vectors ξ1, . . . , ξT where |ξt,i| ≤ ϵ

n at each round t,
and contracting convex decision sets K1, . . .KT where Bϵ ⊆ KT for a given ϵ.
Set x1 = un, H = n

ϵ
for t = 1 to T do

Adversary perturbs distribution xt to yt = xt + ξt
Sample it ∼ yt, observe it and reward rt(it)
Let r̃t =

eit
H · rt,it

xt,it
and ∇̃t =

∑t
s=max(t−H+1,1)

r̃t
H

Let Kt+1,ϵ = {x|un + 1
1−ϵ(x− un) ∈ Kt+1}

Update xt+1 = ΠKt+1,ϵ [xt + η∇̃t]
end for

Theorem 4 For a sequence of rewards rt, . . . , rT ∈ [0, 1]n, contracting convex decision sets
K1, . . .KT ⊆ ∆(n) where un ∈ KT , and perturbation vectors ξ1, . . . , ξT satisfying |ξt,i| ≤ ϵ

n
for a given ϵ in each round t, Deferred Bandit Gradient obtains expected regret bounded by

max
x∗∈Kt

T∑
t=1

r⊤t x
∗ −

T∑
t=1

r⊤t yt ≤ 2ηn2T +

√
2

η
+ 3

√
nϵT +

n

2ϵ
+

T∑
t=1

n∑
i=1

|ξt,i|
xt,i

.
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We prove Theorem 4 in Appendix A. Our analysis proceeds by tracking the regret of a variant
of OGD which accommodates contraction over the expectations of the sequence of ∇̃t vectors,
whose squared norms are small in expectation, and showing that this closely tracks both the regret
obtained by our algorithm and the reward of the optimum x∗ in hindsight. Note that if the constraint
|ξt,i| ≤ ϵxt,i

n is satisfied in each round, DBG can be calibrated to obtain regret O(n
√
T + ϵ

√
nT ).

3.3. Targeting EIRD

At a high level, our approach is to guide the agent to implicitly run Deferred Bandit Gradient on
our behalf, over a contracting subset of ∆(n) which always contains EIRD. Periodically, we pause
in order to refresh our estimates of the agent’s current preferences, wherein all items are shown
to the agent sufficiently often in order to accurately estimate preference scores near the current
memory vector. We leverage smoothness of preferences to determine accuracy bounds on our score
estimates as vt updates. Given a target item distribution xt for the agent to sample from (as selected
by DBG), we can invoke the MenuDist routine with our score estimates to construct a menu
distribution zt which approximately induces a choice distribution of xt (whose error is represented
by the perturbations ξi for DBG).

As our approach relies on stability of memory vectors across rounds, our regret decays towards
Θ(T ) as the memory horizon vanishes relative to T ; we discuss the challenges associated with short
memory horizons further in Section 6. For memory horizons of T c for any c > 0 we obtain strictly
sublinear regret, and we recover the Õ(T 3/4) rate from Agarwal and Brown (2022) for uniform
memory, now holding for any smooth preferences rather than only for specific parametric classes.

Theorem 5 For an agent with a (λ, L)-smooth preference model M for λ ≥ k/n, and γ-discounted
memory for γ ≥ 1− 1

T c and c ∈ (0, 1], Algorithm 2 obtains regret bounded by

max
x∗∈EIRD(M)

T∑
t=1

r⊤t x
∗ − E

[
T∑
t=1

rt(it)

]
= Õ

(
(n/λ)3/2L1/4 · T 1−c/4

)
.

The complete proof of Theorem 5 is deferred to Appendix 5. Building on the regret bound for
DBG in Theorem 4, the central challenges are to show that preference estimates Fi are close enough
to each fi(vt) to enable accurate choice targeting via MenuDist, and that the number of non-DBG
rounds spent updating Fi (tracked by q) does not grow too quickly. While EIRD contains at least
the uniform distribution (as implied by Lemma 3 when λ ≥ k

n ), it may not be particularly large in
general. In Section 4, we identify conditions under which an alternate algorithmic approach allows
us to compete with a much larger set of item distributions than EIRD.

4. Beyond EIRD: Scale-Bounded Preferences and the Smoothed Simplex

One motivation given by Agarwal and Brown (2022) for considering EIRD is the difficulty of
exploration under uniform memory, as the current memory cannot be repeatedly “washed away”
without exponential blowup. However, considering discount factors of γ ≤ 1− o(1) introduces the
possibility that we might be able efficiently explore the space of feasible vectors and compete against
item distributions which lie outside of EIRD, i.e. item distributions which are only feasible for a
strict subset of all memory vectors. We identify a structural property which enables this, wherein
preference scoring function outputs cannot be too far multiplicatively from their item’s weight in
memory. We say that such functions are scale-bounded.
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Algorithm 2 (Targeting EIRD for Smooth Models).

Let c∗ = min(c, 3/4), ϵ = Õ(nL1/4λ−3/2T−c/4), Q = Õ( n2

λ4ϵ2
), and η = (nT )−1/2.

Initialize q = 0, v0 = v∗ = un, Fi =
C
n for i ∈ [n], M∗ = {Fi}

Initialize DBG for ϵ, η.
while t ≤ T do

if t < T c∗ then
Show arbitrary menu Kt to agent

else if t ≥ T c∗ and either ∥vt − v∗∥1 ≥
λϵ
2nL or q = 0 then

for b ∈ {0, . . . , ⌈n−1
k−1⌉} do

Show agent menu Kb = {1} ∪ {b(k − 1) + 2, . . . , (b+ 1)(k + 1) + 1} for Q rounds
Let F̂i = (# times it = i) / (# times it = 1) within the Q rounds, for i ∈ Kb

end for
Set Fi =

C·F̂i∑n
j=1 F̂j

for each i ∈ [n], M∗ = {Fi}

Set v∗ = vt, increment q by ⌈n−1
k−1⌉ ·Q, set Kt−q+1 = Kt−q ∩ IRD(v∗,M∗) for DBG

else
Get xt−q from DBG
Let zt = MenuDist(vt, xt−q,M

∗), sample menu Kt ∼ zt
Show Kt to agent, update DBG with observed it and rt(it)

end if
Set vt+1 = U(vt, it, t), for each round counted by q if necessary

end while

Definition 6 (Scale-Bounded Functions) A preference scoring function fi : ∆(n) → [λσ , 1] is
(σ, λ)-scale-bounded for σ ≥ 1 and λ > 0 if

σ−1((1− λ)vi + λ) ≤ fi(v) ≤ σ((1− λ)vi + λ).

We say that a preference model M is scale-bounded if each fi is scale-bounded; in this case, the
vector of scores M(v) cannot stray too far from their values in v. When this property is satisfied,
we can show (using the menu time approach from Lemma 3) that any point which is not too close to
the boundary of ∆(n) is contained in its own IRD set. This motivates a target set of all such points,
which we term the ϕ-smoothed simplex.

Definition 7 (ϕ-Smoothed Simplex) For any ϕ ∈ [0, 1], the ϕ-smoothed simplex is the set given by
∆ϕ(n) = {(1− ϕ)x+ ϕun : x ∈ ∆(n)}.

Further, we show that a neighborhood around any such point is contained in ∆ϕ(n) as well; as
preference scores cannot be too far from an item’s current memory vector weight, the required
menu time for any item in a distribution x which is nearby v cannot be too large.

Lemma 8 Let M be a (σ, λ)-scale-bounded preference model with σ ≤
√

n/(2k). Then, x ∈
IRD(v,M) for any x ∈ Bλϕ(v) ∩∆ϕ(n) and any v ∈ ∆ϕ(n), provided that ϕ ≥ 4kλσ2.

Here, we consider ∆ϕ(n) as a target set for regret minimization. We will no longer require explicit
lower bounds on λ, and so we can take our regret benchmark to be approaching the entire simplex

10
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as λ approaches 0 with an appropriate choice of ϕ. This presents a stark constrast with the EIRD
benchmark, as the scale-bounded property now suggests that it may be possible to persuade the
agent to pick the best item in nearly every round, rather than in O(T/n) rounds (which may occur
in Section 3.3, e.g. if some fi(v) = λ = k/n at every v ∈ ∆(n)).

4.1. A No-Regret Algorithm for ∆ϕ(n)

In contrast to Algorithm 2, where we considered each round as a step for a bandit optimization
algorithm with interleaved learning stages, here we collapse multiple iterations of learning and tar-
geting into a single step for Online Gradient Descent, run over ∆ϕ(n), where the agent’s entire
memory vector is moved in a desired direction. While we can no longer instantaneously realize any
distribution in our target set, the ability to induce any choice distribution in a nearby ball enables
exploration throughout ∆ϕ(n) via the agent’s memory vector. Further, the scale-bounded condition
tethers scores to memory weight, enabling reduced variance in estimating both rewards and prefer-
ences. However, this also yields a decay as c approaches 1 (in addition to 0), as memory does not
update quickly enough to enable exploration. Theorem 1 from Agarwal and Brown (2022) implies
that this is necessary: an adversary may shift the reward distribution in later rounds when we can
no longer significantly move the entire memory vector, necessitating linear regret.

