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Abstract

(Directed) graphs with node attributes are a common type of data in various applications and there is
a vast literature on developing metrics and efficient algorithms for comparing them. Recently, in
the graph learning and optimization communities, a range of new approaches have been developed
for comparing graphs with node attributes, leveraging ideas such as the Optimal Transport (OT)
and the Weisfeiler-Lehman (WL) graph isomorphism test. Two state-of-the-art representatives are
the OTC distance proposed in (O’Connor et al., 2022) and the WL distance in (Chen et al., 2022).
Interestingly, while these two distances are developed based on different ideas, we observe that they
both view graphs as Markov chains, and are deeply connected. Indeed, in this paper, we propose a
unified framework to generate distances for Markov chains (thus including (directed) graphs with
node attributes), which we call the Optimal Transport Markov (OTM) distances, that encompass both
the OTC and the WL distances. We further introduce a special one-parameter family of distances
within our OTM framework, called the discounted WL distance. We show that the discounted WL
distance has nice theoretical properties and can address several limitations of the existing OTC and
WL distances. Furthermore, contrary to the OTC and the WL distances, our new discounted WL
distance can be differentiated after a entropy-regularization similar to the Sinkhorn distance, making
it suitable to use in learning frameworks, e.g., as the reconstruction loss in a graph generative model.

Keywords: graphs, Markov chains, Weisfeiler-Lehman, optimal transport

1. Introduction

Graph data is ubiquitous across various application domains, e.g., molecules viewed as node-attribute
graphs, citation networks as directed graphs. Developing metrics and efficient algorithms to compare
them have been traditionally studied in fields such as graph theory and theoretical computer science.
In the last two decades, this problem also received tremendous attention in the graph learning and
optimization community, especially for comparing (directed) graphs with node attributes (which we
will call labeled graphs). In particular, two ideas have become prominent in the modern treatment of
labeled graphs. The first idea is to leverage the so-called Weisfeiler-Lehman (WL) graph isomorphism
test (Lehman and Weisfeiler, 1968), which is a classic graph isomorphism test that, in linear time,
can distinguish a large family of graphs (Babai and Kucera, 1979; Babai and Luks, 1983). It has
recently gained renewed interest both in designing WL-inspired graph kernels (Shervashidze et al.,
2011; Togninalli et al., 2019) and as a tool for analyzing Message Passing Graph Neural Networks
(MP-GNN5s) (Xu et al., 2018; Azizian and Lelarge, 2021). The second idea in modern treatment of
graphs is to treat labeled graphs (or related structured data) as suitable discrete measure spaces and
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then use the idea of Optimal Transport (OT) to compare them. Examples include the Wasserstein
WL (WWL) kernel (Togninalli et al., 2019), the Fused Gromov-Wasserstein (FGW) distance (Vayer
et al., 2019), and the WL test based tree-mover distance (Chuang and Jegelka, 2022).

Very recently, several studies took a less combinatorial approach and viewed graphs as Markov
chains: Chen et al. (2022) introduced the Weisfeiler-Lehman (WL) distance, which generalizes the
graph comparing problem to the Markov chain comparison problem through a WL-like process in
a natural way. This distance has been found to be more discriminative than the previously popular
WWL graph kernel. Around the same time, the optimal transition coupling (OTC) distance was
proposed by O’Connor et al. (2022) for comparing stationary Markov chains, i.e., Markov chains
with stationary distributions and the study was followed by Yi et al. (2021) with applications in
comparing graphs.

The WL distance proposed in (Chen et al., 2022) and the OTC distance in (O’Connor et al., 2022)
represent two SOTA approaches in comparing labeled graphs (i.e., graphs with node attributes). In
fact, both of them compare more general Markov chains like objects. The Markov chain perspective
not only relieves the difficulty in handling combinatorial structures of graphs but also provides a
natural and unified way of modelling both directed and undirected graphs. To broaden the use of
these distances, especially in graph learning and optimization (e.g., to use such distance as graph
reconstruction loss in a generative model), it is crucial that we are able to differentiate such distances
w.r.t. changes in input graphs. However, differentiating these distances appears to be challenging.

Our contributions. We propose in Section 3 a unified framework to generate distances between
Markov chains (and thus also for labeled graphs), which we call the Optimal Transport Markov
(OTM) distances. This framework of OTM distances encompasses both the WL distance and the
OTC distance and in particular, we prove that the two distances serve as extreme points in the
family of OTM distances. We further identify a special one-parameter family of distances within our
general framework of OTM distances, and we call our new distance the J-discounted WL distance
(for a parameter § € [0, 1]) in Section 4. Not only do we unveil succinct connections between
our discounted WL distance and both the WL and the OTC distances, but we also show that the
discounted WL distance has better theoretical properties than the other two distances:

1. Contrary to the WL and the OTC distances, the discounted WL distance can be used to compare
non-stationary Markov chains.

2. The discounted WL distance has the same discriminative power as the OTC distance and
possibly stronger discriminative power than the WL distance.

3. All the three types of distances are computed via iterative schemes. We devise an algorithm of
the discounted WL distance which converges provably faster than the one for the WL distance
introduced in (Chen et al., 2022); whereas to the best of our knowledge, there is no known
study on convergence rate of the OTC distance.

4. Furthermore, contrary to both the OTC and the WL distances, a regularized version of the
d-discounted WL distances can be differentiated against its parameters, enabling a range of
possible applications as a loss in machine learning or in other optimization tasks. In Section 5,
we give a simple formula to compute its gradients.

Note that the effectiveness of the WL distance was already shown in (Chen et al., 2022) where
it compared favorably with other graph kernels. Our discounted WL distance is provably more
discriminative (e.g, Proposition 5), and thus we expect it will lead to even better practical performance.
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Relation to the fused-GW (FGW) distance of Vayer et al. (2019). The fused-GW (FGW)
distance also leverages the optimal transport idea, and in fact, uses the Gromov-Wasserstein distance
to compute two graphs (equipped with metric structures at nodes). The authors also developed
a heuristic algorithm to approximate this algorithm in practice. While the algorithms work well
in practice (Vincent-Cuaz et al., 2021; Vayer et al., 2019), there are no theoretical guarantees for
them and in fact, the FGW algorithm is only proven to converge to a local minimum (of a provably
non-convex function). Current methods on optimizing to minimize FGW as a loss relies on a kind of
block coordinate descent, updating alternatively the OT matching (using the FGW algorithm) the
parameters by gradient descent with fixed matching (Vincent-Cuaz et al., 2021; Brogat-Motte et al.,
2022; Xia et al., 2023). In contrast, we can compute our §-discounted WL distance —and its gradient
in the case of the regularized version— exactly, allowing us to easily optimize it. We further remark
that the FGW distance and our OTM distance adopt fundamentally different points of view: FGW
stems from the interpretation of graphs as metric spaces, whereas OTM distances rise from random
walks on graphs viewed as probabilistic objects (Markov Chains).

2. Preliminaries

We include an appendix within the supplementary material that contains all the detailed proofs,
algorithms and experimental details. We provide a Glossary of all notations we use in Appendix F.

2.1. Probability Measures and Markov Chains

In this paper, we use boldface letters, such as X, to denote finite sets. We let P(X) to denote the
space of all probability measures on X.

A finite Markov chain X = (X, mf(’m, vX) consists of a finite state space X, a Markov transi-
tion kernel ma"®) z,t € X XN — ma ¥ ¢ P(X), and an initial distribution vX . A realization

of a Markov chain X is a sequence of random variables (X; :  — X );en on a common probability

space (€2, P) such that law (Xo) = vX and P(X; 41 = 2| X; = x) = m® (z') forany z, 2’ € X.

If m;x 7(t)
omit the ¢ parameter and write mZX . We will also use the notation m

later. If the initial distribution X

is independent of the time ¢, we call the chain X time homogeneous. In that case, we will
X, :=mZX(z2') for compactness

is stationary, then we call X a stationary Markov chain.

Couplings. Let X,Y be two finite sets and let € P(X), 5 € P(Y). Wecall p € P(X xY)
a coupling between o and (3 if forany A C X and B C Y, one has that y(A xY') = a(A) and
w(X x B) = B(B). We let C(«, ) denote the set of all couplings between « and /3. Couplings
can be also interpreted via random variables. Let X : - X and Y : @ — Y be two random
variables from some same probability space (€2, P) into the spaces X and Y, respectively, such
that law(X) = « (we also write X ~ «) and law(Y) = (. Then, it is easy to check that
law((X,Y")) € C(«, B) and that any coupling in C(«, 3) can be obtained in this way. We hence also
write (X,Y) € C(a, ).

Markovian couplings. Given two Markov chains X" and )/, a stochastic process (X¢, Y7)ien on a
probability space (2, P) is a Markovian coupling (Chen et al., 2023) between them if

o (X4, Y?)ten satisfies the (time inhomogeneous) Markov property: for any ¢ € N,

]P)((Xt-i-h Y;f-‘rl)|<Xt7 Y;f)7 SRR (X07 }/U)) = ]P)«Xt-i-h }/t+1)|(Xt7 Y;f))



BRUGERE WAN WANG

( Y):

") defined below belongs to C(m2X, m,

. ForanyteN,anyxeXandyEY,migy’

mEXY O = P(Xp11, Yer))|(Xe, Vi) = (2,)) € P(X X Y).

* The initial distribution is a coupling: law((Xo, Yp)) € C(vX,vY).

We let II(X', )) denote the collection of all Markovian couplings. Given a Markovian coupling
(Xt,Y:)ten, if for each t € N and each z € X and y € Y, one has that mi@y’(t) = mi@y’(l),
then we say (X¢, Y} )ien is a time homogeneous Markovian coupling. We denote by [Ty (X, )) the

collection of all time homogeneous Markovian couplings w.r.t. X and ).

2.2. Optimal Transport and Distances between Markov Chains

The Wasserstein distance. Let X and Y be two finite sets. Assume that o, 8 are probability
measures over X and Y, respectively. We call any function C' : X x'Y — R, a cost function
between X and Y. Then, the Optimal Transport (OT) distance between « and (3 is defined as
follows:

d ,0;C) = inf ECX,Y), 1
wl@fi0)i= il g E &) )

where [E denotes the expectation. When X =Y and C' := dx is a distance function on X, the

quantity dw («, 8; dx) is also called the Wasserstein distance between « and (3 as dyy is a metric
distance on P(X).

The Weisfeiler-Lehman distance (WL distance). Consider two finite stationary Markov chains
(i.e., Markov chains with stationary initial distributions) X" and ), with a cost function C' : X XY —
R . Inspired by (Chen et al., 2022), given any k € N, the depth-k Weisfeiler-Lehman (WL) distance
between them is defined as follows:

dw (X, Y;C) = inf EC(Xy,Y), )
(Xtvyt)tGN
where the infimum is taken over all possible Markovian couplings (X}, Y;)ien € II(X,Y). Then,
the Weisfeiler-Lehman distance is defined as

Ayl (X, Y;C) = sup Ay (X, Y;0). 3)

Remark 1 (Nuance in definition) The definition of the WL distance above is based on a character-
ization of the WL distance in Chen et al. (2023). The (depth-k) WL distance was originally inspired
by the classical Weisfeiler-Lehman graph isomorphism test. Specifically, the depth-k WL distance
was designed to emulate the kth iteration of the WL test'. Our definition is slightly more general
than the one in Chen et al. (2023): the (depth-k) WL distance was originally defined between two
Markov chains endowed with label functions {x : X — Z and ly :'Y — Z into a common metric
space (Z,dz). Using our language, this is equivalent to saying that the cost function involved is of
the form C(x,y) = dz(ix (x), Iy ().

The stationary assumption is redundant when k& < oo, and hence d{;,)L(X ,V; C) is defined for
any Markov chains. When k = oo, the situation becomes subtle; see more discussion in Appendix B.

1. In the WL test literature, the index k typically denotes the order of the test. However, in this context, we use it to
denote the depth.
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The Optimal Transport Coupling distance (OTC distance). Consider two finite stationary

Markov chains A and . Let C': X x Y — R, be any cost function. Then, the optimal transition

coupling (OTC) distance (O’Connor et al., 2022), which we denote by dorc, is defined as
dorc(X,V;C) = inf E C(Xo, Yo), “4)

(X, Ye)ten€llu(X,Y)
law ((Xo,Y0)) is stationary

where infimum is over time homogeneous Markovian couplings with stationary initial distributions.

Remark 2 (A note on symbols) For simplicity of presentation, in what follows, we will sometimes

omit the cost matrix C' in our notation of distances when its choice is clear. For example, we may
. k . k

write d\yv; (X, ) instead of d\yy (X,V; C).

3. Optimal Transport Markov Distances

Note the similarity between Equation (2) and Equation (4): they are both infimizing certain expected
costs between random walk paths. Motivated by this similarity, in this section, we devise a general
framework for constructing distances between Markov chains with arbitrary initial distributions in
contrast to the stationary condition for the two distances mentioned above. We will show how this
framework incorporates the (depth-k) WL distance and admits the OTC distance as a limit point, and
how these two distances appear as lower and upper bounds for this family of distances. All proofs of
results in this section can be found in Appendix E.2.

In what follows, we assume &’ and ) are two (not necessarily stationary) finite Markov chains
endowed with any cost function C': X xY — R,.

Definition 3 (Generalized Optimal Transport Markov Distance (OTM distance)) Letp € P(N)
be a distribution over all non-negative integers, I' ~ p be a random variable. We define the Optimal
Transport Markov (OTM) distance associated to p, between two Markov chains X and ) as:

d> X.V:C) = inf EC(X7,Y, 5
ot (X, ;) o (X7,YT), (5)

where the infimum is taken over all Markovian couplings (X, Y} )ten independent of T

Remark 4 (Optimal Markovian couplings exist) In fact, the infimum in Equation (5) can be
replaced by a minimum: there exists a Markovian coupling (X;, Y;)sen such that diy (X, C) =
EC(Xr,Yr). We refer the reader to Appendix E.2 for a proof-

We also remark that, just as the Optimal Transport problem gives rise to the Wasserstein distance
between probability measures on the same underlying metric space, the OTM distance above becomes
a pseudometric on the collection of Markov chains with a pseudometric space (X, dx ) being their
common state space; we refer the reader to Appendix E.2.1 for details.

Example 1 (de is an OTM distance) Let §;. denote the Dirac delta measure at k € N. Then, it
is obvious that dy); (X,Y) = dgcTM(X , V). In this way, although d\5} is not an instance of OTM
distances, it is actually the limit of a sequence of OTM distances.

Besides the example above, one can establish the following bounds for the OTM distance utilizing
the (depth-k) WL distance and the OTC distance.
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Proposition 5 (A dgz,)L-based lower bound) For any distribution p on N, one has that

orm (X, V) >ET~p(d$)L X.,Y)) Zp d(VIz/)L X, D).
keN

Proposition 6 (dorc is an upper bound) For all distributions p on N, and stationary Markov
chains X, ), one has that: diyp\(X,Y) < dotc(X,D)).