Theorem 9 (Scale-Bounded Discounted Regret Bound) For any agent with a preference model
M which is (σ, λ)-scale-bounded and (λσ , L)-smooth with σ ≤

√
n/(2k), and with γ-discounted

memory for γ = 1− 1
T c for c ∈ (0, 1), Algorithm 3 obtains regret

Reg∆ϕ(n)(A2;T ) = Õ
(
(n4L

(
T 1−c/2 + T 1/2+c/2

))
with respect to the ϕ-smoothed simplex, for ϕ = 4kλσ2.

Proof Sketch In the “burn-in” stage, our goal is simply to push the memory vector towards un; by
first saturating memory on only k items for T c rounds, we are then able to push all low-memory
items towards 1

n at near-uniform rates, as memory now moves slowly and the k lowest values will re-
main close together by the scale-bounded condition, so no item can get “stuck” near 0 and we reach
un in Õ(T c) rounds. In the “initial learning” stage, we are now promised that the uniform distri-
bution is is within our IRD set, and we can force memory to remain there by assuming pessimistic
scores if vt,i < 1

n and optimistic scores otherwise. By comparing observed selection frequencies
to those indicated by our assumed scores, we obtain unbiased estimators for the true fi values near
un. In the “optimization” stage, we batch O(T c) rounds into “steps” for Online Gradient Descent
large enough to maintain locally accurate fi estimates throughout, and alternate between progress-
ing toward the chosen target and updating our scores, which further enables concentrated estimates
of average reward vectors in each step and a regret bound akin to that for “slowed down” OGD.

We allow λ to be arbitrarily small, and assume only that T is large enough to yield λ ≥
T−c/4 poly(n); our bound has no dependence on λ or ϕ beyond this. Our optimal rate over c
is again Õ(T 3/4), yet this time occurring when c = 1

2 , balancing improved variance reduction in
learning with the need to quickly explore in memory space. Full proofs for this section are contained
in Appendix C.
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Algorithm 3 (Targeting ∆ϕ for Scale-Bounded Models).

Let ϵ = Õ(n4L ·max(T−c/2, T c/2−1/2)), S = Õ(n3/2T c), η = Õ(n−1/2L · T c/2−1/2).
--- burn-in ---
for t = 1 to T c do

Show agent menu K = {1, . . . , k}
end for
while maxi

∣∣vt,i − 1
n

∣∣ ≥ ϵ
4n2Lσ

do
Show agent k items with smallest vt,i, choosing randomly among ties up to T−c

end while
--- initial learning ---
for T c rounds do

Let Ft,i = σ−1((1− λ)vt,i + λ) if vt,i < 1
n , else Ft,i = σ((1− λ)vt,i + λ)

Let zt = MenuDist(vt,un, {Ft,i}), show agent Kt ∼ zt
end for
Set Fi =

∑
t 1(it = i) · Ft,i/(

1
nT

c)) · C(
∑n

j=1 Ft,j)
−1, set v∗ = vt

--- optimization ---
Initialize OGD over ∆ϕ

ϵ (n) for T/S rounds with η, set x1 = v∗ := vt.
for s = 1 to T/S do

Receive xs from OGD
for S rounds do do

if ∥vt − v∗∥1 ≥ ϵ/(2nL) then
Let ṽ = vt
Show agent Kt ∼ z = MenuDist(vt, ṽ, {Fi}) for T c/L2 rounds
Set Fi =

∑
t 1(it = i) · Fi/(ṽiT

c/L2) · C(
∑n

j=1 Fj)
−1, set v∗ = vt

end if
Show agent Kt ∼ zt = MenuDist(v∗, xs, {Fi})

end for
Set ∇̃s =

∑t
h=t−S+1 eihrh(ih)/(xh,iS), update OGD

end for

12
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5. On Hardness of Relaxing Benchmarks

Here, we give a hardness result relating to the complexity of determining the optimal reward of
a preference model for a fixed loss function, which we view as evidence that expanding to target
sets beyond EIRD necessitates carefully tailored assumptions on preference models, such as the
scale-bounded property we consider in Section 4.

Theorem 10 Unless RP ⊇ NP, there is no polynomial time algorithm which takes as input a
circuit representation of a preference model M and linear reward function r, and approximates the
reward r(v) of the best distribution v ∈ IRD(v,M) contained in its own IRD set within a O(1/n)
factor.

We show that an instance of the “Max Independent Set” problem, which is NP-hard to approximate,
can be encoded in a preference model for an agent, wherein optimizing reward corresponds to
selecting any independent set. We suppose there is only 1 item which receives positive reward and
will always be in the menu, and the objective corresponds to maximizing its score. Our construction
operates by interpreting assignments of weight to items as proposals for possible independent sets,
and then efficiently checks a graph for edges between the corresponding vertices; the score of item
1 is then proportional to the size of any valid independent set.

This suggests that the difficulty of optimization beyond EIRD stems not only from issues of
learnability or adversarial losses, but rather the possible complexity of optimal strategies which
can be encoded by a preference model. In general, it appears hopeless to attempt to compete with a
distribution which is not in its own IRD set, and any point which is inside its IRD set is stable under
long enough time horizons for smooth preference models (up to arbitrary approximation) provided
it can be initially reached; as such, properties similar to Lemma 8 appear necessary for identifying
feasible targets.

6. Agents with Short Memory Horizons

When the discount factor of the agent is small enough that memory vectors may move rapidly,
we lose the precision required by the algorithms in Section 3 in order to implement queries, and
in fact the feasible state space may more closely resemble a discrete grid, with memory vectors
encoding the sequence of items chosen over an effective horizon which is constant with respect
to T . Nonetheless, for scale-bounded models we give an algorithm which we call EXP-ϕ, which
obtains o(T ) regret with respect to ∆ϕ(n) for any value of γ ∈ [0, 1) under an assumption about
the restricted adversarial nature of rewards. Here, we assume that rewards are stochastic rather than
adversarial for windows of length o(T ), but distributions may change adversarially between each
window; we require a slightly larger lower bound on ϕ (yet still O(λ)).

6.1. A No-Regret Algorithm for Scale-Bounded Models

The idea behind EXP-ϕ is to view each vertex of the smoothed simplex as an action for a multi-
armed bandit problem, where each “pull” corresponds to several rounds. When we “commit” to
playing an item in the menu for a sufficiently long time, while otherwise playing items with the
smallest weight in memory, the scale-bounded property will ensure that the selection frequency
of that item gravitates towards its vertex in the smoothed simplex. Further, as we are no longer
attempting to learn the preference model explicitly, we can relax the smoothness requirement.

13
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Theorem 11 For any agent with a preference model M which is (σ, λ)-scale-bounded for which
each fi(v) ∈ [λ, 1] for λ ≥ σ2k

n and σ ≤
√
n/(2k), and with γ-discounted memory for γ ∈ [0, 1),

when losses are drawn from a distribution which changes at most once every thold = Õ
(
T 2/3

1−γ

)
rounds, Algorithm 3 obtains regret at most

Reg∆ϕ(n)(A3;T ) = Õ(T 5/6)

with respect to ∆ϕ(n), for ϕ = 3λk3σ6.

Algorithm 4 (EXP-ϕ).
Initialize EXP3 to run for T/thold steps
while t < T do

Sample arm i∗ from EXP3
for Õ(T 2/3/(1− γ)) rounds do

Let Kt = {i∗}+ argmink−1
j ̸=i vj

end for
Update EXP3 with average reward of i∗

end while

6.2. Barriers for General Models

If we cannot assume that preferences are scale-bounded, then it appears difficult to compete even
against EIRD for arbitrary smooth models. We show a regret lower bound with respect to EIRD
for any algorithm over a quasipolynomial time horizon by constructing preference models in which
the optimal strategy depends delicately on the current memory vector, and which simultaneously
induces fast exploration over a discrete state space.

Theorem 12 For any γ ∈ (0, 1/2), there is a set of (λ, L)- smooth preference models M with
λ = O(1/n) and L = poly(n) such that any algorithm must have expected regret Ω(T ) for any
T ∈ O(nlog(n)) when the preference model M is sampled uniformly from M.

Our approach is to observe that every feasible memory vector encodes a unique truncated history
of length O(log n), resulting in an implicit state space of size O(nlog(n)). We design preference
models in which the optimal policy is implementable by inducing the uniform distribution at each
round, which lies inside EIRD, yet requires identifying a specific set of alternate items to place in
the menu deterministically at each state to maximize the selection probability of item 1. We show
that any competitive strategy also necessarily explores many states with high probability, and so any
algorithm will frequently reach states where it cannot identify the optimal menu distribution, which
is defined on a per-state basis by a random process.
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Appendix A. Analysis for Deferred Bandit Gradient

We first show that the analysis of vanilla Online Gradient Descent extends directly to adversarially
contracting domains, where our chosen action xt must lie in the observed set Kt in each round.

Algorithm 5 Contracting Online Gradient Descent.
Input: sequence of contracting convex decision sets K1, . . .KT , x1 ∈ K1, step size η
Set x1 = 0
for t = 1 to T do

Play xt and observe cost ℓt(xt)
Update and project:

yt+1 = xt − η∇ℓt(xt)

xt+1 = ΠKt+1(yt+1)

end for

Lemma 13 For a sequence of contracting convex decision sets K1, . . .KT , x1 ∈ K1 each with
diameter at most D, a sequence of G-Lipschitz losses ℓ1, . . . , ℓT , and parameter η, the regret of
Algorithm 5 with respect to Kt is bounded by

T∑
t=1

ℓt(xt)− min
x∗∈KT

T∑
t=1

ℓt(x
∗) ≤ D2

2η
+

η

2

T∑
t=1

∥∇t∥2 ≤ GD
√
T

when η = D
G
√
T

.

Proof Let x∗ = arg minx∈KT

∑T
t=1 ℓt(x), and let ∇t = ∇ℓt(xt). First, note that

ℓt(xt)− ℓt(x
∗) ≤ ∇⊤

t (xt − x∗)

by convexity; we can then upper-bound each point’s distance from x∗ by:

∥xt+1 − x∗∥ =
∥∥ΠKt+1(xt − η∇ℓt(xt))− x∗

∥∥ ≤ ∥xt − η∇t − x∗∥ ,

as x∗ ∈ Kt+1 ⊇ KT . Then we have

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 + η2 ∥∇t∥2 − 2η∇⊤
t (xt − x∗)

and

∇⊤
t (xt − x∗) ≤ ∥xt − x∗∥2 − ∥xt+1 − x∗∥2

2η
+

η ∥∇t∥2

2
.
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We can then conclude:
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x
∗) ≤

T∑
t=1

∇⊤
t (xt − x∗)

≤
T∑
t=1

∥xt − x∗∥2 − ∥xt+1 − x∗∥2

2η
+

η

2

T∑
t=1

∥∇t∥2

≤ ∥xT − x∗∥2

2η
+

η

2

T∑
t=1

∥∇t∥2

≤ D2

2η
+

η

2

T∑
t=1

∥∇t∥2

= GD
√
T . ( η = D

G
√
T

)

Proof Equipped with the previous result, we can now prove the regret bound for Theorem 4. Let
r∗t =

∑t
s=max(t−H+1,1)

rs⊗(ys⊘xs)
H , where ⊗ and ⊘ denote elementwise multiplication and division,

respectively, and let r̂t =
∑t

s=max(t−H+1,1)
rs
H . Further, let x∗ϵ = ΠKT ,ϵ[x

∗]. Observe that the
following hold for every t:

rt,i · yt,i
xt,i

= rt,i

(
1 +

ξt,i
xt,i

)
;

E[r∗t − r̂t] =
1

H

t∑
s=t−H+1

((rs ⊗ ξs)⊘ xs); (1)

E
[
∇̃t

]
= r∗t . (2)

Observe that by the constraints on each Kt,ϵ, each xt can be expressed as (1− ϵ)x+ ϵun for some
x ∈ K t ⊆ ∆(n), and so we will always have xt,i ≥ ϵ

n . To bound the squared norms of ∇̃t in order
apply Lemma 5, consider the maximizing case where xt =

ϵ
n and yt =

2ϵ
n in all but one element,

and where rt,i = 1 for all rewards; E
[∥∥∥∇̃t

∥∥∥2] is increasing whenever probability mass in xt is

transferred from an arm xt,i to xt,j > xt,i, and thus we can obtain a bound in terms the expectation
of a squared binomial random variable X with H = n

ϵ trials, where each trial has value at most 1
with probability 2ϵ(n−1)

n (if any of the n− 1 are sampled), and value 1
H otherwise. This yields:

E
[∥∥∥∇̃t

∥∥∥2] ≤ H

(
2ϵ(n− 1)

n

)(
1− 2ϵ(n− 1)

n

)
+

(
2(H − 1)ϵ(n− 1)

n
+ 1

)2

≤ 2(n− 1) + (2n− 1)2

≤ 4n2. (3)

Over all T , for any fixed x∗ ∈ KT we have:
T∑
t=1

r⊤t x
∗ − r̂⊤t x

∗ ≤ H

2
=

n

2ϵ
, (4)
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as only fractional rewards from the last H rounds are omitted from being counted appropriately in∑
t r̂t. We now analyze the regret of our algorithm with respect to the sequence {r̂t}. For x∗ ∈ KT

we have:

T∑
t=1

r̂⊤t x
∗ −

T∑
t=1

E
[
r̂⊤t yt

]
≤

T∑
t=1

r̂⊤t x
∗
ϵ −

T∑
t=1

E
[
r̂⊤t xt

]
+
√
nϵT (each rt is

√
n
2 -Lipschitz)

≤
T∑
t=1

r∗t
⊤x∗ϵ −

T∑
t=1

r∗t
⊤xt +

√
nϵT +

T∑
t=1

n∑
i=1

|ξt,i|
xt,i

(by (1))

≤ E
[
RegCOGD(∇̃1, . . . , ∇̃T )

]
+
√
nϵT +

T∑
t=1

n∑
i=1

|ξt,i|
xt,i

(5)

≤ η

2

T∑
t=1

E
[∥∥∥∇̃t

∥∥∥2]+ √
2

η
+
√
nϵT +

T∑
t=1

n∑
i=1

|ξt,i|
xt,i

. (by Lemma 13)

Line (5) holds by observing that our algorithm is equivalent to running Contracting Online Gradient
Descent to the sequence {∇̃t}, where E

[∑
t=1 ∇̃t

]
=
∑

t=1 r
∗
t by (2). As such, by (3) and (4) we

have that

T∑
t=1

r⊤t x
∗ −

T∑
t=1

E
[
r⊤t yt

]
≤ 2ηn2T +

√
2

η
+ 3

√
nϵT +

n

2ϵ
+

T∑
t=1

n∑
i=1

|ξt,i|
xt,i

.

Appendix B. Omitted Proofs for Section 3

B.1. Proof of Lemma 3

Proof Let the menu time µi for each item be given by

µi :=
k · xi

fi(v)∑n
j=1

xj

fj(v)

.

It is straightforward to see that
∑

i µi = k. Intuitively, menu time corresponds roughly to the
relative frequency with which an item must be included in the menu, where an item with µi = 1
must always be included in the menu; the amount of menu time “charged” for a menu is inversely
proportional to the sum of item scores in the menu, which enables an “apples to apples” comparison
between resulting selection probabilities.

We first show that any x ∈ IRD(v,M) results in µi at most 1 per item. For any x ∈ IRD(v,M),
consider an arbitrary convex combination of the menu-conditional item distributions given by items’
scores fi(v), with the probability of each menu given by pK . Allocate “menu time units” µK to each
menu K in proportion with pK/

∑
i∈K fi(v), such that

∑
K µK = k, and further let µK,i = µK/k
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for each i ∈ K. Observe that selection probability of an item i is given by

xi =
∑

K:i∈K
pK · fi(v)∑

j∈K fj(v)

=
1

Z

∑
K:i∈K

µK

k
· fi(v)

=
fi(v)

Z

∑
K:i∈K

µK,i

where Z is a normalizing constant such that
∑

K µK = k, and so we have that
∑

K µK,i ≤ 1 as
each µK is positive. Further, we have that∑

K:i∈K
µK,i = Z · xi

fi(v)

=
xi

fi(v)
· k∑n

j=1
xj

fj(v)

upon solving for Z such that
∑

K µK = k, which gives us that∑
K:i∈K

µK,i = µi

and yields µi ≤ 1 for each item.
Next, we describe an algorithm MenuDist(v, x,M) for constructing a menu distribution z

which yields EK∼z[p(K, v)] = x for any x and v satisfying maxi µi ≤ 1, constructively showing
that x ∈ IRD(v,M). Given x, v, and M which satisfy maxi µi ≤ 1, we construct a menu distribu-
tion iteratively over H ≤ n stages. Let µ1

i = µi be the initial remaining menu time for each item.
At each stage h ≥ 1 we will decrement the remaining time to µh+1

i ≤ µh
i for each item and track

its change ∆h
i = µh

i − µh+1
i , with ∆h =

∑
i∆

h
i . Further, with µh

j as the kth highest remaining
value, let kh+ < k be the number of items i with µh

i > µh
j , and kh∗ ≥ 1 be the number of items i with

µh
i = µh

j . At each stage, we maintain the following invariants:

1. kh+1
∗ ≥ kh∗ + 1 if kh∗ < n;

2. ∆h
i = ∆h

k if µh
i > µh

j (where µh
j is the kth highest value);

3. ∆h
i =

(k−kh+)∆h

kh∗ ·k
if µh

i = µh
j ;

4. ∆h
i = 0 if µh

i < µh
j ; and

5. ∆h
i = µh

i if kh∗ = n.