The above two propositions suggest that the (depth-k) WL-distance and the OTC distance can be
viewed as the two extremes of the family of OTM distances. In fact, in Section 4.3 later, we will
show that the OTC distance turns out to be a tight upper bound of the family of OTM distances.
Furthermore, although the OTC distance serves as an upper bound, the following result states that a
large family of OTM distances has the same discriminative power as the OTC distance.

Proposition 7 (Zero-sets) Suppose that X,) are stationary and that p is fully supported (i.e.,
vVt € N,p(t) > 0). Then, dorc(X,Y) =0 lﬁdOTM(X, Y) = 0, implying that these two distances
“distinguish” the same sets of stationary Markov chains.

The OTM distances have many interesting theoretical properties. For example, any OTM
distance is indeed a “pesudo-distance” satisfying the triangle inequality under suitable conditions
(cf. Proposition 34). Furthermore, the OTM distance is continuous with respect to the probability
measure p (cf. Lemma 33). Interested readers are referred to Appendix C for more details.

We also refer the reader to the discussion provided in Appendix C.1 for a general way of
computing OTM distances with finitely-supported distribution p, and a detailed view of how exactly
the geometric distribution — and specifically its memoryless property — is used to obtain the simplified
computation. This motivates our study of the discounted WL distances (whose distribution p is a
geometric law) in Section 4, which will be our focus in the rest of the paper. These distances can be
computed more easily than general OTM distances by using a fixed-point algorithm. Furthermore, an
entropy-regularized version of them can be differentiated. These nice properties make them a natural
choice of OTM distances for applications which we explore in Section 6.

4. The Discounted WL Distance

The OTM distances we introduced above encompass the WL distance and the OTC distance at the
two extremes, and are a (significant) generalization of both distances. However, one might wonder
why it is useful to consider this general formulation. In this section we first note some limitations of
the two distances and then propose the discounted WL distance, which is a special instance of our
OTM distance, as a remedy of those limitations. Indeed, we will see that the discounted WL distance
can compare more general Markov chains, is more efficient to compute, and more importantly, has a
relaxed form that can be differentiated (whereas the WL distance and the OTC distance cannot).
All missing proofs from this section are in Appendix E.3.

4.1. Limitations of the WL Distance and the OTC Distance

Stationary initial distributions. Both the WL distance and the OTC distance are only defined for
Markov chains with stationary initial distributions. This assumption is quite limited and, in general,
does not even accommodate the uniform measure, which assigns equal weight to all states. Note
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that while the definition of the (depth-k) WL distance could be extended to Markov chains with any
initial distributions, on irreducible and aperiodic Markov chains, depth-co WL distance turns out to
be independent on the initial distribution. Hence, the extension of the WL distance to non-stationary
case is meaningless; see Appendix B for more details.

Rate of convergence. The depth-k WL distance converges as k — oo (see our discussion in
Appendix B.2) provided that the cost is of the form given in Remark 1. However, this convergence
is based on the convergence to a non-unique fixed point of a map. Due to the non-uniqueness feature,
this convergence may be vulnerable to numerical errors. We have further established an estimate
of the rate of convergence for dgﬁ}L — d%ﬁ as k — oo. Although this limit converges exponentially
fast, the rate depends on the input Markov chains. See Appendix B.2 for details.

The algorithm for computing the OTC distance is through the policy iteration on an average-cost
Markov Decision Process (O’Connor et al., 2022). Although the policy iteration terminates in a finite
number of iterations, as far as we know, this number does not have a reasonable bound (except of
the obvious upper bound of n_5 of the number of possible policies)

This all together motivates us to seek for a distance that can be computed via a stable iterative

algorithm which can provably converge faster than the one for the WL distance.

Differentiation. To the best of our knowledge, there is no known way to compute the derivative of
those two distances with respect to input Markov chains and cost functions. Although the WL distance
can be formulated as a fixed point to a certain map, this map lacks the desired contracting property to
guarantee uniqueness and smoothness of fixed points. For the OTC distance, differentiating it seems
to be even more challenging. Further we are not aware of any way to formulate the OTC distance
to a Banach fixed point and thus our strategy for differentiating the discounted WL distance to be
introduced (in Section 5) does not apply to differentiate the OTC distance.

4.2. The §-Discounted WL Distance

We now introduce a one parameter family of instances of OTM distances which has close relationship
with the WL distance and the OTC distance. This family of distances addresses those limitations
mentioned above in Section 4.1.

The distance that we define next, called the J-discounted WL distance, is essentially a regularized
version of the WL distance (this view will be more evident by considering Proposition 15 later). This
regularization enables us to compute the new distance via solving a Banach fixed point problem.
This approach is very tractable, addressing the limitations of the original WL distance, and providing
the ability to differentiate our distance.

For the purpose of introducing our discounted WL distance, we consider the following two types
of distributions on N given § € [0, 1].

Geometric distribution p3°: if we let a RV T° ~ p°, then P(T5° = t) = §(1 — §)%, Vt € N;
Truncated geometric distribution plg for k € N: let Tf := min(73°, k), then Tf ~ plg :

§(1—-6) t<k-1
P(TF =t)={ (1-0)%, t=k
0, t>k
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Definition 8 (0-discounted WL distance) For any k € N U {oo}, the depth-k J-discounted WL
distance is defined as follows

d(v'“v)L,(;(X,y;C) = dffTM(X,y; C) and more explicitly, (6)
E(SF15(1 = 6)1C(X,, Y)) + (1 — §)FC(X,, Vi), k <
A S(X,Y) = inf <Zt_0 (1-8)'C(X4,Yy) + (1 — 0)*C(Xk k)) o
; (Xt,Y2)een€ll(X,D) E( ;’io 5(1— 5)tC(Xt,Yt)), s

Remark 9 (k = o) d&oﬁ s is closely related to the bicausal optimal transport distance from Moulos
(2021): the bicausal optimal transport distance, with a discount factor of (1 — ¢) and a binary cost
matrix C, is the same as our dg;,oﬁ s Up to a multiplicative constant ¢.

Remark 10 (5 = 0) Note that for any finite k, d\y; (X,Y) = dyy (X, D).
The d-discounted WL distance behaves nicely when k approaches oo:

Proposition 11 (Convergence w.r.t. k) For any Markov chains X and Y, any cost function C, and
any § € (0, 1], one has that d\s; 5(X,Y) = limy_s00 diy, s(X, V).

We will also establish later in Proposition 15 a convergence rate result.
A second nice property of this distance is, although defined via general Markovian couplings, an
optimal Markovian coupling can be chosen to be time-homogeneous for d&oﬁ 5

Proposition 12 (Optimal Markovian coupling) Recall that Ty (X,)) denotes the collection of
all time homogeneous Markovian couplings between X and ). Then, for any § > 0, one has that

A (X)) = i EC(Xpoo, Yyoo).
wiLs (X, V) (Xt,%)thnerll'IH(X,y) (X7pe, Yreo)

4.3. Relationship with the WL Distance and the OTC Distance

Recall from Remark 10 that dyy; (X,Y) = diyy o(X,Y) for any finite k. In fact, we have the

following stronger result, showing that d&)L is an appropriate limit of dgﬁ,)L 5"

Theorem 13 For any Markov chains X and ), one has that
AW (X, V) = lim dgyL s(X,Y) and hence d) (X,Y) = lim limdy) (X, ). (D)
) k—o00 6—0 )

Interestingly, it turns out that if we fix £ = oo, then d%{,oﬁ 5 converges to dorc as § — 0. This
closes the loop for our previous claim about the OTM distances, showing that dotc can also be
expressed as a limit of OTM distances.

Theorem 14 For any stationary Markov chains X and ), one has that
dorc(X,Y) = lim d%{,"ﬁ 5(X,¥) and hence doro(X,Y) = lim lim dWL SV ®
) 5—

Besides this convergence result, we note that by Proposition 7 the OTC distance and dWL o have
the same zero-sets for any § > 0. This implies that although the OTC distance is an upper bound for
di;,oﬁ 5> our new construction has the same discriminative power as the OTC distance.

From Equation (7) and Equation (8), it is tempting to ask whether the order of the limits can be
switched and whether dWL = dorc. Although we empirically observe that d%zfﬁ # dorc in general,
due to the approximation nature of the algorithms implemented, we do not know for sure whether
d%VL = doTc or not, and we leave this for future study.
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4.4. Algorithm and Convergence

As mentioned earlier, the discounted WL distance is a regularized version of the original WL distance,
in this section we will elucidate on this claim and provide a recursive algorithm for computing the
(depth-k) discounted WL distance.

In Chen et al. (2022), a recursive algorithm was proposed to compute the depth-k WL distance.
We provide a d-regularized version of that algorithm in the proposition below. The §-regularization
results in a unique fixed point solution to the recursive algorithm (as opposed to the original WL
algorithm), which enables differentiation.

Proposition 15 (Recursive computation) Given any k € N, we recursively define matrices C%®)
forl=0,... kas follows:

1] i i

Cy” =y, Y = 6Cy + (1= 8) dy (m¥,mY 20, ©)
Then, the depth-k d-discounted WL distance can be computed as follows

d%I;/)L,é(Xay; C) = dW<VX7VY;Cé7(k))- (10)

The matrices C%() depend on the Markov kernels mX, mY and on the cost matrix C. When making
this dependency apparent is needed, we will use the notation C%() (mX,mY¥,C).

Using Proposition 15, one can devise an algorithm to compute dng)L, 5(X, D) for any finite k. A
similar but more intricate recursive computation exists for general OTM distances. The simplicity
of the discounted WL distance’s recursive computation within the OTM family stems from the
memoryless nature of the (truncated) geometric distribution. See Appendix C.1 for more details.

A natural question is whether di/’z/)L, 5(X,Y) can be a good approximation for d{;,oﬂ 5(X,)). We
aim to answer this question below based on the observation that Equation (9) is a fixed point iteration,

which enables us to use Banach fixed point theorem to prove convergence, and other properties.

Proposition 16 (Convergence of C%(*)) When § > 0, C**) converges to the unique fixed point
C%() of Equation (9) which is not a constant matrix (unless C'is a constant matrix itself) such that

A (X, ) = dy (v, v¥50009)). (11
Moreover, C%F) converges at rate |C%*) — CO()|| < 2(1+‘5)16'||C’Hoo. Consequentially,
- 2(1 — 6)k
Ay, 5 (X, V) — dygt, 5(X, V)| < THCHoo-

When 6 = 0 and m¥,mY are irreducible and aperiodic, then C%®) converges to a constant matrix.

As the WL distance corresponds to the case when § = 0, this proposition actually implies that the
WL distance d%ﬁ (X, ) is independent of the initial distributions of X and ) (see also Proposition 20
in Appendix B). When § > 0, dﬁ;{,"ﬁ 5(X,Y) behaves completely differently and it of course depends
on the initial distributions of X and ) since dw (VX Y C’év(‘x’)) depends on vX and v¥ when
C%() is not constant. Together with the fact that dorc is only defined for stationary Markov chains,
we conclude that dﬁ,‘{,"ﬁ 5 distinguishes more Markov chains than both the WL and the OTC distances.

9
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Finally, we remark that when & > 0, the last step for the computation of d&}’ﬁ s (Equation (11)),
involves solving for a meaningful (i.e., non-constant) optimal coupling between X and vY that
minimizes this cost. That coupling provides a matching between the state spaces of X and ) which
can be used for some applications. Note that, when § = 0 (corresponding to the WL distance), as
C9(*) js a constant matrix, no meaningful coupling/matching can be obtained.

In Appendix D we provide pseudo-codes for computing d{;,)h 5(X, ) for both finite and infinite
k based on the two propositions above as well as a complexity analysis. We also provide certain
acceleration techniques in Appendix D, including a faster (in terms of complexity) algorithm in the
case where both transition kernel matrices are sparse in Algorithm 5, and techniques to empirically
accelerate the computation.

5. Differentiation of the Discounted WL Distance

Recall from Section 4.4 that df,’v(f) can be computed recursively for any finite k£ and d%’v(io ) can hence

be approximated efficiently. However, in many applications such as graph learning, one requires that
the distances involved can be differentiated. This motivates us to devise in this section an algorithm
to differentiate d&oﬁ 5(X,Y;C) w.rt. change in parameters X', ) or the cost C' when § > 0. All
missing proofs and details in this section are in Appendix E.4. This section gives the key results
needed to compute the gradient. The detailed steps of the computation of the backwards pass are laid
out in Algorithm 3 (with the other algorithms in Appendix D).

5.1. Sinkhorn Approximation

To differentiate our distance, we want the steps to be differentiable. Optimal transport as defined
in Equation (1) is not a differentiable problem. In the literature, differentiability is achieved by
replacing it with a smooth approximation, called the Sinkhorn distance, originally introduced in
Cuturi (2013): Using the same notations as in Equation (1), given € > 0, the (e-)regularized OT
problem is defined as: dyy («, 8; C) := min x y)ec(a,8) E C(X,Y) — eH(X,Y). Here H denotes
the entropy function, i.e., H(X,Y) := — 3", x ;cy Pijlog(F;;), where P :=P(X =i,Y = j).

We now define the entropy-regularized version of our discounted WL distance, denoted by
d%)L, 5, 6(X ,V; C), via formulas shown in Equation (9) and Equation (10) with the optimal trans-
port distance dyy all replaced by the ¢ regularized optimal transport distance dy;. We then set
dﬁ;,"ﬁ’(s,e(é\,’, V;C) = limg00o dng)L,&E(X’ Y;C). See Appendix E.4 for the precise definition of
d{,’i}h s, (X, Y;C) and the well-definedness of d%{,oﬁ 5 (X, Y;C). It turns out that the entropy-
regularized discounted WL distance is indeed an approximate of our original discounted WL distance.

Theorem 17 (Convergence of the entropy-regularized distance) For any Markov chains X, Y
over a finite number of states, and cost matrix C between these two Markov chains and any
k € NU {oo}, one has that lim._,o dWL,J,e(Xv y;C) = de,d(X7 Y; C). Moreover, one has the
following convergence rate:

€
A 5. (X, V1 C) — digy 5(X,V;0)] < 5 los(IX[[Y)).

10
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5.2. Differentiation of d\y;, 5 (X.))

(o0)

Fixing the underlying sets X and Y, the distance dyy; ;5 (X, Y; C) can be written down explicitly as

X Y X YVX,I/Y

a function dﬁ;’ﬁ 5 €(m. ,m¥ vX VY, C) which depends on mg, m, , and C'. Furthermore,

to compute di;,cﬁ 5.c(X, ), by Definition 37, one first needs to compute the matrix C<%(>) which

is a function C<%(>) (mX mY  C) depending on mX, mY and C. We now devise an algorithm to

compute the gradient of C%(>) Based on this, the gradient for di;,oﬁ 5e (X, )) can then be computed
using the chain rule and the differentiation method for entropy-regularized OT (Peyré et al., 2019,
Proposition 4.6 and 9.2).