Intuitively, we are decreasing µi of each item with strictly larger µh
i than the kth highest at iden-

tical rates, corresponding to inclusion in the menu at that stage with probability 1, and breaking
ties among the kth highest with fractional inclusion in the remaining spots. We decrease until the

21



AGARWAL BROWN

number of such tied items increases by at least 1 (or deplete all remaining menu time if all items are
tied), and then continue to the next stage. Observe that when maxi µi ≤ 1, this results in µH+1

i = 0
for all items; if an item has µh

i > µh
j (only occurring when kh+ > 0), its remaining menu time

decreases at a 1/k fraction of the total rate of decrease, and no µh
i will ever drop below 0 as we

break ties among the highest remaining, and the total amount of depleted menu time is at most k.
Once kh+ = 0 we only ever decrease µh

i for items tied for the highest remaining value, and thus
successfully satisfy µH+1

i = 0 while maintaining our invariants.

We now show how to construct a menu distribution z from the quantities ∆h
i which yields

p(z, v) = EK∼z[p(K, v)] = x. For a stage h, we construct a (multi)set of menus Sh = {Kh
s :

s ∈ [
∣∣Sh
∣∣]} with size |Sh| = kh∗ , where we can assume each Kh

s ∈ Sh is distinct without loss of
generality (e.g. by marking duplicates with some auxiliary notation). Let Jh = {i : µh

i = µh
j } be

the set of items tied for kth highest remaining; construct Sh iteratively over kh∗ steps by adding a
menu Kh

s which includes all items with µh
i > µh

j , and k − kh+ items from Jh which belong to the
fewest menus in Sh thus far, breaking ties arbitrarily. There are a total of (k − kh+)k

h
∗ inclusions of

some item in Jh to some menu in Sh, which results in each item i ∈ Jh being included in exactly
k − kh+ menus in Sh (as (k − kh+)k

h
∗ is divisible by k − kh+), and the uniform distribution over Sh

then satisfies

Pr
Kh

s ∼Unif(Sh)

[
i ∈ Kh

s

]
=


1 µh

i > µh
j

k−kh+
kh∗

µh
i = µh

j

0 µh
i < µh

j

.

Let the menu distribution zh be the distribution over Sh given by

Pr
K∼zh

[
K = Kh

s

]
=

∑
i∈K fi(v)∑

s∈|Sh|
∑

j∈Kh
s
fj(v)

,

which yields

Pr
K∼zh

[Agent chooses i] =
∑

K∈Sh:i∈K

fi(v)∑
q∈K fq(v)

·
∑

q∈K fq(v)∑
s∈|Sh|

∑
j∈Kh

s
fj(v)

=
k∆h

i

∆h
· fi(v)∑

s∈|Sh|
∑

j∈Kh
s
fj(v)

∆
=

k∆h
i

∆h
· fi(v)

Zh

as the probability of an agent choosing i conditional on being shown a menu sampled from zh.
Defining Z =

∑H
h=1

Zh∆h

k , let z be the mixture over distributions zh with mass Zh∆h

Zk on each.
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Sampling a menu K ∼ z yields

Pr
K∼z

[Agent chooses i] =
H∑

h=1

Zh∆h

Zk
· Pr
K∼zh

[Agent chooses i]

=
H∑

h=1

Zh∆h

Zk
· k∆

h
i

∆h
· fi(v)

Zh

= fi(v) ·
µi

Z
(
∑

h∆
h
i = µi)

= xi, (µi ∝ xi/fi(v))

where Z =
∑n

j=1 k
xj

fj(v)
then holds by proportionality as x and p(z, v) are both probability distri-

butions over [n]. By construction, it follows that x ∈ IRD(v,M).
The algorithm MenuDist(v, x,M) which implements this construction can be run in poly(n)

time, as the quantities ∆h
i are computed over H ≤ n rounds each requiring O(n) computation

(after an initial sort of descending µi values), and each set Sh contains kh∗ ≤ n menus, each of
which can be constructed in O(k) time (by adding elements from Jh in a round-robin fashion) while
maintaining the quantities necessary to compute the final normalizing constants. Sampling can be
implemented efficiently as well, e.g. by sampling from a uniform distribution and thresholding
appropriately.

B.2. Effective Memory Horizons

Here we give results for bounding the change in memory as rounds progress.

Lemma 14 (Bounding Memory Drift) For any γ ∈ (0, 1), g ∈ (0, γ], t ≥ 1, and w ≥ 1 such that
gw ≥ 1− 2β and gt+w−1 ≤ 1

2 , we have that dTV (vt, vt+w) is at most β.

Proof We can express the memory vector vt+w as

vt+w =

∑t+w−1
s=t γt+w−s−1 · is +

∑t−1
s=1 γ

t+w−s−1 · is∑t+w−1
s=1 γt+w−s−1

=

∑t+w−1
s=t γt+w−s−1 · is∑t+w−1

s=1 γt+w−s−1
+ vt ·

(
1−

∑t+w−1
s=t γt+w−s−1∑t+w−1
s=1 γt+w−s−1

)

which then yields

dTV (vt, vt+w) ≤
∑w−1

s=0 γs∑t+w−2
s=0 γs

=
1− γw

1− γt+w−1

≤ 1− gw

1− gt+w−1
(6)

≤ β.
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Step 6 follows from the fact that

∂

∂γ

(
1− γw

1− γt+w−1

)
=

−wγw−1(1− γt+w−1) + (1− γw)(t+ w − 1)γt+w−2

(1− γt+w−1)2

=
γw−1

(
(t+ w − 1)γt−1 − (t− 1)γt+w−1 − w

)
(1− γt+w−1)2

≤ 0,

as the function (t + w − 1)γt−1 − (t − 1)γt+w−1 − w is increasing over γ ∈ [0, 1] from −w to 0
(and thus the derivative for (6) is negative at any γ ∈ (0, 1)).

We can use this to obtain an upper limit on w in terms of c such that this bound holds.

Lemma 15 For γ ≥ 1− 1/T c, t ≥ T c, and w ≤ β · T c, we have that dTV (vt, vt+w) ≤ β.

Proof Let g = 1− 1
T c , where we have that g(T

c) ≤ 1
e ≤ 1

2 . Further, we have:

log

(
1

1− 2β

)
≥ 2β

≥ 2w

T c

≥ w log

(
1

1− 1
T c

)
( for 1

T c ≤ 1
2 )

= log

(
1

gw

)
.

As log(1/x) is decreasing in x we have that gw ≥ 1− 2β, which yields the result via Lemma 14.

B.3. Analysis for Algorithm 2: Targeting EIRD

Theorem 2 For an agent with a (λ, L)-smooth preference model M for λ ≥ k/n, and γ-discounted
memory for γ ≥ 1− 1

T c and c ∈ (0, 1], Algorithm 2 obtains regret bounded by

max
x∗∈EIRD(M)

T∑
t=1

r⊤t x
∗ − E

[
T∑
t=1

rt(it)

]
= Õ

(
(n/λ)3/2L1/4 · T 1−c/4

)
.

Proof In each round, outside of those spent updating our estimates of preference (counted by q),
we receive a target distribution xt from DBG, and we construct a menu distribution zt which aims
to induce a choice distribution xt on behalf of the agent. Recall that we assume γ is known, and
so we can exactly track the agent’s memory vector vt across rounds; we note that this result can
be extended to the case where only a lower bound on γ is known by checking the condition on
∥vt − v∗∥1 across all possible values of γ in each round. Observe that if our preference estimates
Fi were to always exactly track the agent’s true preferences fi(vt), and yield exact representations
of IRD(vt) in each round, then we would have perturbations ξt = 0 to each target distribution xt by
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Algorithm 2 (Targeting EIRD for Smooth Models).

Let c∗ = min(c, 3/4), ϵ = Õ(nL1/4λ−3/2T−c/4), Q = Õ( n2

λ4ϵ2
), and η = (nT )−1/2.