We use the following tensor notation to represent the target gradient of C'¢%(%):

(AR 1Sk I<I<m 1 _ (k) 1<k<n1<H<n o _ (qil’) 1<I<m,1<0<m
A= (Az‘j>1gi§n,1§j§m’r-— (Fz‘j >1§i§n,1§j§m79'— ©ij ) 1<in,1<<m -

€,6,(c0) €,6,(c0) €,8,(00)
acs / acs: / aCs:

Kkl .__ ij kk" . _ ij u ._ ij X Y : sy
where Aij =0 Ly X, 95 =y and my;, (resp. m;;,) is the transition
probability from state k to state k&’ (resp. from state [ to state ). For each 4, j, given the matrix

Cf ]’-6’(00) (approximated by Cf ]’-6’(k) in practice; see also Proposition 16 for an analysis of convergence

rate), we solve the regularized optimal transport problem dy; (mZX , mJY; Cf]’.é’(oo)> to obtain the

following data (defined in Definition 36 in Appendix):

e an optimal transport matrix (also called the primal solution) P;; = (Pilj-l) 1<ksn,1<l<m,

« and two dual solutions f;; = ( Z’;) 1<k<n and g;; = (gf-j) Isism,

These give rise to the following tensors when considering all ¢ and j:
 ((pkl 1<k<n1<ISm (k! 1<k<n <K' <m o~ (1 1<I<m 1<l <m
Pi= (Pz'j) 15i<n1<j<m I 1= (fz'j ]1i=k> 1Zi<n1<j<m » G = <9ij]1i=l> 1Zi<n,1<j<m -

Now that we have computed P, F' and G, it turns out that we can use them to directly compute
A, T and ©, which contain all necessary gradients for C'¢%().

Theorem 18 (Explicit computation of the gradients) View the tensors defined above as matrices
by flattening their dimensions (and resp. codimensions) together — for example P becomes an
nm X nm square matrix. Let I, denote the identity matrix of size nm x nm. Then, one has A =
§(Iym — (1 =8 P) LT = (1=68) (Iym — (1 — 8)P) ' Fand © = (1-6) (Iym — (1 — 6)P) ' G.

Please refer to Appendix D for the pseudo-code that implements gradient computation based on
the above theorem as well as analysis on computational complexity.

6. Experiments

In this section, we employ the discounted WL distance for graph classification tasks and the compu-
tation of graph barycenters. It is important to highlight that, for computing graph barycenters, we
deploy the gradient descent method to minimize the Fréchet functional. This approach necessitates
the differentiability of our distance. We also demonstrate how our distance can be used to compute
graph coarsening via gradient descent in Appendix A.3.

11
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(a) A noisy circle graph  (b) d{;,‘)ﬁ’e, s barycenter  (c) FGW barycenter

Figure 1: Barycenter computation of 30 noisy circle graphs

Graph Classification. We compared our distance to the fused GW distance (FGW) Vayer et al.
(2019) on classification benchmarks on real world datasets from the TUDataset repository (Morris
et al., 2020) (see Table 1). The SVM for both FGW and OTM distances are learnt using rbf kernels
(with cross-valitated regularization parameter). FGW is run with o = 0.5. When attributes are
discrete, the cost (distance) used is the Dirac cost (0 if the attributes are the same, 1 otherwise).

1-NN results suggest FGW is superior or similar when labels carry low information, and our
distance performs better when the label carries more information. SVM results are mitigated, and
suggest similar results as other methods.

dataset PROTEINS PTC_MR PROTEINS_full ENZYMES
classes 2 2 2 6

attributes discrete label discrete label 29 18

FGW 1-NN 65.1% +4.6% 57.6% +5.0%  69.5% + 4.0% 66.3% =+ 6.4%
i) s (0=02) 1NN 61.4% +4.0% 61.3%+7.6% 70.0%+4.5% T4.7% +6.2%
FGW SVM 70.5% £ 2.9% 57.6% +£4.6% 75.0% +3.8% 42.7% £ 13.5%

diy) s (0=02)SVM  76.4% +£5.3% 61.3%+59% 73.5%+31%  68.3% +£4.1%

Table 1: Results of the classification experiment

Barycenter Computation. In order to show the effectiveness of our proposed OTM distances as
optimization targets for learning tasks on directed graphs, we compute a simple graph barycenter.
With random noisy cycle graphs G, ..., G, as input, we compute the barycenter graph Gy, by
minimizing the following objective function: Y, d\x(. 5(Ghar, Gi; C') where the cost C' is based on
the euclidean distance over the labels. The detailed results (including comparison with the barycenter
computed by using fused-GW of Vayer et al. (2019)) and setup can be found in Appendix A.1, and
one example is shown in Figure 1 where the discounted WL distance achieves a better barycenter
than the fused GW distance.

7. Concluding Remarks

Our paper provides a novel framework of OTM distances comparing Markov chains and hence
directed graphs. As our discount-WL distance can be differentiated, the natural next step is to apply
our distances to various learning problems, such as to provide effective statistical analysis in the space
of graphs (equipped with this metric), or to provide loss for learning models (e.g. graph generative
models) over complex networks. In order to make this endeavour easier, we provide the code to

12
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compute it?, in the form of a packaged python library>. We are particularly interested in exploring
the use of the discounted WL distance (or variants) to study directed networks, where our current
available tool-box has been more limited.

Limitations. On a practical front, the computation of our new distance can be slow on large graphs,
although technical optimizations presented in Appendix D mitigate that to some extent. The hyper-
parameters (e.g, €, §) also require careful handling. Though our distance calculation is empirically
much slower than the approximate fused-GW distance (See Appendix A.2 for comparisons), it is
polynomial-time computable, unlike the NP-hard exact FGW. This difference allows for acceleration
techniques, potentially enhancing efficiency. We posit that methods like neural OT (Makkuva et al.,
2020; Korotin et al., 2022; Chen and Wang, 2023) could be integrated into our framework for further
gains.
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Appendix A. Experiment details

The code to run experiments is available on GitHub®.

A.1. Barycenter Computation

Target graphs The goal of this experiment is to show that d%ﬁ 5. produces barycenters that are

meaningful with regard to the structure of the input graphs. Here we use simple data: oriented circles
with 20 nodes, which we perturb through Erd6s-Rényi noise of equal edge addition and deletion
probability p. Examples of such data are shown in Figure 2a. The attributes of the nodes of the
circles are their (x, y) positions. Our goal is to check that the barycenter approximately recovers the
original circle.

Parametric Markov kernels In our experiments, when learning a Markov kernel, it is crucial to
ensure that all transition probabilities retain their properties as probability distributions throughout
the training process, meaning they remain non-negative and continue to sum to one. We could have
used projected gradient descent, but due to better empirical results, we decided to use a parametric
Markov kernel. An n x n Markov kernel M is parameterized by an n x n matrix © € R}™" using
the parameterization

@ .
M; = Softmax (> (12)
heat

where heat is a positive floating point parameter, and M; (resp ©;) is the i-th row of M (resp ©).
This choice of parameterization is both theoretically grounded and practically motivated:

1. Universality: This parameterization reaches all dense (without O entry) transition matrices
and approximates all others.

2. Standardization: This aligns with common machine learning practices, where softmax is
used to output probability distributions. As a Markov kernel is a collection of probability
distributions, this approach is logical. It thus illustrates how our distance could interface with
outputs of neural networks.

3. Convenience: This method avoids issues like projected gradient descent and degenerated
gradients, and is compatible with frameworks like PyTorch (Paszke et al., 2019).

4. Sparsity Encouragement: Paradoxically, this parameterization encourages relatively sparse
transition matrices via exponentials and certain choice of threshold.

Setup In this experiment, all initial distributions are taken to be uniform.
Let G',...,G™ denote the graphs whose barycenter we want to compute. Let M1, ... M"
denote the transition matrices of the random walks on those graphs, respectively, defined as follows:

M = (D) tA (13)

where A’ is the adjacency matrix of G* and D" is the diagonal matrix of degrees of G*. Finally,
we let [ € Rs1 Xd, S R3»*4 denote the labels of the graphs, where s; is the number of nodes
of G%, and d is the label size.

4. https://github.com/YusuLab/ot_markov_distances
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Since the size (number of vertices) of the input graphs is not necessarily the same, we need to
define the size of the barycenter graph. We leave it as a hyperparameter, and denote it by s.

« the barycenter Markov kernel M/* € R$**
« the labels [P € R**? of the barycenter graph

We encode MY as a parametric Markov matrix as described in the previous paragraph, and [P
directly as a matrix of parameters.
We then minimize the following objective function:

FOM, 1) = des) 5 (M, M5 CH) (14)

where C*(1) is the cost matrix defined as

C' D = Il = 113 (15)
This objective may appear unconventional; however, it is equal to the following:
FM, 1) =" (M, M')? (16)
i

where £ is the pseudometric defined as in Proposition 35, with a = 2 and where the pseudodistance is
the Lo distance between labels. This is the so-called Fréchet variance for the space with pseudometric
h, and a minimizer of it as called a Fréchet mean.

And we use the “Adam” optimizer (with the implementation from Pytorch Paszke et al. (2019))
to minimize the objective function.

The parameters for the d&fﬁ 5.c distance we chose are 0 = 0.5 and ¢ = 0.05.

The Fused Gromov-Wasserstein barycenters are computed using the official implementation
from Vayer et al. (2019). The method is the one described in [Vayer et al, 2019], ie Block Coordinate

Descent (BCD). The parameters used are the following

* The tradeoff parameter is o = 0.95 (heavily skewed towards the structural loss rather than the
attribute loss)

» The weights are not learnt, but fixed to the uniform distribution. This is the same setting as for
the delta-discounted WL distance barycenter.

Computational power Each barycenter computation takes about 2.5 to 11 minutes on an Nvidia
RTX A6000 GPU depending on the number of target graphs(ranging from 1 to 50). This computation
involves 1000 steps with a learning rate of 10~2. Although the time can be reduced by decreasing
the number of steps, increasing the learning rate, or increasing either J or ¢, these adjustments might
degrade the quality of the results.

For a theoretical analysis of the complexity, please refer to Appendix D. Comprehensive perfor-
mance benchmarking can be found in the Performance.ipynb notebook included in the appended
code. The results of this benchmarking are presented in Figure 3.

As a comparison computing one FGW barycenter for this experiment takes between 0.005s
and 4.15s with an average of 0.67s on CPU (using the code provided by Vayer et al. (2019)). We
acknowledge the lack of competitiveness of our method in terms of time complexity, as mentioned
in Section 7. We hope that advantages of our distance outweight this problem, and that subsequent
work will allow for more compute-efficient approximations.
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Results We compare the produced barycenters (in Figure 2b) with the ones produced by the
state-of-the-art graph distance, Fused Gromov-Wasserstein distance Vayer et al. (2019) (in Figure 2c).
We observe that for higher noise values (p = 0.01), our distance recovers the structure significantly
better. It is interesting to see that for very high noise (p = 0.1), our distance and FGW fail in very
similar way: they create one or several "accumulation nodes" that are in the middle (matched with
several original nodes) and linked to and from a lot of nodes.

Influence of parameters In this paragraph, we study the influence of the § and e parameters on the
result of this experiment. We run this barycenter expeeriment while varying the values of € and 9, the
results are shown in Figure 4 This shows degenerated cases :

* & = 1 Our distance degenerates to the (regularized) Wasserstein distance between node label
sets. Positions are learned through a Wasserstein barycenter problem, but the Markov kernels
remain unlearned, with the resulting graph reflecting only random initialization.

* high e Overregularization occurs with high values of , hindering the learning process. The
most extreme manifestation of this can be observed in the lower-right part of the grid, where
all points are matched equally to each other, resulting in a graph with all nodes clustered at the
center.

* low § A low value of § introduces instability in learning. This is evident in the upper-left
corner of the grid, where the learning process appears erratic.

A.2. Graph Classification

The reported accuracy and error margins are the average and standard deviation from a stratified
k-fold with 5 splits. In terms of runtime, we measured an average of 0.18s to compute one discounted
WL distance with parameters 6 = 0.5, ¢ = 0.1 (using an Nvidia RTX A6000 graphics card, and an
AMD EPYC 7452 32-Core Processor). As a comparison, on the same dataset and hardware, FGW
takes an average of 0.0099s (approximately 19 times faster). Note that our algorithm runs on a GPU
because it is easy to parallelize the many independent optimal transport computations while FGW
runs on CPU.

A.3. Graph Coarsening

We also carry out an experiment as a proof of concept on how the discounted WL distance can be
used to coarsen graphs. The goal is to coarsen a simple oriented circle of n = 30 nodes as in the
barycenter experiment into a graph with a given number m of nodes. In order to obtain a coarsening
of size m, we minimize an objective on the space of Markov chains of size m, similarly to the
barycenter experiment.

Let M2t denote the Markov matrix of the target graph and let A/<°¥"¢d denote the Markov
matrix of the coarsened graph. A natural objective would be to minimize the J-discounted WL
distance between the original graph and the coarsened graph. This naive approach, however, does
not yield good results. An explanation is the following: if the coarsened graph is 4 times smaller
(in terms of the number of nodes), then one step of random walk in the coarsened graph should
intuitively correspond to 4 steps of random walks in the original graph. In this way, one should think
of a coarsened graph as a Markov chain with a larger “time step” than the original graph and hence
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(b) Barycenter computed with different values of p (in ordinate) and for different number of graphs
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(c) Barycenter computed on the same graphs without orientation, using the FGW barycenters from
Vayer et al. (2019)
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Figure 4: Same barycenter experiment (n_targets = 20, p = 0.01), run with different values of €
(in abscissa) and ¢ in ordinate

one should think of the coarsened graph and the original graph induce Markov chains with different
time scales.

To adapt to the different time scales, we propose to instead minimize the following objective

I = d%oﬁ,(s,e ((]\4tzirgé:t)lc7 Mcoarsened; C(l))
where k = L%J is the coarsening factor.

Where [ is the set of labels z;, y; given to the nodes of the target, and C' (1) is the cost matrix so
thatC(1)(3, ) = (i, 3s) — (2™, )

We use the same parametric markov kernels as in the barycenter experiment (Appendix A.1)
and we minimize the objective using the Adam optimizer with a learning rate of 0.005 and 3000
iterations. The results are outlined in Figure 5. We observe that the algorithm gives better results
when the coarsened size m is a divisor of the original size n. This hence implies an interesting
question of how to coarsen graphs into arbitrary sizes. We leave this as a future work.

Appendix B. New Results on the WL Distance

In this section, we introduce some new results on the WL distance introduced by Chen et al. (2022).
Those results justify our motivation for introducing new distances by showing some of the flaws we
mentioned in Section 4.1.

Although the original WL distance is defined for Markov chains with stationary initial distri-
butions, Equation (2) can be adapted to define a quantity for Markov chains with arbitrary initial
distributions. We can thus define the depth-k WL distance for any Markov chains.
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target graph (30 nodes) coarsening (5 nodes) coarsening (10 nodes) coarsening (15 nodes) coarsening (20 nodes) coarsening (25 nodes)
: »/. ;
y

Figure 5: Coarsening results on a circle graph of size 30. The original graph is on the left, the
subsequent graphs are coarsenings of different sizes.

It turns out that the depth-k£ WL distance can be also computed iteratively. We first introduce
some constructions.

Definition 19 Given k € N, we define CV) for 1 =0, ..., k recursively as follows.

Y = oy, (17)

) = dy (mf‘, mY; C’(l‘l)). (18)

Note that CD = C%U) when § = 0, where C%U) is the cost matrix involved in the computation of
the discounted WL distance (see Proposition 16).

Those matrices C") coincides with the cost matrix computed in the [th iteration in (Chen et al., 2022,
Algorithm 1) to compute the depth-k WL distance (for a special type of initial cost function C') in
the following way:

dng)L(va) = dW(anl/YvC(k))

Notice that, in fact, those matrices above are themselves WL distances in a certain way. More
precisely, for any k£ € N, one has that

A (X, m6), (¥, mY6,): C) = d (8,,0;: W) = ¢, (19)

We analyze d&,)L when k approaches oo as follows.

Proposition 20 (Convergence of dgz,)L is independent of initial distributions) Given a finite set
X =Y, assume that mX and mY are irreducible and aperiodic Markov transition kernels. Assume
also that the cost is defined as a pseudometric in X (This is for example true if the cost is defined as

in Chen et al. (2022) or in Remark 1.) Then, for any vX € P(X) and v¥ € P(Y), the limit

Ii d(k) X X X Y Y | Y 20
kifrgo WL(( y Mg » V )a( yMe yV )) ( )
exists and is independent of choices of vX € P(X) and v¥ € P(Y).
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Note that this property is only true for irreducible and aperiodic Markov chains. This is a
common property in the study of finite Markov chains. See for example (Levin and Peres, 2017)
for a good introduction to that theory. A Markov chain is irreducible if all states can be reached
from any other state (including itself) in finite positive number of steps (or equivalently if the
graph) with positive probability. A Markov chain is aperiodic if for any state s, one has that
ged{k € N : scan be reached from s in time k} = 1. Irreducibility and aperiodicity ensure the
existence of a unique stationary distribution for a finite Markov chain (Levin and Peres, 2017,
Corollary 1.17) and its convergence towards that distribution (Levin and Peres, 2017, Theorem 4.9).

In this way, for any irreducible and aperiodic finite Markov chains X', ), we redefine d(\;,"ﬁ
(introduced in Equation (3)) as

A1, (X, Y3 0) i= Jim digy (X, Y5 0),

By the proposition above, we know that d{,‘;;’ﬂ is independent of choice of initial distributions. In
particular, when the initial distributions are stationary, this new definition coincides with the original
definition in Chen et al. (2022) since in this case d{,’{}L(X , ) is increasing w.r.t. k.

B.1. Proof of Proposition 20

In this section, we prove Proposition 20. The proof of Proposition 20 is based on the following
observation.

Lemma 21 (dﬁ,‘;}’ﬁ does not distinguish initial distributions with the same transitions) Let X be
a finite set and let mX denote an irreducible and aperiodic Markov transition kernel on X. Assume
the assumptions of Proposition 20.

Then, for any v1,vs € P(X), one has that

lim dng)L((X7m;X7V1)7 (Xumoxul/Q);C) =0,

k—o0

where the cost matrix is defined under the assumptions of Proposition 20 as C(x,z') = dx (z, ')

Proof We use symbols (X;);eny and (Y:)ien to denote realizations for the two Markov chains
(X, m, v1) and (X, mZ, vy), respectively. Then, by definition we have that

diwy (X, m¥ X, m¥ = inf EC(Xy, Ys). 21
WL (( e V1)7 ( e VQ)) Markovian coulpf]ling (X+t,Y2)ten ( b k) ( )

Consider a stochastic process (X, Y;):en defined as follows:

X
Xiy1 ~ my,

it Xy #Y;, then { independently;

t+1 ~ My,
if Xy =Y;, then X;p1 = Yy ~m¥,.

Then, (X4, Y3)ien is clearly a time homogeneous Markovian coupling. This coupling has been used

for studying convergence of Markov chains, and often called the "classical coupling" (for example,
by Griffeath (1975)) since it has the following property:
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Jlim P(X; # Vi) =0. (22)

For completeness we provide a proof of the equation above later. In fact, we prove something
stronger: there exists 0 < p < 1,#y € N,0 < € < 1 depending on the two Markov chains such that

P(X, # ) < (1- )%/, (23)

This equation implies that lim;_,~, P(X; # Y;) converges to 0 exponentially fast. Given this equation,
we have that

dwr (X, m&E, ), (X, m¥ 1)) <EC(X4, V) (24)
= ]P’(X;c = Yk) x 0+ IP(Xk #+ Yk)E(C’(Xk,Yk) | Xy # Yk) (25)
<(1-¢5p [Cllne. (26)

Hence,

k,’linc}o dgz/')L((vafcv Vl)v (Xa mf(’ VQ)) =0.

Now, we finish the proof by proving Equation (22).

Proof [Proof of Equation (23)] Let S = X x X denote the state space of the Markovian coupling
(Xt,Yi)ten. Let E = {(z,x) : ® € X} C S. For any state sp = (x0,%0) € S, we define a
stopping time as follows

Ts :=inf{t : X; =Y:}.

We know that if (X;,Y;) € E, then all the subsequent elements also are (by definition of the
coupling).
Letty’ :=inf{t: P(Tg <t | (Xo,Yo) = so) > 0} for any sy € S. Note that

o if s in E, then ¢}’ = 0 trivially;

« since mX is irreducible and aperiodic, one has that t;’ < oo for any sy € S: suppose (by
S

contradiction) that t;° = oo for some so = (z,y0) € S\E. Let x € X be any state. Given
that (Xo, Yp) = so, Xt # Y; for all ¢ € N almost surely. Then, by (Levin and Peres, 2017,
Proposition 1.7), there exists 79 € N so that V¢ > 7o, P(X; = x| Xo = x9) > 0 and P(Y; =
x|Yo = yo) > 0. By definition, since X; # Y; for all ¢ > 1, X} is independent of Y;. Then,

P(X; = 2,Y; = z[(Xo, Yo) = s0) = P(X¢ = z[(Xo, Yo) = s0)P(Yz = z|(Xo, Yo) = s0) > 0.
This contradicts the fact that X, # Y; for all ¢ € N almost surely. Hence, ¢;° < oo for all sg.
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Let tg := maxs, t;’, and € := inf,  P(Ts < to | (Xo,Yo) = so). Note that € > 0 since o > t°.
Furthermore, o and e are independent of initial distributions. Then, for any n € N, we have that

P(X(nt1)t0 7 Yint)to)
=P(X(ni1)to # Yinr)to | Xnto = Yate) XP(Xnty = Yaty)
=0
+P(X(nt1)to 7 Yint)to | Xnto 7 Yato) X P(Xntg # Yato)
_ Z ]P(X(n-i-l)t() # Y(n-i-l)to | (Xntos Yato) = 50) X P((Xntg, Yate) = s0)
so€S\E P(Xnto 7 Yuto)

= Y P(Ts >ty | (X0, Y0) = s0) X P((Xntg, Yate) = 50)
so€S\E

< (1 — G)P(Xnto 7é Ynto)'

X ]P)(Xnt() 7£ Ynto)

We let p := P(X( # Yp). Assume that p > 0 (otherwise 1 = v and the conclusion holds trivially).
Then, by the computation above, one has that

]P)(Xnto 7& Ynto) < (1 - e)np.

By our construction of the Markovian coupling (X, Y7)¢en, we know that P(X; # Y}) is decreasing
intsince Xy =Y; = X1 = Yiq1. Hence, for any ¢ € N, we have that

P(X, #Y;) < (1-¢'%lp.

This concludes the proof. |

Now Proposition 20 follows directly from the lemma above.

Proof [Proof of Proposition 20] Let 4 and ;¥ be the unique stationary distributions for mX and

Y respectively. Then, by the triangle inequality we have that

Mme »

hm Sup dgzl)L((Xv mz(v VX)? (Ya mzla VY)) S hm Sup d{:])L((X7 m?? VX)? (Xv mz(v MY))

k—oo k—o0
0
+limsup digy (X, m¥, 1X), (Y, m¥ , u¥))
k—o00
+limsup diyy (Y, m¥ 1Y), (Y, m¥ v¥))
k—o0
0

= dig (X, mE, 1), (Y, md, u¥)).
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Similarly,
At (X, md, i), (Y ym”, ) = liminf digy, (X, md, 1), (¥, m”, 1))
< lim inf iy, (X, mdS, o), (X, m3E, v¥)
—00

-~

0
+ likrgirolf d%)L((X, mX, VX), (Y, mY, I/Y))

+ liminf dy) (Y, mY ,v¥), (Y, mY, 1Y)
k—o0

0
= likm inf dg{,oﬁ((X, mX, VX), (Y, mY VY)).
—00

Therefore, limy_, o d{,’f}L ( (X, m¥, vX),(Y,mY, I/Y)) exists furthermore, for any vX and Y, we
have that

Jim iy, (X, m, v ™), (Y, myvY)) = dig, (X, md p), (Y, me’, u¥)).
—00

B.2. Convergence of the WL Distance

In this section, we establish that some convergence results on d(vlz/)L as k increases.

We assume that mX and mZX are irreducible and aperiodic Markov transition kernels on X and
Y, respectively. Let 41X and ;¥ denote their respective unique stationary distributions. We also
assume that the cost matrix is defined as in Proposition 20.

Proposition 22 (C'®)),.cy converges to a constant matrix.

Proof By Equation (19) and Proposition 20, one has that for any 7, j,

lim O} = lim dgy, (X, m,6), (Y, mY,6))) = dig, (X, md, 1), (¥, m¥ 1))

k—o0

In fact, we can provide an estimate of the convergence rate of dgi,)L in the case when C is a
pseudometric.

Theorem 23 (C*) converges exponentially with a pseudometric cost) Suppose that X =Y is
a pseudometric space, and that C := dx is the pseudometric on X. If we let

C:= d%;]oﬁ ((X’ m;)(’ /‘LX)a (Y) m?) ,U’Y))a
then there exists a rate of convergence 0 < p < 1 dependent on m and mY¥ such that
. k
V(i,9), 15 — e < 26¥|Ce. @7)

As a direct consequence, we have that
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Corollary 24 For any initial distributions v and vY , the quantity d\3;; (X, m¥ vX),(Y,mY,vY))
converges to d@oﬁ (X, m&E, 1), (Y, m¥, 1Y) exponentially fast.

Proof [Proof of theorem 23] Since C' is assumed to be a pseudometric, and dﬁf{’}L i1s an OTM distance,
using Proposition 34, we can use the triangular inequality on di,@)L. Letl <i,u<n,1<j1<m,
and k > 0. Then, one has that

k k
‘Cz(]) — Cil)’ :| dg:])L((X,m;Xaéz% (Y7m3/75J)) - dg;])L((va‘oxaéu)v (Y7m3,’5l)) |
< dWL((X7m§752)7 (X’m;)(aéu)) + de((Y7m¥75])a (Y)mzfm(sl))’

Then, from Equation (26), we have that there exists tg € N, 0 < ¢ < 1 such that

k

k k £
e — el <201 - o)l Ol
1
If we let p := (1 — €)%, then for any k& € N, one has that
k k
0 = Ol < 271l
Therefore,

max C) — min O < 20"|C|oc. (28)
1] 17

Using the shorthand min C¥) = min;; ijk ) and max C®) = max ijC-(f ), then we have the

following inequalities: '
min C'(©) < min OV <...< min C(®°) = ¢ = max C(*) <...< max C'V) < max O, 29)
This is a direct consequence of the following inequalities: for any k£ > 0,
min C*%) < min c k1) < max Ck+1) < max c®), 30)

We prove Equation (30) as follows. Let £ > 0 and let ¢, j, u, v be such that min C (k+1) — Cg“l)

and max C*+1) = Cgf,ﬂ). Then,

Ci Y = d (mX ,mY; ¢®) > min 0 31)
and
™D = dy (mX,m¥ ;0 W) < max ), (32)

where the inequalities in Equation (31) and Equation (32) follows directly from the definition of
optimal transport (the optimal transport cost is smaller than the maximal cost and bigger than the
minimal cost).

Then, using Equation (29) and Equation (28), we conclude the proof for Equation (27). |

Appendix C. Theoretical Details on OTM Distances

In this section, we add conceptual details that can help getting a detailed understanding of OTM
distances, and in particular the discounted WL distance.
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C.1. Computation of Finite-Time OTM Distances and Usage of the Memoryless Property in
the Discounted WL Distance

While we did not include it in the main text for the sake of simplicity, it is possible to compute
exactly the value of any finite-time OTM distance, in a way that is similar to the computation of the
discounted WL distance.

Theorem 25 Let p be a finitely supported probability distribution on N. Define n as the maximal
value in the support of p (i.e., n = max{t : p(t) > 0}). Consider two Markov chains X and ) as
well as a cost matrix C on X x Y. Then, di)r\(X,Y; C) can be computed in the following way:

Bypa(X, V€)= dy (v, 0¥, P .

where the iterated cost matrices are defined as

CP,'(t): inf E(C(X7,Y; T>n—tand (Xp—t,Yn—t) = (3,7 34
b (X,Y)INHH(X,))) (C( X7, Yr) [T 21 —tand (Xn—t, Yn—t) = (i, ])) (34)

where T' ~ p is independent of X andY . The cost matrices can be computed recursively as follows:

M = (i, j) (35)
P = 5,0, 5) + (1 - 6)dww (miX ,mY; op,(t_n) (36)

where 6y = P(T'=n—t|T >n—1t).

A proof of this theorem will be provided at the end of this section.

We remark that Equation (33) has a simpler form in the case of the geometric distribution (ie. in
the case of the §-discounted WL distance).

First note that, in the case of the (truncated) geometric distribution plg, og =0forallt =1,...,n.

Second, the geometric distribution has the so-called memoryless property: Recall the notation
p3°(t) = 6(1 — 6)" for the geometric distribution with parameter §. Assume 7' ~ p$°. Then,

P(T=t+sT>t)=6(1-0)=P(T =5s) (37)

Now, for k € N, let T = min(T, k) ~ plg. In this case, a variant of the memoryless property
holds as long as k > t + s where t,s € N:

P(TF =t +s|TF > t) =P(TF ! = 5). (38)

The proof is provided later. One immediate consequence of the formula which we will use soon is
the following formula:

P(TF =t +s|TF > t) = P(T* =t + 14 s|TF >t +1). (39)
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Now, based on the formula above, one has, for k& > ¢:

P (1)
C’Z-,j-
(X y)ifé(x y)E(O( e Yu) | T 2 k=t 0 (Xp—y, Yier) = (i,))

o oy BOX ey, Ypun ) [ TH 2 k4 (Xit, Yit) = (i, )) (Equation (39))

= inf E(C(X Y. T > k41 —tN (Xpaq1 v, Yirr¢) = (4, §)) (Mark t
(Xy)liln(x,y) (C(Xprt1, Yyrsr) | >k + (Xky1-t, Yir1-¢) = (4,7)) (Markov property)

k+1
p5+ 7(t)
74] ’

This shows that the cost matrices C’plg @ are independent of k for k£ > t. Thus, we can define
a single C%®) for all truncated geometric distributions p%, (C%®) := CP5+® for any k > t). Since
d; = ¢ is independent of k and ¢ as well, we get the simplified formula for computing the discounted
WL distance presented in Proposition 15:

5,(0
C@'j( = Cij

4,(1
CH = 605 + (1 - 8) dw <mZ~X,mJY;C‘5’(Z)).