Initialize q = 0, v0 = v∗ = un, Fi =
C
n for i ∈ [n], M∗ = {Fi}

Initialize DBG for ϵ, η.
while t ≤ T do

if t < T c∗ then
Show arbitrary menu Kt to agent

else if t ≥ T c∗ and either ∥vt − v∗∥1 ≥
λϵ
2nL or q = 0 then

for b ∈ {0, . . . , ⌈n−1
k−1⌉} do

Show agent menu Kb = {1} ∪ {b(k − 1) + 2, . . . , (b+ 1)(k + 1) + 1} for Q rounds
Let F̂i = (# times it = i) / (# times it = 1) within the Q rounds, for i ∈ Kb

end for
Set Fi =

C·F̂i∑n
j=1 F̂j

for each i ∈ [n], M∗ = {Fi}

Set v∗ = vt, increment q by ⌈n−1
k−1⌉ ·Q, set Kt−q+1 = Kt−q ∩ IRD(v∗,M∗) for DBG

else
Get xt−q from DBG
Let zt = MenuDist(vt, xt−q,M

∗), sample menu Kt ∼ zt
Show Kt to agent, update DBG with observed it and rt(it)

end if
Set vt+1 = U(vt, it, t), for each round counted by q if necessary

end while

the guarantee of Lemma 3, and a decision set KT which contains EIRD. As such, our regret would
be immediately bounded by

max
x∗∈EIRD(M)

T∑
t=1

r⊤t x
∗ − E

[
T∑
t=1

rt(it)

]
≤ RegEIRD(DBG;T, ϵ, η) + T 1−c/4 + q = Õ(T 1−c/4 + q)

as T c∗ ≤ T 1−c/4 for any c ∈ (0, 1] (ignoring non-T terms). Here, note that EIRD is non-empty and
contains un by Lemma [1], as λ ≥ k

n . The remainder of our analysis will focus on showing that the
perturbations ξt from preference estimate imprecision remain small, and that the estimation time q
does not grow too large.

Case 1: c∗ = c. For any c ≤ 3/4, the agent’s memory is “saturated” by the time we conclude
showing arbitrary menus and proceed to our alternation between learning and optimization. Let ϵ
satisfy

ϵ ≥ 8nL1/4λ−3/2 log(2T/δ)1/4T−c/4

with δ = 1/T . Observe that the following hold:

λ2ϵ

8nkL
· T c ≥ 64n2(n− 1) log(2T/δ)

(k − 1)λ4ϵ2
(ϵ3 ≥ ϵ4 ≥ 512n4Lλ−6 log(2T/δ)T−c)

λϵ2

4nL
· T c ≥ 64n2(n− 1) log(2T/δ)

(k − 1)λ4ϵ2
(ϵ4 ≥ 256n4k−1Lλ−5 log(2T/δ) · T−c)
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By Lemma 15, in each of the Q · ⌈n−1
k−1⌉ prior to updating score estimates Fi, we have∣∣∣∣∣ fi(v

∗)∑
j∈Kb

fi(v∗)
− fi(vt)∑

j∈Kb
fi(vt)

∣∣∣∣∣ ≤ λ2ϵ

8n
,

by (λ, L)-smoothness for {fi}, as Q · ⌈n−1
k−1⌉ ≤

λ2ϵ
8nkL · T c. By a Hoeffding bound, we then have

Pr

[∣∣∣∣∣(# times i ∈ Kb chosen )− Qfi(v
∗)∑

j∈Kb
fi(v∗)

∣∣∣∣∣ > Qλ2ϵ

4n

]
≤ 2 exp

(
−Q2λ4ϵ2

64n2Q

)
≤ δ

T
,

as Q ≥ 64n2 log(2T/δ)
λ4ϵ2

. If this holds for all i across each Kb (including each instance for i = 1), we
then have ∣∣∣∣F̂i −

fi(v
∗)

f1(v∗)

∣∣∣∣ ≤ λϵ

2n
,

as f1(v
∗) ≥ λ. Observe that the normalization to {Fi} is equivalent to rescaling the empirical

frequencies observed for each Kb such that their scores agree on i = 1 and the largest score across
all items is at most 1, which will not increase relative error for any item. As such, we have

|Fi − fi(v
∗)| ≤ λϵ

2n

as well. Further, in any subsequent round where ∥vt − v∗∥1 ≤
λϵ
2nL we have

|Fi − fi(vt)| ≤ |Fi − fi(v
∗)|+ |fi(vt)− fi(v

∗)|

≤ λϵ

n
,

as each fi is L-Lipschitz with respect to the ℓ1 norm, and so for all rounds t where DBG is played,
we have |Fi − fi(vt)| ≤ λϵ

n for each i with probability 1 − δ, which contributes at most 1 to our
expected regret if δ = 1/T . By Lemma 15, this holds for at least λϵ

4nL · T c subsequent rounds. We
now show that this yields a bound of |ξi| ≤ ϵ

nxi in each round for DBG.

Lemma 16 Suppose that |Fi − fi(vt)| ≤ λϵ
n for each i. Then, for any menu distribution z which

realizes a choice distribution x for scores {Fi}, the choice distribution y for scores {fi(vt)} satisfies
|xi − yi| ≤ ϵ

nxi.

Proof Let yi =
fi(vt)
Fi

xi for each i. Observe that (x, {Fi}) and (y, {fi(vt)}) yield the same menu
time values:

k · xi
Fi∑n

j=1
xj

Fj

=
k · yi

fi(vt)∑n
j=1

yj
fj(vt)

.
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By the first construction in Lemma 3, this implies that any menu distribution z realizing x under
{Fi} satisfies:

xi
Fi

=
∑

K∈z:i∈K

zK∑
j∈K Fj

and so the same distribution will satisfy

∑
K∈z:i∈K

zK∑
j∈K fi(vt)

=

fi(vt)
Fi

xi

fi(vt)

=
yi

fi(vt)

under {fi(vt)}, yielding a choice distribution of y. As such, we have that

|xi − yi| ≤
∣∣∣∣Fi − fi(vt)

Fi

∣∣∣∣xi
≤ ϵ

n
xi.

Given a set of scores M∗ = {Fi}, the set of feasible distributions can be expressed via linear
constraints as

IRD(M∗) = {x ∈ ∆(n) :
kxi
Fi

≤
n∑

j=1

kxj
Fj

}.

To ensure that we never remove points which belong to EIRD from our target set due to imprecision
in IRD estimates, we can relax each target set by ϵ

n along each dimension:

IRDϵ(M
∗) =

{[(
1− ϵ

n

)
x,
(
1− ϵ

n

)
x
]
∩∆(n) : x ∈ IRD(M∗)

}
.

However, such points will not be chosen by by our algorithm anyway, due to the ϵ-contraction from
Kt to Kt,ϵ in DBG. By the bound on ϵ, the total time spent updating our estimates Fi (counted by
q) is at most ϵT , as at least

λϵ

4nL
T c ≥ 64n2(n− 1) log(2T/δ)

(k − 1)λ4ϵ3

rounds elapse between each learning stage of length Q · ⌈n−1
k−1⌉ =

64n2(n−1) log(2T/δ)
(k−1)λ4ϵ2

. As such, our
total expected regret can be bounded by

max
x∗∈EIRD(M)

T∑
t=1

r⊤t x
∗ − E

[
T∑
t=1

rt(it)

]
≤ Õ

(
(n/λ)3/2L1/4T−c/4

)
assuming worst-case reward during each of the first T c stages as well as the q ≤ ϵT stages spent
estimating Fi.
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Case 2: c > c∗. When c > c∗ our analysis proceeds similarly, with the exception we can no
longer uniformly bound the number of rounds in which ∥vt − v1∥ ≤ λϵ

2nL between updates to Fi.
However, we show that the amortized learning time is similar and that q can still be bounded by
Õ(T 1−c/4). Let c∗(t) = min (c, log(t)/log(T )) be the parameterization of c∗ satisfying t = T c∗(t)

for c∗(t) ≤ c; note that we may still apply Lemma 15 according to c∗(t) rather than c. At any t ≥
T 3/4, c∗(t) ≥ 3/4 suffices to bound the requisite change in vt which occurs during the Q · ⌈n−1

k−1⌉ =
learning rounds as we did in Case 1, as

λ2ϵ

8nkL
· T c∗(t) ≥ 64n2(n− 1) log(2T/δ)

(k − 1)λ4ϵ2
. (ϵ3 ≥ 512n4Lλ−6 log(2T/δ)T−3/4)

For any range t = [2h, 2h+1] for h ≥ log(T 3/4) and h ≤ log(T c), our bound on vt holds for at least

λϵ

4nL
· T c∗(t) ≥ λϵ

4nL
· 2h

rounds, and so at most 4nL
λϵ learning stages occur during this window. For h ≥ log(T c) we can

apply the same bound as in Case 1. Across all h ≤ log(T ) we have that

q ≤ 4nL

λϵ
· 64n

2(n− 1) log(2T/δ)

(k − 1)λ4ϵ2
log(T )

≤ ϵT log(T ),

yielding a total regret bound matching that in Case 1 up to a log(T ) factor.

Appendix C. Omitted Proofs from Section 4

C.1. Proof of Lemma 8

Proof From Lemma 3, it suffices to show that the menu time µi for any such point x is at most 1.
Given that v and x lie inside ∆ϕ(n) and that each fi is pseudo-increasing, we have that

xi
((1− λ)vi + λ)σ

≤ xi
fi(v)

≤ σxi
(1− λ)vi + λ

(7)

and that xi ≤ min(vi + λϕ/
√
2, 1− ϕ(n− 1)/n) as x ∈ Bλϕ(v). Recall that the menu time µi for

x is given by

µi(x) =
k · xi

fi(v)∑n
j=1

xj

fj(v)

.

First we show that this numerator is at most kσ. We have that

xi ≤ vi + λϕ/
√
2

≤ (1− λ)vi + λ(1− ϕ(n− 1)/n) + λϕ/
√
2

≤ (1− λ)vi + λ (for n ≥ 4)
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which yields that kxi/fi(v) ≤ kσ by (7). We can also lower-bound the menu denominator by kσ.
Let αj = vj − xj , where we have:

n∑
j=1

xj
fj(v)

≥
n∑

j=1

vj − αj

((1− λ)vj + λ)σ
.

Differentiating with respect to vj for any term, we have:

∂

∂vj

vj − αj

((1− λ)vi + λ)σ
=

((1− λ)vi + λ)σ − (vj − αj)(1− λ)σ

σ2((1− λ)vi + λ)2

=
λ+ αj(1− λ)

σ((1− λ)vi + λ)2

which is positive for any vj , and so each numerator term is increasing for any fixed αj (as |αj | ≤ λ).
As such, each term is minimized over valid vj and xj when xj = ϕ/n and vj = ϕ/n + λϕ/

√
2,

yielding

n∑
j=1

xj
fj(v)

≥ ϕ

((1− λ)(ϕ/n+ λϕ/
√
2) + λ)σ

≥ (kσ) · ϕ
kσ2λ+ kσ2(1− λ)ϕ/n+ kσ2(1− λ)ϕλ/

√
2

≥ (kσ) · ϕ
ϕ/4 + ϕ/2 + ϕ2/(4

√
2)

(ϕ ≥ 4kλσ2, σ2 ≤ n/(2k))

≥ kσ. (ϕ ≤ 1)

As such, we have that

k · xi
fi(v)∑n

j=1
xj

fj(v)

≤ 1,

and thus x ∈ IRD(v,M).

C.2. Analysis for Algorithm 3: Targeting ∆Φ(n) for Scale-Bounded Models

Theorem 2 (Scale-Bounded Discounted Regret Bound) For any agent with a preference model
M which is (σ, λ)-scale-bounded and (λσ , L)-smooth with σ ≤

√
n/(2k), and with γ-discounted

memory for γ = 1− 1
T c for c ∈ (0, 1), Algorithm 3 obtains regret

max
x∗∈∆ϕ(n)

T∑
t=1

r⊤t x
∗ − E

[
T∑
t=1

rt(it)

]
= Õ

(
(n4L

(
T 1−c/2 + T 1/2+c/2

))
with respect to the ϕ-smoothed simplex, for ϕ = 4kλσ2.
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Algorithm 2 (Targeting ∆ϕ for Scale-Bounded Models).

Let ϵ = Õ(n4L ·max(T−c/2, T c/2−1/2)), S = Õ(n3/2T c), η = Õ(n−1/2L · T c/2−1/2).
--- burn-in ---
for t = 1 to T c do

Show agent menu K = {1, . . . , k}
end for
while maxi

∣∣vt,i − 1
n

∣∣ ≥ ϵ
4n2Lσ

do
Show agent k items with smallest vt,i, choosing randomly among ties up to T−c

end while
--- initial learning ---
for T c rounds do

Let Ft,i = σ−1((1− λ)vt,i + λ) if vt,i < 1
n , else Ft,i = σ((1− λ)vt,i + λ)

Let zt = MenuDist(vt,un, {Ft,i}), show agent Kt ∼ zt
end for
Set Fi =

∑
t 1(it = i) · Ft,i/(

1
nT

c)) · C(
∑n

j=1 Ft,j)
−1, set v∗ = vt

--- optimization ---
Initialize OGD over ∆ϕ

ϵ (n) for T/S rounds with η, set x1 = v∗ := vt.
for s = 1 to T/S do

Receive xs from OGD
for S rounds do do

if ∥vt − v∗∥1 ≥ ϵ/(2nL) then
Let ṽ = vt
Show agent Kt ∼ z = MenuDist(vt, ṽ, {Fi}) for T c/L2 rounds
Set Fi =

∑
t 1(it = i) · Fi/(ṽiT

c/L2) · C(
∑n

j=1 Fj)
−1, set v∗ = vt

end if
Show agent Kt ∼ zt = MenuDist(v∗, xs, {Fi})

end for
Set ∇̃s =

∑t
h=t−S+1 eihrh(ih)/(xh,iS), update OGD

end for
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Burn-in. Here we analyze the behavior of the algorithm in the initial Õ(T c) rounds, and show
that each vt,i approaches 1

n with high probability. At t = T c, the memory vector vt is entirely
concentrated on k items, and at least n − k others have vt,i = 0. We show that by showing the
k items with the smallest vt,i during each of the next Õ(T c) rounds, we reach a memory vector
vt ∈

[
1
n ± ϵ

4n2Lσ

]n with high probability. Suppose vt,i at least T−c below that for all but at most
k − 1 items, and each of the original n − k smallest items have values vt,j within λ/2. Then, the
probability that i is chosen in round t is at least

yt,i ≥
λ

kσ2(λ+ (1− λ)(λ/2))

≥ 4

3n
.

As such, vt,i approaches 1
n faster than the average vt,j until it is no longer among the smallest k.

For λ > T−c/2 the probability of vt,i falling more than λ/2 (or any constant) below any of the other
n − k decays exponentially, and thus the expected value of each vt,i at 2T c is 1

n + O(T−c) after
enough rounds to decrease the memory weight of the first T c rounds to O(T−c), which occurs after
O(T c log(T c)) rounds following the analysis of Lemma [...14]. By Azuma’s inequality, considering
the martingale tracking the deviation between vt,i and its conditional expectation, this holds with
high probability as well, up to 1

n + Õ(T−c/2) = ± ϵ
4n2Lσ

. The event that this fails to hold within
Õ(T c) rounds contributes O(1) to the total expected regret. Throughout the proof, we hide log
terms and some constants inside Õ notation.

Initial learning. Here we leverage the scale-bounded preference structure to obtain efficient es-
timators for scores near the current memory vector. With vt ∈

[
1−α
n , 1+α

n

]n, for any λ > 0 and
sufficiently small α we have

fi(vt)

fj(vt)
≤

n(λ+ (1− λ)1+α
n )

2k(λ+ (1− λ)1−α
n )

≤ n

3k

and so for any distribution x ∈
[

1
2n ,

3
2n

]n uniform distribution we have menu times

µi ≤
k · 3n/2
n · 3k/2

≤ 1

for each i according to the true scores fi(vt). Our aim here is to learn accurate estimates of each
of these scores. Observe that each of our proposed set of scores {Ft,i} satisfies the scale-bounded
conditions, and contains un ∈ IRD(vt, {Ft,i}); as before, we can again take vt ∈

[
1
n ± ϵ

4n2Lσ

]n to
hold with high probability over each of the T c rounds, as every vt,i moves closer to 1

n in expectation
every round (up to T−c), and thus the martingale tracking maximum deviation of the memory vector
from expectation in any round under this process is bounded by Õ(T c/2). Given this, we can obtain
an unbiased estimator of each fi(vt); we initially assume that

∑
i fi(vt) =

∑
i Ft,i for each trial, and

will subsequently correct for this in our sample aggregation by renormalizing such that
∑

i Ft,i = C.

Lemma 17 At any t, if sampling from a menu distribution which generates a choice distribution
xt at vt according to scores {Ft,i}, with |xt,i − vt,i| ≤ λ, then an unbiased estimator of each true
preference score fi(vt) is given by

E
[
Ft,i

xt,i
· 1(i is chosen)

]
= fi(vt),
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with range bounded by n
2kσ if xt ∈ ∆ϕ(n) and Ft,i satisfies scale-bounded constraints for xt at vt.

Proof Recalling Lemma 16, we have that the expected choice distribution yt satisfies

yt,i =
fi(vt)xt,i

Ft,i
,

and rearranging gives us the estimator, as both xt,i and Ft,i here are fixed. We can bound the range
using the properties of scale-bounded functions and conditions for ϕ:

Ft,i

xt,i
≤ σ(λ+ (1− λ)(xi + λ))

xi

≤ σ(λn+ (1− λ)4kλσ2)

4kλσ2
(xi ≥ ϕ/n ≥ 4kλσ2/n)

≤ n

2kσ
.

By the scale-bounded condition, the quantities
∑

i fi(vt) and
∑

i Ft,i are within a factor of σ2,
and so renormalizing to C can only increase each estimator’s range to nσ

2k . Normalizing the assumed
sum of each trial

∑
i Ft,i to C, as we do when aggregating to estimate Fi, yields a sum of random

variables, each of whose mean is fi(un). Applying Azuma’s inequality to the sequence of trials for
T c ≥ Õ(n8L2/ϵ2) ≥ Õ(n6σ4/(kϵ)2) suffices to yield |fi(v∗)− Fi| ≤ ϵ

4n2σ
; additionally, given

the Lipschitz condition on fi and that v∗ ∈
[
1
n ± ϵ

4n2Lσ

]n, we also have that |fi(un)− Fi| ≤ ϵ
2n2σ

as well. In the following rounds, this will allow us to accurately target any distribution in IRD(v∗)
whenever ∥v∗ − vt∥ ≤ ϵ

2n2Lσ
.