Moreover, in particular C%®) = C?s®) for all t. Thus d&}L’ 5(X,Y) can be computed directly

from C%(*). This allows us to iterate all the way to convergence to d{;fﬁ 5(X,Y). We could not use
the same technique to compute the OTM distance with other inﬁnitely—sﬁpported distribution ¢ than
the geometric distribution p$°: if we tried to compute d{y (X', V) by computing it sequentially for
truncated versions of ¢, we could not reuse the cost matrix of the previous iteration for the subsequent
one because the updates in Equation (36) would be different depending on the cutoff.

Additionally, the simplification means the update is always the same, making this computation
into a fixed point iteration. This in turn enables the differentiation (that is justified through fixed
point properties).

Proof [Proof of Equation (38)] First we assume that k& > t + s:

P(T* =t + s|T" > t)

P(min(T, k) =t + s|min(T, k) > t)
min(T, k) =t + s|T > t)
—t+ 8T > 1)
5)
min(7T,k —t) = s)
THt — ).

I
~
||

P
P(T
P
P
P

(
(
(T
(
(
(

29



BRUGERE WAN WANG

Then, we consider the case when k = ¢ + s:

P(TF =t + s|T* > t) = P(min(T, k) = t + s| min(T, k) > t)
=P(min(T, k) =t + s|T > t)
=P(T >t+s|T>t)
=P(T > s)
= P(min(7, s) = s)
=P(T° =5s)
=P(T" " =)
|
Proof [Proof of Theorem 25] First note that for ¢t = n, Equation (34) reduces to
cri = inf E(C(Xr, Yr) | (Xo,Yo) = (i,)). (40)

I (X,Y)~II(X,Y)
Thus
dw (VX, VY; C’p’("))

— i E™(X5,Y))

! !
X~ X Y Y

= inf _E inf  EB(C(XpYr) | (Xo,Yo) = (X0 Y
XX ¥ <(X,Y)l~nl'[(X,y) (C(Xr, Y7) | (X0, Yo) = (Xp, o)))

= inf E(C(X7,Y; Markov propert
o ) (C(Xp,Y7)) ( property)

= deTM(va; C)

Now we prove the recursive formula (Equation (36)):

P () _ inf E(C(Xp,Yr) | T>n—t—1N(Xp—t—1,Yn—t-1) = (i,]
” (X)) (C(X7, Y1) [T = n (Xn—t—1,Yn—s-1) = (1, 7))

= inf PT=n—t—-1T>n—t—1DEC(Xp_t—1,Yn—i— X1, Yooi1) = (i,
(X,Y)~II(X,Y) ( T2 JE(C( t—1 t—1) | ( t—1 —1) = (4,7))

+ ]P)(T Z n — t|T Z n—t— 1)]E(C(XT,YT) ’ T Z n—tnN (antfl,ynftfl) = (l,]))

= inf 014103, 7 1—=06)E(C( X7, Y7) | T >n—tN(Xp—t—1,Yn—t—1) = (4,]
e B, 81 C0) (L= BB, Y7) | T 2 n = 0 (X Yomir) = (5.7)

— 51Ol )+ (1—6 inf  B(OXp,YP) | T>n—t0(Xnt1,Yot1) = (i,
t+1C (4, 5) + ( t+1)(x,y)l~nn(x,y) (CX7, Yr) | T Z2n—tN (X1 t—1) = (4,7))

. . X vy
= 0t410(4,7) + (1 — 0t41) (va)glé()(’y)E(C(XT,YT) | T >n—tN(Xn—t, Ynt) ~ (m;",m;))

= 610 (i. ) + (1= i) (m mY 5070
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C.2. A MDP Interpretation of the Discounted WL Distance

In this section, we interpret the algorithm for solving the discounted WL distance (see Proposition 15)
as a value iteration process on a certain kind of Markov Decision Process (MDP). This interpretation
is not novel, and follows from previous literature (Moulos, 2021; O’Connor et al., 2022), but it gives
a different point of view on our iterative algorithm in Proposition 15.

Markov decision processes (MDPs) are a type of model at the center of reinforcement learning
theory (Sutton and Barto, 2018). An MDP is defined by a state space .5, a collection of action spaces
(As)ses, a transition distribution P : [[, g As — P(S), and a transition cost ¢ : S x A x S — R.

A policy (or a strategy) isamap 7 : (s,t) € S x N+ a € Az which sends a state (and a time)
to an action.

Then, given such a policy 7 and an initial distribution ° € P(S), we can define a (time-
inhomogeneous) Markov chain S = (S, (mf’(t))teN, ) whose transition kernels are defined as
follows:

m>®(s) = P(n(s,t)), VteN

The goal of MDP theory is to find a policy that minimizes an expected cost ¢ = Eg..s_c(S) where
¢(9S) is defined based on the different transitions made in S, and the transition cost c(s¢, at, S¢+1).
Examples of the most frequent costs include:

* finite or infinite-time discounted cost (with length £ € N U {oco} and discount factor 8 € N):

k—1

e(S) =Y B'e(Sk,m(S), Se41);

t=0

* finite time average cost (with length £ € N):

=
c(S) = T c(St, m(St), St+1);
t=0
* infinite time average cost
=
(S) = h]?l 7 (S, m(St), St1);
t=0

¢ and others such as finite or infinite time total costs.

Such problems can generally be solved by two techniques: value iteration and policy iteration.
In fact, C%() defined in Proposition 15 is the Ith step cost matrix of a value iteration on the
discounted cost Markov Decision Process (.5, (As)ses, P, ¢) where

* S=XxY;
e Apy = C(mf,m;’);
« P((=",y)|(x,y),a) = a(z,y);

* c(z,y),0) = Clz,y).
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We note that this interpretation is not novel, and we list it here only for illustration purpose: As
mentioned in Remark 9, d%:,oﬁ 5 coincides with the bicausal optimal transport problem studied in
Moulos (2021) when binary cost and discount factor (1 — ) is considered. Moulos (2021) solves
this bicausal optimal transport problem by interpreting it as the same MDP as we described above.
Furthermore, this MDP interpretation has also been used in O’Connor et al. (2022) for computing
the OTC distance. However, O’Connor et al. (2022) used an average cost (instead of discounted cost)
for devising their algorithm.

Remark 26 Theorem 14 can be interpreted as a convergence result between discounted and average
cost MDPs: since d@"ﬁ s I8 the expected discounted cost of the MDP defined above, and dotc is
defined as the average cost of an MDP, this result can be interpreted as analogous to the classical
result that the cost of a discounted-cost finite MDP converges to that of an average-cost MDP if the
discount factor approaches zero; see, for example, Puterman (2014) for more details on this result.
Note, nevertheless, that this classical result holds only for finite state and finite action spaces, thus it
was not applicable here since our action space is infinite; see Appendix C.2 for more details.

Appendix D. Algorithm and Complexity

In this section, we give algorithmic details on how we compute the discounted WL distance (with
Sinkhorn regularization), and its gradient.

We make extensive use of the PyTorch framework (Paszke et al., 2019) to accelerate our code,
and we integrate our gradient algorithm into its automatic differentiation engine, so as to make it
usable as an optimization target.

The GPU-accelerated code used to compute the distance and its gradient is available as a python
librarys, installable with $ pip install ot_markov_distances

D.1. Computation and Differentiation of the Discounted WL Distance

Forward pass — computation of the distance The method we use to compute the depth-oo
discounted WL distance is based on Proposition 15. It is described in a simplified way in Algorithms
1 and 2.

Algorithms 1 and 2 are slightly simplified: we note that in both of them, the inner “foreach" loop
(line 4 for Algorithm 1 and 7 for Algorithm 2) is embarassingly parallel. In practice, we use GPU
acceleration to run the operations in this loop simultaneously.

Sinkhorn distances are computed using the method from Feydy et al. (2019).

Note also that for the depth-co version, we take care of saving the primal and dual solutions of
every optimal transport computation. These results will be used for the computation of the gradient
in Algorithm 3.

The complexity of one pass of computing dy;, (mgx , mJY; C’k> is O(nsnm) where ng is the
number of iterations necessary for the Sinkhorn computation to converge.

Thus, the total complexity of this algorithm is O (nsnd(nm)2), where ng is the number of
iterations needed to converge.

5. https://pypi.org/project/ot-markov-distances/
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Algorithm 1: Computation of depth-k discounted WL distance

Input: mX: [n, n] float array ;

mY : [m, m] float array ;

v [n] float array ;

vY: [m] float array ;

C': [n, m] float array ;

d: The discount parameter for the WL distance.;
e: Parameter for the Sinkhorn divergence;

k: depth ;
Output: deée((X,mX,yX), (Y,mY,Z/Y);C) :
Ccurrent =C;
foreach 0 <[ < k do
C’new = (0)0§i<n,0§j<m 5
foreach0 <: <n,0<j7 <mdo
‘ Cﬂew[ivj] - 60[27.]] + (1 - 6)d§]v (m;X,m]Y’ Ccurrent) 5
end
Ceurrent = Chews
end
Compute d = dSy (v, 1Y Ceurrent)
return d

Backward pass — computation of the gradient: % finite If the distance was computed for a finite
(small) depth-k, we can use PyTorch’s automatic differentiation engine (Paszke et al., 2019): since
all operations done are successive Sinkhorn distances, we only implement the differentiation of a
Sinkhorn distance according to (Peyré et al., 2019, Proposition 4.6 and 9.2), and use the automatic
differentiation engine to apply the chain rule, to compute the full gradient of the distance.

Note that this approach only works for a small k: the subsequent chain rule applications induce
risk of numerical error, as well as the usual problems associated with big differentiation graphs, e.g.,
high memory footprint, risk of gradient vanishing or explosion, etc.

Backward pass — computation of the gradient: £ = oo If the distance was computed until
convergence, we provide two things:

1. A function that compute the backward pass of the Sinkhorn distance, like in the previous
paragraph

2. A function that computes the gradient of the C%(>) matrix, defined in Algorithm 3, against
the parameters m>, mY and C.

Since the depth-oco discounted WL distance is computed as

provided with those two functions, the automatic differentiation engine is able to apply chain rule to
differentiate di}{fﬁ 5(.1’ , V) against all parameters vX VY mX, mY and C.
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Algorithm 2: Computation of depth-co discounted WL distance

Input: mX: [n, n] float array ;

mY : [m, m] float array ;

vX: [n] float array ;

vY: [m] float array ;

C': [n, m] float array ;

d: The discount parameter for the WL distance.;

e: Parameter for the Sinkhorn divergence;

Output: dy) 5((X, m¥,vX), (Y, my,v¥);C) ;

Stores: f: [n, m, n], g: [n, m, m] float arrays: dual solutions of the last step Sinkhorn

computations;
P [n, m, n, m] float array :primal solutions (i.e., optimal matchings) for the last step Sinkhorn
computation;
1 Ceurrent = C';
2 repeat
3 | Chew = (0)o<i<n,0<j<m
4 | f=1(0)o<i<n,0<j<m,0<u<n 3
5 g = (0)o<i<n,0<j<m,0<i<m i
6 | P =1(0)o<i<n,0<j<m,0<u<n,0<l<m
7 foreach0 <7 <n,0<j <mdo
8 Chewlis 4] = 0C|i, j] + (1 — 8)dSy, (m;’f ,mY; Cmm> :
9 flé, 41, glé, 4], Pli, j] = Dual and primal solutions of the calculation above
10 end

1 Ocurrent = C’ncw

12 until Cppens converges;

13 Compute d = dyy (l/X , VY; Ccumm);
14 save for backwards pass f, g, P ;
15 return d

More precisely, denoting by 1 the value of the loss that we want to differentiate. Denote:

ol

gOI, W (41)
V= aacl,d’ (42)
el T 8%/ 43)
vy = 87(3111‘[’, (44)

The backward pass of the depth-oo discounted WL distance should input vC ™ and output
G¢,GX and GY.
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Using the notations of the proof of differentiation Section E4.2 K := I,,,,, — (1 — 0) P, then we
have:

Vel = ATVC5 N = §(KT) v (45)
vmx :FTVC6’ = (1 - & FT(KT)"1yc" (46)
v @TVC‘”("’) (1-6)GT(K ) Ly 47)

Thus, we save some GPU power by applying above formulae, and computing (K T)*lvcé’(m)l

only once. Note also that (K T)_lvcé’(oo)l can be computed with linear equations solving primitives
instead of matrix inversion, for more efficiency and stability.

Algorithm 3: Gradient computation for the depth-co discounted WL distance

Input: Yo

I: [n, m] float array, value of the gradient (W)KK" 0<j<m
ij
Output: VAL [n, n] float array, value of the gradient ( 8;911?(_ )o<i<n,0<j<n
ij

Y .
V" 1[m, m] float array, value of the gradient (%)0§i<m70§j<m ;
ij

VCI: [n, m] float array, value of the gradient (%)05i<n70§j<m ;
restore saved variables f, g, P stored in Algorithm 2 or Algorithm 4;

L k1) 0<k<n,0<l<m,
Compute P = (P ) 0<i<n 0<]<m’

Fi= (FEF) SS0Ea = (P ek ) SESO5 T
- (o) St = () Seng
(Vcé (o2 1).reshape(n m) ;

F .reshape(n?,nm) ;

G.reshape(m?, nm) ;

P.reshape(nm, nm) ;

K :=1Iyn—(1-06)P;

L= (KT) " ve ™,

Vel =6L:

v™¥ 1= (1-6)FL;

vl = (1-6)GL;

V¢1.reshape(n, m);

v Lreshape(n, n);

v L.reshape(m, m);

return VO, V™1 vmT ],

Backward pass complexity The matrix K has size nm x nm. The matrix Vcé'(ml, is viewed
as a vector of size nm. Computing L := (K T) ! Vcé’(oo)l thus has complexity Csopve (nm) where
Csolve (k) is the complexity of the linear solver for k equations with k& unknowns. If the solver used

is LAPACKAnderson et al. (1999), C(k) = O(k?). Theoretically the complexity is lower: from
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Bunch and Hopcroft (1974), we know that the complexity of solving this equation is the same as
the complexity of a multiplication, which is theoretically C(k) = O(k*), where w < 2.371866
(Duan et al., 2022). So in theory the complexity for this step is O((nm)“) but in practice solvers
will have O((nm)?). Then the subsequent matrix multiplications have at most the same complexity
(the complexity of matrix multiplications since F and G are smaller than nm x nm)

Thus the total complexity of the backward pass is O((nm)“) theoretically but O((nm)3) in
practice.