Lemma 18 Suppose we have estimates Fi which satisfy the scale-bounded constraints for xt at
vt, with |xt,i − vt,i| ≤ λ, and further that |fi(vt)− Fi| ≤ ϵ

σn2 for each i. Then, the generated
distribution yt when targeting xt according to {Ft,i} satisfies ∥yt − xt∥1 ≤

ϵ
n .

Proof The generated distribution is given by

yi = xi +
fi(vt)− Fi

Fi
xi

and so

|yi − xi| ≤
ϵ

σn
· xi
Fi

≤ ϵ

n
.

Online gradient descent. We treat each batch of S rounds as a single step for OGD (with xs
as the point chosen by OGD), and show that each of the following invariants is maintained across
every step with high probability:

1. We complete each learning stage with estimates Fi satisfying |fi(vt)− Fi| ≤ ϵ
2σn2 ;
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2. |fi(vt)− Fi| ≤ ϵ
σn2 holds in every round where xs is targeted;

3. Each gradient estimate satisfies
∥∥∥∇̃t − rs

∥∥∥
2
≤ 4ϵ

n ,
∥∥∥∇̃t

∥∥∥
2
≤ 2

√
n, and E

[∥∥∥∇̃s

∥∥∥2] ≤ O(n2).

4. We begin each step with ∥vt − xs∥1 ≤
4ϵ
n ;

5. We complete each step with ∥vt − xs∥1 ≤
2ϵ
n ;

6. The expected choice distribution xt in each round of the step satisfies ∥xt − xs∥1 ≤ 4ϵ
n and

xt ∈ ∆ϕ(n).

(1.) This holds whenever ∥v∗ − vt∥ ≤ ϵ
2n2Lσ

, provided that each update results in |fi(v∗)− Fi| ≤
ϵ

2n2σ
at the time of completion. The latter follows along the lines of the initial learning stage; while

we may initially have accuracy of only ϵ
n2σ

accuracy, the learning occurs within Õ(n8/ϵ2) ≤ T c/L2

rounds to a target accuracy of ϵ
4σn2 for ṽ, and so the total drift throughout learning can be bounded

by ϵ
4n2Lσ

as the fraction of memory in which the drift applies is bounded by Lemma 15 (assuming
a sufficiently large constant lower bound for L, without loss of generality). This further implies the
desired accuracy for Fi at at the updated v∗.

(2.) This holds given that we re-learn whenever ∥v∗ − vt∥ ≥ ϵ
2n2Lσ

.

(3.) Each xs lies within ∆ϕ
ϵ (n), and any total drift of the memory vector outside of ∆ϕ

ϵ (n) can be
bounded by ϵ

2n · vt, and so our target distribution always lies within ∆ϕ(n), as well as IRD(vt,M)

for λϕ ≫ ϵ by Lemma 8. Given (6.), we will have that E
[∥∥∥∇̃s − rs

∥∥∥] ≤ 4ϵ√
n

, similarly to as in

the analysis of DBG, where rs =
∑

S rt/S. Further, with each xt ≥ ϕ
n ≥ ϵ

n , we will also have

E
[∥∥∥∇̃s

∥∥∥2] ≤ O(n2) as we had for DBG as well, with a norm bound of 2
√
n holding with high

probability.

(4.) This holds as
∥∥∥∇̃s

∥∥∥
2
η ≤ 2

√
nη ≤ ϵ

2n .

(5.) When ∥vt − xs∥2 ≤
4ϵ
n but ∥vt − xs∥2 ≥

2ϵ
n , our time spent targeting xs (up to ϵ

n , by Lemma
18) is sufficient to decrease the distance by at least 3ϵ

8n2Lσ
with high probability before drifting

more than ϵ
2n2Lσ

from v∗, and following the potential drift of ϵ
4n2Lσ

during re-learning each Fi, we
remain closer by ϵ

8n2Lσ
with high probability. Thus, at most 16nσ stages are needed to reach within

2ϵ
n from xs, which holds S = Õ(n3/2T c) and Õ(T c/L2) total between each update to v∗.

(6.) This follows from the accuracy guarantees of each learning stage as well as the drift bounds
applied to each ṽ.

Regret bound. Given each of these, we can analyze our regret in accordance with the bounds for
Online Gradient Descent, as well as the error resulting from the above approximations to an exact
execution of OGD. This gives us a total regret bound for our algorithm of:
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Reg∆ϕ(n) = S

η ·
T/S∑
s=1

∥∥∥∇̃s

∥∥∥2 + √
2

η


︸ ︷︷ ︸
OGD regret over ∆ϕ

ϵ (n), T/S steps

+

T/S∑
s=1

t+S−1∑
h=t

√
n
(∥∥∥rs − ∇̃s

∥∥∥+ ∥xh − xs∥
)

︸ ︷︷ ︸
gradient and reward error

+

(
max

∆ϕ(n)×∆ϕ
ϵ (n)

∑
t

r⊤t x
∗ −

∑
t

r⊤t x

)
︸ ︷︷ ︸

target set imprecision vs. ∆ϕ
n

+ Õ (T c)︸ ︷︷ ︸
burn-in and initial learning

= Õ
(
n2T 1/2+c/2 + n7/2L(T 1/2+c/2 + T 1−c/2) + n4LT 1−c/2 + T c

)
.

Appendix D. Proof of Theorem 10

Proof We reduce to an instance of Maximum Independent Set (MIS). The MIS problem is Poly-
APX-Hard (see e.g. Arora and Barak (2009)), and so there is no constant factor polynomial time
approximation algorithm unless P = NP. Given a graph G with n−1 vertices (which we can assume
to have a unique maximum independent set V ∗ with at most (n − 1)/2 vertices), we construct
a circuit for a preference model M for n items where identifying the optimal item distribution
contained in its IRD set corresponds to identifying the maximum independent set S∗. For our
reward function, we assume that item 1 yields a constant reward of 1, with all other items yielding a
reward of 0. The objective is then to maximize the probability of item 1 being selected, but the score
f1(v) ≥ λ will only be maximized when the memory mass not placed on item i is (near-)uniformly
allocated across items corresponding to the maximum independent set (the other scoring functions
can be constant at λ).

We describe our preference model in terms of a circuit for f1 with both arithmetic and Boolean
gates, where all other functions fi are presumed to be constant at λ, and note that translation to a
pure Boolean circuit is feasible with at most polynomial blowup. Let N = {2, . . . , n} correspond
to the vertices of G. For any memory vector v, let V = {j > 1 : vj ≥ 1

n}. Our function f1 is given
by

f1(v) =

{
|V |(1−λ)

n−1 + λ V is an independent set in G

λ V is not independent in G
.

To construct a circuit for f1, first we include gates gj which output 1 for each j if and only if vj ≥ 1
n

(and 0 otherwise). Given these gates, we also include gates eij for each edge in the graph which
output 1 if and only if i has an edge with j (where 1− eij then denotes no edge). We can construct
a gate gvalid which outputs 1 if and only if our set V is an independent set by taking the AND of all
gates (eij ⊕ (gi ∧ gj)), as well as a gate gcount which gives the count of proposed independent nodes
by summing over gates gi. Taking the product of gvalid and gcount then yields a counter for the size
of V if V is independent, and 0 otherwise, which can then be arithmetically scaled to yield f1(v).

Let λ = 1/((n − 1)2/k + 1). Given an independent set V , the highest reward obtainable by a
memory vector v ∈ IRD(v,M) which corresponds to V under f1 can be expressed via menu times,
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where we must have that

k v1
f1(v)

v1
f1(v)

+ (1−v1)
λ

≤ 1

by Lemma 3. Solving (k − 1)v1 = (1− v1)
(
1 + |V |(1−λ)

λ(n−1))

)
for v1 gives us that

v1 =

1
k−1 + |V |(1−λ)

λ(n−1)(k−1)

1 + 1
k−1 + |V |(1−λ)

λ(n−1)(k−1)

=

k|V |
n−1 + 1
k|V |
n−1 + k

. (λ(n− 1)2/k = 1− λ)

This is at most 1/2 for any |V | < (n − 1)/2, and so further it remains possible to allocate menu
time which yields vi ≥ 1

n for each i ∈ V , yielding that v1 the maximum feasible reward for some
v ∈ IRD(v,M) when |V | is the size of the largest independent set. The gradient of v1 in terms of
|V | is given by

∂

∂ |V |
|V |+ (n− 1)/k

|V |+ (n− 1)
=

(n− 1)(1− 1/k)

(|V |+ (n− 1))2

which is Θ(1/n) for |V | ∈ [1, n/2]. Any polynomial time algorithm which approximates v1 to
within a O(1/n) factor must result in a memory vector v′ which corresponds to an independent set
V ′ which approximates V ∗ within a constant factor, which would yield a polynomial time constant
factor approximation algorithm for Maximum Independent Set.