Acceleration using Sinkhorn scheduling The procedure in Algorithm 2 can in fact be accelerated
using a trick related to Sinkhorn distances and fixed point algorithms. Since C%() can be defined
as the unique fixed point of Equation (9) (from Proposition 16), we are guaranteed to reach the
right result as long as that result is a fixed point of Equation (9). In particular, it does not matter if
some steps are approximative during the algorithm as long as the convergence is reached. Given
this observation, we can accept some intermediate steps to be approximate. Thus, to accelerate the
algorithm, we can replace the first steps with a good and faster approximation of the right iteration.
In practice one such way (mentioned, for example, by Peyré et al. (2019)) is to cap the number of
iterations in the Sinkhorn computation, and to use the result even if it has not fully converged. In this
way we obtain Algorithm 4, which is empirically faster than Algorithm 2.

Initialization In the same vein, as long as we are computing the depth-oo distance, the initialization
of the matrix Ceyrrent does not matter. We let Cy denote the initial value of that variable. Empirically
we find that Algorithm 2 and Algorithm 4 converge the fastest when we select Cy = 6C, (compared
to Cy = 0 or Cy = C which are other sensible choices). This choice of initialization relates to the
procedure one obtains if instead of computing di,}ff)h 5» 1-€., the OTM distance related to plg as defined
before Definition 8, we compute the distance related to p/¥ where pf(t) = P(Tg° = t|T§° < k)
where 75° ~ G(0).

D.2. Acceleration for Sparse Markov Chains

Sometimes, the Markov chains encountered are sparse, i.e., the transition kernel matrices of Markov
chains are sparse. Whenever this happens, we exploit this to develop algorithms for faster computation
of the discounted WL distance.

Let « € P(X). Then, we let suppa := {x € X,a, > 0} denote the support of . Given a
Markov chain X = (X, mX,vX), we define suppy = := supp mf for each x € X. We further
let degy = := |suppy x| and let dy := max,cx degy z.

In this section, we propose a modified version of Algorithm 1, that can compute dng)L, 5(X,Y)in
time O(klsnmdxdy) (which is a performance boost when dy << n or dy << m), where [, is the
number of iterations needed for Sinkhorn to converge.

This accelerated version of the algorithm is based on the following observation: if « (resp. 3)
are probability measures on X (resp. Y)

dw(Oz, /8; C) = dW (04\ supp a» /3\ supp B33 C(| supp axsuppﬁ) (48)

where &) gupp o (€SP 5| supp p) denotes the distribution induced by av on its support, and C| supp o xsupp 3
denotes the restriction of C' to supp « x supp . And the same holds true for the Sinkhorn distance:

dﬁ,v(a, /8; C) = d%v (Oé‘ supp a» /8\ supp /37 C'| supp aXsupp,B) (49)
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Algorithm 4: Computation of depth-co discounted WL distance with Sinkhorn scheduling

Input: mX: [n, n] float array ;

mY : [m, m] float array ;

vX: [n] float array ;

vY: [m] float array ;

C': [n, m] float array ;

d: The discount parameter for the WL distance.;

e: Parameter for the Sinkhorn divergence;

sinkhorn_update_size: integer ;

Output: diy;, (X, mX,vX), (Y, m¥,v¥);C);

Stores: f: [n,7n7[1, n], g: [n, m, m] float arrays: dual solutions of the last step Sinkhorn
computations;

P [n, m, n, m] float array :primal solutions (i.e., optimal matchings) for the last step Sinkhorn

computation;

Ceurrent = C';

Nsinkhorn = 1

repeat

(0)0§i<n,0§j<m,0§u<n 5
(0)0§i<n,0§j<m,0§l<m 5
P = (O)0§z’<n,0§j<m,0§u<n,0§l<m 5
foreach0 <: <n,0< 7 <mdo

Chewlis ] = 6CTi, §] + (1 — 8)dSy, <m§< om¥; Ccmem) limiting the number of iterations

Chew = (0)o<i<n,0<j<m 3
f =
g pr

O Minkhorn 3
fli, 71, 9li, 4], P[i, j] = Dual and primal solutions of the calculation above
end
Ccurrent = C’new;
if one of the Sinkhorn computations did not converge then
‘ Nsinkhorn+ = sinkhorn_update_size ;
end

until C.,,en has converged and all Sinkhorn computations have converged,
Compute d = dyy (VX VY Ccurrem);

save for backwards pass f, g, P ;

return d

Equation (48) and Equation (49) are direct consequences of the definitions of Wasserstein distances
and Sinkhorn distances.

We use this simple observation to devise Algorithm 5. Now, the computation of Cj1[i, j] =

¢ X Y . . .
diy <mi| suppmX > M5l suppmY Cl supp m xsupp mY | can be done in time only O(lsdxdy), which

is a substantial acceleration compared to the original time complexity O(lsnm) when the Markov
chains are of low degree.
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Algorithm 5: Computation of depth-k discounted WL distance with sparse Markov kernels

Input: mX: [n, n] float array ;

mY : [m, m] float array ;

v [n] float array ;

vY: [m] float array ;

C': [n, m] float array ;

d: The discount parameter for the WL distance.;
e: Parameter for the Sinkhorn divergence;

k: depth
Output: diy; (X, m*X,v%), (Y, mY ,vY);0);
Ccurrem =C;
foreach 0 <[ < k do
Chew = (0)0§i<n,0§j<m 5
foreach0 < i <n,0<j <mdo
Cnew [i, ]] = 50[717 ]]+(1_6)d§)\/ (mgfsupp m;X ) mﬁsnpp ijv ; Ccurrent\ supp mZX Xsupp m}’)
end
C’current - Cnew
end
Compute d = dyy (l/X , VY; Ccurrem);
return d

We could also continue until convergence in a similar way as Algorithm 2. But the dual solutions
of the computation at line 5 cannot be directly used as the gradient for the whole distributions, thus
we need to extend them using the technique from (Feydy et al., 2019, Proposition 2 and comments
below). That operation requires recomputing one iteration of Sinkhorn with the full (non-restricted)
distributions, which is O(nm). Moreover, this needs to be done nm times, ending in a O((nm)?)
complexity. Additionally, the matrix inversions we do in Algorithm 3 are also O((nm)?). Thus, in
this case, we cannot accelerate the backwards pass.

Appendix E. Proofs and Technical Details

E.1. Preliminary Results

In this section, we will present some lemmas that will be useful in subsequent proofs.
Let us start with a well-known alternative formulation for optimal transport as a linear program-
ming problem, in the finite case, that allows us to justify taking optimal matchings.

Lemma 27 (Equation (2.11) in Peyré et al. (2019)) Since X and Y are two finite sets, without
loss of generality, we identify them to {1...n} and {1...m}, respectively. Then, the cost function
C:{1...n} x{1...m} — Ry can be seen as a matrix in R"*™. Then, the Wasserstein distance
can be expressed as the following linear program:

dw(a, 5;C) = m}in(P, C) (50)
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where the minimum is taken over the (compact) subspace [0, 1]"*" in which each P satisfies that
Yoy Py = By) and 375 Prj = a(x) foranyx =1,...,nandy = 1,...,m, i.e., the compact
space of distributions whose marginals are o and 3. See (Peyré et al., 2019) for more background on
these notions.

In particular, there always exists a coupling (X,Y) that verifies the infimum in Equation (1).

Lemma 28 (Optimal transport is 1-lipschitzian in the cost matrix) Let X and'Y be finite sets
such that n := | X | and m = |Y'|. Let C1, Cy € R*™ denote two cost matrices between X and Y,
andlet o € P(X), 3 € P(Y). Then, for any € > 0, one has that

|diy (e, 8; C1) — diy (e, B; C2)| < [|C1 = Co|so- 1

Proof [proof of Lemma 28] Without loss of generality, we assume that d{ (o, 5; C1) > diy (o, 5; C2).
Let (X¢, Y ) be an optimal coupling for dsy (o, 8; C2). Then, we have that

|diw (v, B; C1) — diy (v, B; C2)| S E(C1(X,Y€) —eH(XY) —ECo (X, Y°) + eH(X,YF))
S E|C1(XY) — Co( X, Y|
<|C1 = O2| -

This concludes the proof. |

Lemma 29 (Continuity of Banach fixed point (Corollary 1.4 in Pata et al. (2019))) Let Z and
A be metric spaces and assume that Z is complete. Let F' : Z x A — Z be a continuous map.
Assume that there exists « € [0, 1) such that for each A € A, F : Z — Z is a-Lipschitz. Then, for
each \ € A, Fy has a unique fixed point z(\) and the map X\ — z(\) is continuous.

Lemma 30 (Differentiability of Banach fixed point) Ler Z and A be differential manifolds, and
assume that Z is complete. Let F : Z x A — Z be a C' map. Denote d,, its differential along Z
and dy its differential along A Moreover, suppose that for some \, idz — d\zFK 2(\),\) IS invertible.
Then the fixed point z(\) exists for any A\ € A and is differentiable in X\ and more explicitly

dz = (id — d),F) " A\ F (52)

Proof Without loss of generality, we prove the result when Z C R™ and A C R™ are open
subsets in Euclidean spaces and the general result follows from taking charts in manifolds. We
define G : Z x A — R" by letting G(z,\) := F(z,\) — z forany z € Z and A\ € A. Then,
G is also continuously differentiable. The differential (or Jacobian) of G w.r.t. z is computed as
d|,G = d|.F" — id. By assumption, we know that d .G is invertible and hence the implicit function
theorem applies: there exists a unique differentiable function z : U — Z defined on a neighborhood
of X such that G(z(A),\) = 0 and dz = —d|,G~" d|,G. This means that F(z()), \) = z(\) and

dz = (id — d,F) " d)\ F, (53)
which concludes the proof. |

We also provide the following gluing lemma for Markovian couplings, useful for the study of
OTM distances:
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Lemma 31 (Gluing lemma for Markovian couplings) Let (X;, Z})ien € IN(X, Z) and (Z2,Y})1en €
II(Z,Y) be Markovian couplings. Then, there exists a (time inhomogeneous) Markov chain on
X xZxY

(Xza Zéa Y )tEN

so that (X], Z))ien ~ (Xt, Z)ien, (21, Y] )ien ~ (Z2,Y3)ten and furthermore (X}, Y/ )ien is a
Markovian coupling between X and ).

Proof We let vX% := law((Xo, Z3)) and vZY := law((Z3,Y))). For any t € N, let mXZM .

P((Xey1, ZE)(Xe, Z}) = (z,2)) € C(m mZ) forany x € X and z € Z. Similarly, let
mZY 0 = =P((Z¢1. Y )I(Z2,Y)) = (2,y)) € C(mZ,m) ) forany z € Zandy € Y.
By the Gluing Lemma (Villani et al., 2009) for probability measures, one has that

o there exists vXZY € P(X x Z x Y') whose marginals on X x Z and on Z x Y coincide
with X% and vZY | respectively, and furthermore, the marginal on X x Y, denoted by v XY,

is a coupling between vX and 1Y

XZY(t)

* foranyx € X,y € Y and z € Z, there exists mz.y € P(X x Z xY') whose marginals
ZY (t)

on X x Z andon Z X Y coincide with mfzz ® and My respectlvely, and furthermore,

the marginal on X x Y, denoted by vXY , is a coupling between mX and my

By the Kolmogorov extension theorem (Kolmogorov and Bharucha-Reid, 2018), there exists a

Markov chain (X7, Z!,Y/)cn with initial distribution 2% #Y and transition kernels at each step t € N

defined by: P((X] 1. Z}41, Y/ 1) |(X1, Z0,Y]) = (2. 2,y)) = misy W forany v € X,y € Y

and z € Z. By construction, one obviously has that (X}, Z);en ~ (X, Z1)ten, (Z], Y] )ien ~
(Z%,Y;)ten and that (X7, Y/ )sen is a Markovian coupling between X and ). [ |

We end this section with an alternative yet direct description for the expected value involved in
the definition of the OTM distances.

Lemma 32 Given any Markovian coupling (Xy,Y;)ien between X and Y, let vXY¥ € C(vX,vY)
denote its initial distribution and let (mfy’(t))t N € C(m¥ ,mY)N+ denote its Markov transition
kernels at each step t € N := {0,1,2,...}, where C(m. ,mY ) denotes the space of all Markov

transition kernels mXY such that mX Y € C(m¥ m; mY) foralli € X and j € Y. Then,
o, XY, (=) XY, (1-2) XY,0) XY
EC(Xr, Y1) = ZP Z C’Lt’]tmitfljtfl,itjt My ji—sjit—1je—1 " Miojo,irr Viodo 54
10,J05-+50t,]t
where mfj(; 0 m;-?y’(t)(k, 1) is a shorthand for the transition probability.
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Proof By properties of expected values, one has that for any give ¢t € N,

EC(Xy,Yy) =) CiyP(X; =i, Yy = ji)
it,Jt
= Z Ciji P( Xy =04, Yy = 3¢| Xem1 = -1, Ys1 = 1) P( X1 = 441, Vi1 = Ji—1)
Tt—1,Jt—1,0t,Jt
XY, (t-1 . .
= Y Citjtmit71j£71,z‘)tjt]P)(Xt—l = it—1, Yi—1 = ji—1)
Tt—1,Jt—1,%,Jt

_ Z C.. XYty XY, (t-2) XY, 0) XY
- LoJt i1 Gt —1,0¢ 0t it—2Jt—2,0t—15t—1 100,411 %0Jo *
10,J05--+50¢,Jt

The last equality can be proved inductively. Since 7" is independent of (X4, Y;):cn, Equation (54)
follows directly from the calculation above. |

E.2. Proofs and Technical Details from Section 3

Proof [Proof of Remark 4] Similarly to Lemma 27 we remark that, under our assumption that the
spaces X and Y are finite of sizes n and m respectively, we write them as {1...n} and {1...m}.
Given any Markovian coupling (X, Y7):en, by Lemma 32, we have that the value E C'(Xr, Y7) is
completely determined by the initial distribution

v XY c (X, vY)

and Markov transition kernels at each step ¢ > 0 of (X, Y})en:

(mﬁY,(t))teN € C(m mY)N

where C(mX,mY) denotes the space of all Markov transition kernels mXY such that mX Y ¢

C(mi, m; Y)foralli € X and j € Y. More precisely,

CXY,(t-1) XY, (1-2) XY ,(0)
EC(Xr,Yr) = ZP Z Cltvﬂtmn_ljt_l7itjtmit_2jt_z,iz_1jt_1"'mzomm ZoJo' (55)

20,J05-++,5t,Jt

Note that for any o € P(X) and § € P(Y), the set of all couplings C(«, ) can be identified
with a compact subset in [0, 1]™*™ (see also Lemma 27). Then,
C(VX’ VY) X C(mf(, mzf)N+ = C(VXa VY) X (H:EGX,yGYC(m:pX’ m;/))N+
is a countable Cartesian product of compact spaces and it is hence compact. Moreover, the right-hand
side of Equation (55) is obviously a continuous function defined on C(vX,vY) x C(mZ, m¥ )N+

Therefore, the infimum of the right-hand side of Equation (54) is attainable in C(vX, Y) X
C(mZ, m¥ )N+ and hence we conclude the proof. [ |
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Proof [Proof of Proposition 5] Let p distribution on N,

dorp(X, Y€)= inf Ero, 7 (x,vi) C(X1, Y1),

(Xt,Yt)ten
= inf t)C( Xy, Ye),
(Xtﬁ/t)teN%p() ( ! t)
> p(t inf X, Yi),
% (X¢,Y3)ren ( K k)
= Zp )y, (X, D).
keN

= Ervp(dyy1,(X, )

Proof [Proof of Proposition 6] Let p be a distribution on N, and X and ) be stationary Markov
chains.