Appendix E. Omitted Proofs for Section 6

E.1. Proof of Theorem 11

Proof The key element of our analysis is to analyze the convergence of item frequencies during
windows of length thold when a fixed target item i is held constant in the menu. For a given such
window of length thold = O( 1

α4(1−γ)
), we can ensure that the accumulated reward approaches its

expectation under the current reward distribution to within α. As we choose the k − 1 smallest
weights in memory, the total weight of items in memory other than i is at most (k−1)(1−vi)

n ; given a
current memory vector v, the probability of selecting item i from a menu Kt is given by:

Pr[i∗ selected] =
fi(v)∑
Kt

fj(vi)

≥ (1− λ)vi + λ

(1− λ)vi + λ+
(
(1−vi)(1−λ)

n + λ
)
(k − 1)σ2

by the pseudo-increasing property. Our approach will be to analyze the expectation of vt,i over
time, with Et = E[vt,i], and show that it approaches 1− ϕ(n− 1)/n, equal to the probability at the
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corresponding vertex of the smoothed simplex. A challenge is that, given a current expectation, there
are many possible allocations of probabilities to values of vt,i which yield Et. A second derivative
test shows that the above probability function is concave for positive vi when σ2 ≤ n/(2k); note
that both the numerator and denominator are positive and increasing linearly in vi, and that the
numerator is always smaller but grows faster in vi. As such, we can apply Jensen’s inequality and
restrict our consideration to the extremal case where the expectation Et is entirely composed of
trials in which vt,i = 0 or vt,i = 1, which indeed occurs at γ = 0. We can define P0 and P1 as lower
bounds on selection probabilities for each case:

Pr[i∗ selected|vt,i = 1] ≥ 1

1 + (k − 1)λσ2

≥ 1− kλσ2

:= P1;

Pr[i∗ selected|vt,i = 0] ≥ λ

λ+ (1−λ
n + λ)(k − 1)σ2

=
1

1 +
(
1−λ
nλ + 1

)
(k − 1)σ2

≥ 1

1 + (kσ2 + 1) (k − 1)σ2

≥ 1

2σ2k4

:= P0.

As such, we have that

Et+1 = E[vt+1|Et]

≥ (1− γ) (Et · Pr[i∗ selected|vt,i = 1] + (1− Et) · Pr[i∗ selected|vt,i = 0]) + γEt

≥ (1− γ) (Et · P1 + (1− Et) · P0) + γEt.

We can solve for E∗
t such that Et+1 = Et, i.e. where Et · P1 + (1− Et) · P0 = Et, as:

E∗
t =

1

1 + 2λσ6k3

≥ 1− 2σ6k3λ

≥ 1− ϕ(n− 1)/n (n ≥ 3)

and further for a value Eα
t such that Et+1 ≥ (1− γ)(Et + α) + γEt as:

Eα
t = E∗

t − 2σ4k2α.

Note that the rate of growth of Et+1 is decreasing in t, and eventually reaches a fixed point; given
that the rate of growth of Et is linear in α when within O(α) of E∗

t , the cumulative number of
rounds required to reach E∗

t − O(α) is at most O( 1
α(1−γ)). If we continue after for O( 1

α2(1−γ)
)
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rounds, these first rounds contribute at most α to the total summed expectation for the fraction of
rounds in which item i is selected is at least E∗

t − α; the fraction of each other item played also
quicly approaches 1−E∗

t
n−1 in expectation.

Treat each such batch of O( 1
α2(1−γ)

) rounds as a trial, and repeat for Õ(1/α2) trials, resulting

in a total of thold = O( 1
α4(1−γ)

) steps. We can treat each trial as independent, as resetting the
memory vector to some lower value of vi can only decrease expected reward under the pessimistic
lower bounds we consider. By a Hoeffding bound, we have that the reward is within α from the
expectation under the current distribution and the “arm” of the ϕ-smoothed simplex corresponding
to i. To complete the analysis, observe that our total regret (using the Õ(T 1/2) bound for EXP3) is
given by:

Reg∆ϕ(n)(A3;T ) = Õ(thold ·
(

T

thold

)1/2

+ αT )

= Õ(
T 1/2

α2
+ αT )

= Õ(T 5/6)

upon setting α = O(T−1/6).

E.2. Proof of Theorem 12

Proof We consider a set of models and reward functions where item 1 yields a reward of 1 in each
round, with all other items yielding a reward of 0. For γ = 1

2c for some constant c > 1, note
that the weight of any step in memory is larger than the sum of weights of all preceding steps, and
thus a memory vector vt exactly encodes the history of item selections for the first t− 1 rounds. Let
h = log2c(n); For t sufficiently larger than h, the sum of weights of steps 1 through t−h is Θ(1/n).
We will consider states s which are subsets of the space of memory vectors corresponding to each
possible history truncated to the previous h steps, and which are bounded apart by a distance of at
least O(1/n). We will abuse notation and represent each memory vector vt as its rounded state st.
The behavior of the memory model is constant over each state, and smoothly interpolates between
states; the model can be defined arbitrarily for infeasible memory vectors to satisfy L = poly(n)
Lipschitzness. Our process for generating M is as follows:

• Let k = n/2;

• Let λ = 1
n−k+1 ;

• For each s ∈ [n]h, let Gs be a set of k−2 items sampled uniformly at random from {2, . . . , n};

• Let fi(s) = λ if i = 1 or i ∈ Gs, and fi(s) = 1 otherwise.
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Observe that the optimal strategy π∗ at s is to include item 1, each item in Gs, and any arbitrary
final item. Note that each of the k − 1 items with score λ is selected with probability

Pr[i chosen|fi(s) = λ, π∗ played] =
λ

1 + (k − 1)λ

=
1

n
,

and so the expected reward per round is 1 as well. Note that π∗ is consistent with a menu distribution
which chooses the final item (after 1 and Gs) uniformly at random, which generates the uniform
distribution. As such, the uniform distribution lies inside EIRD (t is straightforward to define scores
for infeasible memory vectors such that feasibility holds for any v ∈ ∆(n)). We can also see that
any menu inconsistent with π∗ has expected reward at most:

λ

2 + (k − 2)λ
=

1
n−k+1

2n−2k+2
n−k+1 + k−2

n−k+1

=
3

4n
,

as some item not in Gs must be included. To lower bound the regret of any algorithm, consider an
arbitrary time t and history of item selections. By time t, at most distinct states have been observed
thus far. Consider the following cases:

• The algorithm plays a menu consistent with π∗ in every step from t to t+ h− 1;

• The algorithm plays a menu inconsistent with π∗ at some step from t to t+ h− 1.

Suppose t is less than T = 1
2 · (

n
2 )

h = O(nlog(n)). In the former case, there is a uniform distribution
over n

2 items chosen by the agent at each round, and so the maximum probability of any given
state is at most (n2 )

h. Given that the set Gs is generated independently at random for each state,
an algorithm has no information about Gs for unvisited states, and thus cannot improve expected
reward beyond that obtained by choosing a random hypothesis for Gs, which incurs O( 1n) regret at
round t+ h. In the latter case, the step in which a menu inconsistent with π∗ is played additionally
incurs O( 1n) regret. Each event occurs once at least once in expectation every h rounds while t < T ,
and thus any algorithm must have O( 1

nh) expected regret per round up to T .

38


	Introduction
	Setting
	Our Results
	Related Work

	Preliminaries
	Interaction Model
	Realizable Distributions
	Discounted Memory Agents
	Smooth Preference Models

	Targeting `3́9`42`"̇613A``45`47`"603AEIRD for Agents with Long Memory Horizons
	Characterizing `3́9`42`"̇613A``45`47`"603AIRD via Menu Times
	A Useful Algorithm for Adversarial Bandits
	Targeting EIRD

	Beyond EIRD: Scale-Bounded Preferences and the Smoothed Simplex
	A No-Regret Algorithm for (n)

	On Hardness of Relaxing Benchmarks
	Agents with Short Memory Horizons
	A No-Regret Algorithm for Scale-Bounded Models
	Barriers for General Models

	Analysis for Deferred Bandit Gradient
	Omitted Proofs for Section 3
	Proof of Lemma 3
	Effective Memory Horizons
	Analysis for Algorithm 2: Targeting `3́9`42`"̇613A``45`47`"603AEIRD

	Omitted Proofs from Section 4
	Proof of Lemma 8
	Analysis for Algorithm 3: Targeting (n) for Scale-Bounded Models

	Proof of Theorem 10
	Omitted Proofs for Section 6
	Proof of Theorem 11
	Proof of Theorem 12