Similarly to Remark 4, one can prove that there exists a stationary Markovian coupling that
realizes Eq. 4: one can prove that the space of stationary Markovian couplings is compact (as a
closed subset of the space of Markovian couplings) in the same sense as in the proof of Remark 4,
and the same compactness argument gives the existence of the optimal coupling.

Consequently, let (X, Y;) be a realization of that coupling.

dorm (X, Y;C) = (Xti{/ltf)teN Erpri(x,vi) C(Xr, Y1),

< ETwp,TJL(Yt,?t) C(YT a?T)
= ETNp,TJL(Yt YY) C(Xo,Y0)
= C(X0,Y0)
= dotc(X,Y;0)

Proof [Proof of Proposition 7] We, in fact, prove that the following 4 statements are equivalent:

1. dorc(X,Y) =0;
2. diypy (X, V) = 0;

3. there exists a Markovian coupling (X¢, Y:)ieny € II(X,)) so that V& > 0,C(X,Y:) = 0
almost surely;

4. for all distributions ¢ over N, d{;,(X,Y) = 0.

— 2: This is a direct consequence of Proposition 6: if dorc(X,)) = 0, then
0 < diyp(X,Y) < dotc(X,)) = 0.

Thus, df)py (X, V) = 0.
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2 = 3: Suppose dy;(X,)) = 0. Then, by Remark 4 there exists a Markovian coupling (X, Y;)sen
such that:

0=E(C(Xrp,Yr)).
Then, suppose (by contradiction) that there is ¢o so that p(to)C(Xy,, Ys,) > s > 0 with
positive probability o > 0. Then, E(C(X7,Yr)) > a - s > 0. Contradiction.
Thus, p(t)C(X¢, Yz) = 0 almost surely for each ¢ € N and hence C'(X3, Y;) = 0 almost surely
(since p(t) > 0).
3 = 4: This holds obviously.

4 — 1: Assume 4. We know from Theorem 14 that

dorc(X,Y) = lim dyt, 5(X,Y) =1im 0 = 0.

We finish this section with an interesting stability result of OTM distances with respect to the
choice of the distribution p € P(N), which will be useful for subsequent proofs.

Lemma 33 Let {p;}ren € P(N) be such that limy_, . dyv(pg,p) = 0 where dyvy denotes the
total variation distance. Then for all X, Y, one has that limj, 0 dry (X, V) = diypp (X, V).

Proof [Proof of Lemma 33] Let ¢ > 0, choose N so that there exists a sequence of random variables
Ty ~ py forany k > Ny and T' ~ p such that P(Ty, # T) < e.

Then let (X;,Y;)ien (resp. (X[, Y})ien) be an optimal coupling independent of T (resp.
independent of Tj) that verifies dyp\(X,V;C) = EC(Xp,Yr), (resp. dlpy (X, V;C) =
E C(X%,,Y7,)). Then, one has that

Aoy (X, Y5 C) <E C(XF, YF)
=P(X = Xp)E(C(XF,YF) | T = Ti) + P(X # Xp)E(C(XE,YF) | T # Ti)
<E(C(XF,YF) | T = Ti) + €] Clloo
=E(C(X5, Y1) | T =Ti) + €] Cll

= (B, ) ~ 5O, YE) | T £ TRX £ X)) + el

1 1
< Pk .
< 50+ (14 1) Il

<d3m (X, V5 C) + 2eddipy (X, Y C) + €(1 + 1 + 2¢)||C| if € is small enough
<dgra (X, Y5 C) + 5el|Cf -

This concludes the proof. |
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E.2.1. THE OTM DISTANCE IS A PSEUDOMETRIC

We first introduce some notation. Let (X, dx ) be a pseudometric space. We let M (X') denote the
collection of all Markov chains X = (X, mX, vX) with state space X. Then, ddyry induces a map
as follows

A M(X) X M(X) = Ry

sending (X1, X2) to dfypy (X1, X2; dx ) with dx being the cost function

Proposition 34 (OTM distances are metrics) If X =Y is a pseudometric space (X ,dx) and
the cost C' is the pseudometric distance on X (ie., C(x,y) = dx(x,y)). For all p € P(N),
dry : M(X) x M(X) — Ry defines a pseudometric on M(X).

When dx is a metric and p is fully supported on N, then doTwm,p is also a metric.

In practice the assumption that C' is a pseudometric is respected for example in the framework of
Chen et al. (2022), where the states have labels in a common metric space.
One can also derive a slightly more general result, to relate to p-Wassertein distances:

Proposition 35 Let o« € [1,00). If X =Y is a pseudometric space (X ,dx) and the cost C' is
defined as C := d%, i.e., C(x,y) = dx (x,y) forany x,y € X.
Then, for any p € P(N), the map h : M(X) x M(X) — R, sending X,V € M(X) to
1
(dpai (X, V;d%)) > defines a pseudometric on M(X).
When dx is a metric and p is fully supported on N, then h is also a metric.

Proof [Proof of Propositions 34 and 35] Proposition 34 is a direct consequence of Proposition 35 by
taking o = 1. We thus only need to prove Proposition 35. Let h like in Proposition 35. We prove
that h is a pseudometric on M (X)) through the following three steps.

* Given any Markov chain X, we let X be any realization of X. Then, (X, X) is a Markovian
coupling between X and itself. Hence,

0 < (@ (X, X3d%)) 7 < (Ed%(Xr, X7))7 =0

* Symmetry: Given any two Markov chain X’ and ) on X, any Markovian coupling (X¢, Y7)sen
between X" and ) naturally (and bijectively) gives rise to a Markovian coupling (Y7, X ):en
between )Y and X'. Hence,

Ao (X, V:d%) =  inf  Ed%(Xr,Y
OTM( X) (Xe,Y3)ren X( T T)

—  inf Ed%L (Y X
(Xtﬂ}/t)tGN X( T T)

= dz())TM(y’ X;dx)
h(X,Y) = h, X)

* Triangle inequality: The proof of the triangle inequality is based on Theorem 31. It is similar
to the proof of the triangle inequality in Villani et al. (2009, Definition 6.1).
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Suppose X', Y and Z are three Markov chains on X. Then,

h(X7y)a = dIE)TM(X7y;dO)l()

—  inf Ed% (XY
(Xt’}/t)tEN X( 4 T)

< inf Ed%(XpV
T (Xt,Z,Ye)ten X( 4 T)

(Xt:2¢,Yt)ten ((dx (X7, Z1) x(Z1,Yr))")

1 1)\ &
< inf Ed% (X, Zr))e + (Ed% (Z7,YT))= Minkowski
< o (B, Z0)% + (B dS(Zr,¥0)* ) (Minkowski

where we are infimizing over all Markov chains (X}, Z;, Y; )ty Whose marginals (X, Z;)ien, (Zt, Yi)ten
and (X4, Y3)sen are Markovian couplings.

Now, by Lemma 31 and Theorem 4 we can take (X/, Y/, Z;) a Markov chain so that

h(X, Z) = (Bd (X, Z}))=
h(Z,Y) = (BdS (Zp, Y1))=.

Hence

1 N
X f EdS (X7, Z7))> + (Ed% (Z7,YT)) >
WAV S (X Z00) (B (2 Y2))

< (B3 (X7, 20))% + (Bdg (2, Y1)7 )
= (h(X, Z) + h(Z,9))"
h(X, V) < h(X,Z)+ h(Z,)).

Now, for the second part of the statement, assume that p has full support on N and dx is a metric.

Assume further that dfy (X, Y;d%) = 0. Let (X;, Y;);en be an optimal Markovian coupling ((cf.
Remark 4) and let 7" ~ p be an independent random variable. Then,

E(d% (X7,Y7T)) ZP E(d% (X, Y:)) = 0.

This implies that E(d5 (X, Y:)) = 0 for all ¢ € N. Since dx is a metric, we have that X; = Y; for
all £ € N and this means that X and ) are isomorphic to each other. |

E.3. Proofs and Technical Details from Section 4

Proof [Proof of Proposition 11] Notice that limy_., drv (p’g, p$°) = 0. Then, the proof follows
from Lemma 33. |
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Proof [Proof of Proposition 15] We prove by induction the property that,

k—1
67(k) 3 t k
CV = inf E 0(1=9)C(X, V) + (1 —0)"C( Xk, Yr)
Y (X Yoren€ll(X,m¥ 8),(Y mY 5;)) (;
(56)
and furthermore, there exists an optimal Markovian coupling for each ¢, j that shares the same

Y,(t),k)

transition kernels (mff +>0, where ¢ denotes the step number.

The case when k = 0 is trivial as by definition C%(°) = C. Now, suppose that Equation (56)
holds true for some k£ € N. Then, let us prove that the equation holds for k£ + 1.

By definition, we have that ij“ﬁl) = 0C;j+(1-9) dw <mZX, mJY; C‘s’(k)> . We let mf]-(y7(0)’k+l €
C(m#X,mY) be an optimal coupling for each i € X,j € Y. Then, we expand upon mXY (Ok+1

J
to define a new set of transition kernels (mffy’(t)’kﬂ)tzo such that mffY’(t)’kH = mffy’(t_l)’k

for all t > 0. Now, for any 4, 5, let (X, Yy)ien € I((X,m&, &), (Y, m¥,d;)) be a Markovian

coupling with the prescribed transition kernels (mffy’(t)’kﬂ)tzo. Then,

(k1)

= 0C3; + (1= 8) dy (m¥,m¥ ;)
=6C(Xo,Yy) + (1 — S)E(C‘S’(k) (X1, YI))
= 60(Xo, Y0) + (1= OE(E(C3 | (X1, 11) = ()
k—1
(1-0)E (E (E <5Ci’j/ +) 61— 6)'C( Xy, Yigr) + (1 — 6)*C (X1, Yk+1)> | (X1,11) = (Z',»j/)>>

t=1
= 6C(Xo, Yo)+

k—1
(1 — 5)E <5C(X1, 1/1) + Z 5(1 - 5)tC(Xt+1, YVt.H) + (1 - 5)kC(Xk+1, Yk+1)>
t=1

k
=E (Z 5(1 = 0)'C (X, Yy) 4+ (1 — 6)F 1O ( Xy 1, YkH)) .
t=0

This concludes the induction step.

Hence, for all £ € N we have that

5,(k)
ij

_ inf EC(X5,Yos). 57
(X Y5) e €TL((X o 5,),(Y ¥ 57)) (rpYrp) o7
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In this way, we have that

dw (VX,VY;CW“)) —  inf E(C@(k)(xo,yo))

Xor~vX YorrY
- 5.0 -
N XONV;(I{fYONVY E(E<CZ] | (X()) }/0) == (Z,])))
= inf EC(X;s,Y,
(Xt,%)teNEH((X7m3(7VX)7(Y7m2/7VY)) ( Tlf TIS)
= d%’“v)L,a(X, V).

This concludes the proof. |

Proof [Proof of Proposition 16] This is actually related to general convergence results on finite
discounted MDPs. However, as our action space is infinite (see Section 4.4 for the description of the
relevant MDPs), we will provide a complete proof here. We also note that we use arguments similar
to the one below for proving other results such as Theorem 17.

When § > 0, the convergence of C%(%) follows from the Banach fixed point theorem (see for
example Lemma 29). Let us define ' : R"*™ — R"*™ by sending D € R"*™ to D’ € R™*™ such
that for any ¢, j:

Dj; == 6Cij + (1 = 8)dw (m,m; D).
By Lemma 28 one has that F' is a (1 — 0)-Lipschitz function when considering co-norm on R"™*".
Since 1 — § < 1 whenever § > 0, the Banach fixed point theorem applies. By definition, Co(k+1) —
F (C‘S’(k)). Hence, using the Banach fixed point theorem, we conclude that C%®(*) converges to the
unique fixed point C%() of F.
Then, by Lemma 28 again, one has that

lim dw (yX, VY 057(16)) = dw (VX’VY;C«S,(OO))
k—o00
Then, by Proposition 11 and Proposition 15 one has that
i 5(X,Y) = dw (VX7 vy C‘s’("o)).

Now, suppose that C%() is a constant matrix with value c. Let 1 <i<n,1<j5<m. Then,
by definition of the fixed point, one has that

Co) = §5Cy; + (1 - 8)dw (m;" ,mY; 05400)). (58)
This implies that ¢ = 6Cj; + (1 — &) c and thus C;; = c for any 4, j. Hence, this will be a contradiction
unless C'is also a constant matrix.

Finally, the speed of convergence result is also obtained as a consequence of the fact that the
application F'is (1 — §)-contracting. Thus, by Pata et al. (2019, Corollary 1.1) we have that

_ SNk kK
||05,(k) _ 057(00)”OO < (156)|C5’(1) — s < 2(155)

1€l oo -
where the rightmost inequality follows from the fact that ||C%(1)||,, < ||C/|s which can be proved
using an argument similar for proving Equation (29). Finally, |d\; s(X,Y) — durf (X, V)| <

2(%5)]6 |C||o follows from Lemma 28.
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The case when ¢ = 0 is dealt with in Proposition 22. |

Proof [Proof of Proposition 12] By Proposition 16, we know that when § > 0, C%*) converges to
the unique fixed point C%(°°) of Equation (9). This implies that for any i € X and j € Y,
0.
) = 6Cy5 + (1= 8) dw (m¥ mY ; C4)).

Define mXY : X x Y — P(X x Y) by sending (4, 5) to an optimal coupling between m:X and

mJY for the optimal transport problem in the equation above. We finally let »XY be an optimal
coupling for dw( X Y. 0ol )) Forany: € X and j € Y, we construct a time homogeneous
Markovian coupling (X t] Y, e )ten With initial distribution ¢; ® ¢; and transition kernel m&XY . Then,
we let D;; = IE(C’( 75 YTOO)) We have that

D :E( (X 7o, Ye) )

=E<OO (1 —d)'C( Z”»K”))

=0
o0
t 1 ij v
5Ci;+ (1 - O)E (X9, v)
o0
t 1 XY XY XY
_5019 + 1_ § :5 § : C’tvﬂtmlt 1e—1siegt Mig—agi—asie—1de—1 " Mg
t=1 U1,J1 50050t Jt
:(5Cij+
XY XY XY
1-0))_ [0Ci 5 + E S(L=8)"" N Cogomd Mg i M g | M
11,J1 t=2 12,J2;--50¢,Jt

:5Cij + (1 - 6)E(i1,j1)~mf§y (Diljl)'

Here in the fourth equality we used Equation (54). Then, D is the fixed point (the uniqueness follows
from an argument similar to the one for proving Proposition 16) of the equation

Dij = 6Ci + (1 = 0)E, xv (Diyj,), Vi, j.
ij

Notice by definition, C%(>) is also a fixed point of the equation above. Then, C%(*®) = D. Hence,

if one constructs a time homogeneous Markovian coupling (X;, Y;)¢en with initial distribution XY
and transition kernel mXY . Then,

E(C(X1ee, Yrpo)) = E(E(C(X1ge, Y1) | (X0, Y0) = (4,4)))

= E(i,j)NVXY (Dz‘j) = E(i,j)NVXY (ij(oo)) = dwﬂ,a(xay)-
This concludes the proof. |

Proof [Proof of Theorem 14] Choose a sequence d,, — 0 such that

: (o0) . — i S (o0) .
nh_)rrgo Ay, s, (X, V;C) = llg€deL75(X,y, C).
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By Proposition 12, d%i;’ﬁ 5. (X,Y; C) can be obtained by an optimal time homogeneous Markovian
coupling, which is determined by a transition kernel matrix P,, € 7 and an initial distribution vector
Tn € P, where T = {P € [0, JXIVIXIXIVI ' p1 =1} and P = {7 € [0, JXIV] 1T7 =1},
where 1 is the vector containing all ones. P and 7 are both compact spaces. Up to a choice of
subsequence, we assume that

* P, converges to P in ¢, norm, where P is itself a transition kernel matrix;
e The limit lim,, 00 6 Y50 (1 — 6)!(PL) ', exists and is denoted by p. Obviously, u € P.

Now, we have that

T _ _ T(pt

P;L—nh_r)go& E (1 )y Pt(pPHtx
— _ t+1
—nlggjzl "B

T O .- tept\T
= lim T3 ;(1—%) (P) 7m0

n—o00 1 — Op,
o
— 1 T
o
= lim 6, > (1—6,)(P)Tr, — lim 6,P m,
n—o0 =0 n—oo

Note that we have used the fact that §,, — 0 several times in the derivation above. This means
that y is stationary w.r.t. the transition kernel P. Moreover, by assumption that vx and vy are
stationary, it is easy to check that u, regarded as a probability measure still denote by p, is a coupling:
u € C(vx,vy). In this way, there exists a time homogeneous Markovian coupling (X, Y} )¢en with
transition kernel matrix P and with a stationary initial distribution x. Hence,

lim inf dig) (X, Y:C) = lim digy 5 (X, 9:C)
=EC(Xo,Yo) > dorc(X,V; C).

On the contrary, we know from Proposition 6 that lim sup;_, div;, s(X, Y; C) < dorc(X,Y; C)
and this concludes the proof. |

E.4. Proofs and Technical Details from Section 5
E.4.1. THE DEFINITION AND BASIC PROPERTIES

We first provide a precise definition of the entropy-regularized optimal transport, including its primal
and dual solution, which will later be useful to compute its gradient.
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Definition 36 (Entropy-regularized optimal transport) Remember that, using the same notations
as in Equation (1), given € > 0, the (e-)regularized OT problem is defined as:

dw(a, 5;C) = (X,YI)nei&a,B)E C(X,Y)—-€eH(X,Y). (59)
Where H denotes the entropy function, i.e., H(X,Y) := =3, x .y Pijlog(F;;), where P;; =
P(X =4,Y =j).

The distribution P € R‘f'x‘Y' of the optimal coupling verifying the minimum is called the
primal solution.

Solving this problem is usually done using Sinkhorn’s algorithm, an iterative algorithm described
by Peyré et al. (2019, Chapter 4.2) — or a variant of described in Peyré et al. (2019, Chapter 4.4). The
latter algorithm ends up computing as a byproduct the so-called "dual solutions” f € RIXI g ¢ RIY1,
which are the solutions to the following dual optimization problem:

argmax (f,a) + (g,8) — €<€_f/e, K6_9/6>, (60)
fERIX| geRIY|

where the matrix K is defined by K;; := e~Ciile,
We then provide a precise definition of the entropy-regularized discounted WL distance.

Definition 37 (Entropy-regularized §-discounted WL distance) Analogous to Proposition 15,
let C denote the cost matrix, § be the discount factor, and € be the entropy-regularization parameter.

We recursively define matrices C<%W for 1 =0, ..., k as follows:
PO =y (61)
€,0,(1 € €,0,(1—1
c%(>zacﬁ+(1—®dw(mfﬂnfx%( )). (62)

Then, the §-discounted entropy-regularized WL distance of depth k is defined as follows
A5, (X, V5 C) = iy (X075 Co00). 63)

We note that the matrices defined above satisfy some convergence properties similar to those in
Proposition 16 for C%():

Proposition 38 (Convergence of C%>(*)) Forany § € (0, 1] and any € > 0, the matrix C<%*) con-
verges as k — co. In particular, C<%%) converges to the unique fixed point C%(>°) of Equation (62).
Moreover, C<%(%) converges at rate

1—68)k
joes® - i) < L)+ elog(nm)).

where n := | X | and m :=|Y|.
Proposition 39 The limit d\y, 5 (X,Y) = limg_,00 diwy 5 (X, V) exists and in fact,
A 5. (2, ) = diy (v, 020, (64)

Furthermore, one has that

(1-9)*

|dwr, 5.6 (X, V) — digy 5 (X, V)| < ;

(2[Clloc + €log(nm)).
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The proofs of the two propositions above follow essentially the same arguments in the proof of
Proposition 16 for the case when § > 0. The extra term enm is from the fact that the entropy function
satisfies that |H| < log(nm). We omit the proofs here.

E.4.2. PROOFS

Proof [Proof of Theorem 17]

Convergence When £ is finite, the proof follows from the convergence of Sinkhorn distance to
regular optimal transport (Cuturi, 2013, Property 1)

When k = oo, the proof is based on the property of Banach fixed points in Lemma 29. Consider
the space Z = RY;™ endowed with ¢>° distance where n := | X| and m := |Y|. Let A = [0, c0).
Let F : Z x A — Z be defined by

F(Aye):=0C+ (1—9) (d%V(miX’mJY?A))gign,lgjgm'

Now, consider A, B € Z. Then,

IF(A.€) = F(B, )l = (1= ) | (diy (m¥ Y 4) = di (¥ mYB)) oo

=(1-9) max ‘d%v(mgx,mjy;A) — d%v(mix,m]y;B” :

Hence, using Lemma 28, we have that for any given 7 and j,

[dty (¥, m)5 A) = diy (¥, m}s B)| < ||A = Bl|oo.
Therefore,
IF(4,) = F(B,€)low = (1= 6) | (dfy (m¥,mY: 4) = diy (m¥,mY’; B))
< (1= )4~ Blle.

1§i3n,13j3mHm

Now, by Lemma 29, Proposition 38 and (Peyré et al., 2019, Proposition 4.1), one has that Cf"s’(oo),
as the fixed point for F¢, is continuous w.r.t. €. Hence, by Lemma 28 and Proposition 39, one has that

d%oﬁ,a,e(x’y) = diy (ijyy;ce,a,(oo)) 0, g (VX7VY;C(5,(00)) _ d(V‘{,"ﬂ’(S(X,y).
Convergence rate To prove the bound, denote by ¢(e) the fixed point of A — F'(A, ¢€) for any
€ € [0,00).
We first note that for any probability measures « € P(X) and § € P(Y') and any cost matrix
C: X xY — R, we have that
|dw (a, B; C) = dw (e, B; C)| < elognm.
To see this, let (X, Y") be an optimal coupling for diy (v, 3; C'), then

|dSy (a, B;C) — dw (e, 3;C)| < EC(X,Y) — (EC(X,Y) — eH(X,Y)) = eH(X,Y) < elognm.
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Then

1E(A, €) = F(A,0) o = (1= 0)[(diy (i, m) s A) — dw (mi,m]; A) )1<icni<icm|loo
< €(1 —0)lognm.

Thus

16(0) = 6()lls0 = F(6(0),0) — F(d(e), €)1
< |[F(6(0),0) = F(6(6),0) o0 + [ F(8(e), 0) — F(6(6), €)1
< (1-8)[6(0) — ¢(6)l|oe + (1 — 8) lognm.

Therefore, ||¢(0) — ¢(€) |00 < 6(157_6) log nm.
Hence we have the following non-asymptotic bound between the regularized OTM distance and
the original OTM distance.

A1 5. (X, D) = dig) 5(X, V)] = ldiy (v, 0¥ 1 6(e)) — dw (v, 56(0)))|
< diy (v, 075 0(6)) — diy (v, 1Y 56(0)) | + |diy (v, v ¢(0)) — dw (v, v ¢(0))|
1$(0) — ¢(€)[loo + €log nm
e(1—-19)
)
_ 6<1—55+5>10gnm

€
= —lognm.

0

IN

IN

log nm + elog nm

Proof [Proof of Theorem 18] Consider the space Z = Rﬁxm endowed with ¢*° distance where n :=
|X | and m :=|Y|. Let A = M, x My, x R*™, where My, = {M € RY* : i, 3. My; = 1},
Let F : Z x A — Z be defined by

F(A, Ml, MQ, O) =0C + (1 — (5)(6[%;\; (Mil, Mf, A))lgifn,lgjﬁm-
Recall that C ]?6’(00) satisfies the following equation:

O = §Cy + (1 - 6)diy (m mY; C (°°>). (65)
In other words, C%(>) is a fixed point of F. By Lemma 30, one has that C%(>) is differentiable
on the interior of its definition domain (which is a manifold without boundary). We could also use
that lemma directly to compute the gradient, but, for clarity, we will still do the computations in
coordinates to show how the gradient is computed in practice.
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We differentiate C;Té’(oo) on both sides of Equation (65) below (using Einstein summation
convention):
oC () 9
Kl ij . X Y . e€d, (00
Al =g = = + (1= 8) gy (X, m s 00)
Oy (X, mY; ) ) o)
=61 iy~ 1-0 -
()=(ep) T (1 =0) 207 ) 9Cu

=01,k + (1 — ) P AEG

By identifying tensors with nm x nm-square matrices via flattening together the dimensions (resp
codimensions), one has that
A =Ly, + (1 —9)PA.

Hence,
(Lnm — (1 = 8)P)A = 61,

and therefore, we have that

A = (I — (1= 6)P) "

Here the matrix K = I,,, — (1 — §) P is invertible because it is strictly diagonally dominant: For
any 1 <¢ <nand1 < j < m,one has that

ij ij kl ]

K =1-(1-6)P; ZP 8) P!
C S s Y - Y K
(kD)(i.d) (kD)(i.g) (kD)7 (i)

where in the second equality we used the fact that k.l Pil;l = 1 since P;; represents a coupling.
We apply the same method for calculating I': differentiating the fixpoint equation (cf. Equa-
tion (65)) on both sides, we have that

€,0,(00)
kK :aOL
Gm‘,zi,
Odwy (mgx, mJY; CE"S’(OO)) Odwy (mgx, mJY; Ce"s’(oo)> 90<%:(20)
:(1 _6) X T €,0,(00) OCBX
Mgy oCg Mgy,

af
=(1 = 8) (LSl + PLTER).

Hence, I' = (1 — §)(F + PT') and thus (I, — (1 — §)P)I' = (1 — §)F. By invertibility of
K = I,;, — (1 — §) P again, one has that

U= (1-08)(Lym—(1—8)P)"

This concludes the proof. |
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Appendix F. Glossary
(Xt)ten, (Yo)ten, (Zi)ten We denote (Xy)ien (resp. (Yi)ien) a realisation of X' (resp. )) 3
C Wedenote C': X xY — R, acost function. 4

XV, Z,vX vY vZ mX mY,mZ We denote X (resp. J) a Markov chain over X (resp. Y). It
is defined by its initial distribution X (resp. #Y) and its transition kernel mX (resp. mY). 3

X.,Y . Z In this paper, we use boldface letters, such as X, to denote finite sets. 3, 53

dorc The Optimal Transport Coupling distance as defined by O’Connor et al. (2022). It is defined
in Equation (4).
dorc(X,Y;C) = inf E C(Xo,Y0),

(Xt,Ye)ren€llu (X,Y)
law ((Xo,Y0)) is stationary

More details in Section 2.2. 5-9, 31, 41, 42, 48, 53

dorm Generalized Optimal Transport Markov Distances are a class of Markov distances we define
that encompasses or has as limit points WL distances, the OTC distance, and é-discounted
WL distances. More details in Section 3. They are parameterized by a distribution p over the
integers, and defined by Equation (5).

& (X, V)= inf  EC(Xrp, Yr),
ol ) . (X7, Yr)

where T' ~ p. 5, 6, 8, 27-29, 4144, 53
dwr,s Our d-discounted WL distance. It is a regularization of the original WL distance. More details

in Section 4. They are defined as a parametric class of OTM distance, parameterized by the
distributions defined in Section 4.2. For k € N:

k
d¥ (X)) = C(X,Y:) + (1 - 6FC (X, Y,
Wi (X5 V) (Xt,Yt)teNenxy) (ZO £, Yz) + ( )" C (X, Yi)
and
d) (X,Y) = 5(1—0)'C (X, Y
WL75( y) (Xth)tGNEH(Xy <Z ! t)>

2,7-10, 12, 28, 31, 33-38, 42, 46-48, 50, 51, 53

dwr, s, The Entropy-regularized d-discounted WL distance is obtained by replacing all Wasserstein
distances by Sinkhorn distances in the computation of J-discounted WL distance. This
operation makes our §-discounted WL distance into a smooth distance that can be used for
learning, using the formulae developed in Section 5. It is defined in Definition 37. 10-12, 16,
17,20, 21, 32, 49-51, 53

dwi, The Weisfeiler-Lehman distance as defined by Chen et al. (2022). It is defined by Equation (2).

dE (X, P:0) := inf EC(X., Yz).
wi (A, Vi €) (XeVD)eeneTI(X.Y) O Xk, Yi)

More details in Section 2.2. 4-9, 22-26, 41, 53
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dyy The Sinkhorn distance is the entropy-regularized version of the Wasserstein distance. We use it
because of its smoothness properties. it is also faster to compute than the Wasserstein distance.
It is defined in Theorem 36 of the Appendix.

dw (o, B;C) := min ECX,)Y)—-eH(X,Y
W(@sC)i= | min  EC(XY) - cH(X.Y)

10, 11, 32, 33, 35-38, 49-51, 53, 54

dw The Wasserstein distance is defined as the solution of the optimal transport between two measures
with a cost matrix, in Equation (1).

)

dw(a, 5;C) = (inf)E C(X,Y)

More details in Section 2.2. 4, 5, 9, 22, 27-30, 34, 37, 45-47, 50-54
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