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Abstract
Optimizing Neural networks is a difficult task which is still not well understood. On the other
hand, fixed representation methods such as kernels and random features have provable optimization
guarantees but inferior performance due to their inherent inability to learn the representations. In
this paper, we aim at bridging this gap by presenting a novel architecture called RedEx (Reduced
Expander Extractor) that is as expressive as neural networks and can also be trained in a layer-wise
fashion via a convex program with semi-definite constraints and optimization guarantees. We also
show that RedEx provably surpasses fixed representation methods, in the sense that it can efficiently
learn a family of target functions which fixed representation methods cannot.

1. Introduction

Neural networks have demonstrated unparalleled performance in various tasks, including Computer
Vision and Natural Language Processing (NLP). However, training them remains a challenging
task that is not yet fully understood. On the theoretical side, the optimization landscape of neu-
ral networks is highly non-convex, characterized by numerous spurious local minima (Safran and
Shamir, 2018; Yun et al., 2018) and are often also non-smooth. Consequently, proving optimiza-
tion results for non-convex and non-smooth functions is generally deemed unfeasible Kornowski
and Shamir (2021). On the practical side, the optimization process for neural networks primarily
employs gradient-based methods like Stochastic Gradient Descent (SGD) or ADAM Kingma and
Ba (2014), necessitating a meticulous search for hyperparameters. This process often relies on trial
and error rather than being firmly grounded in theory.

On the contrary, fixed representation methods, such as kernels and random features, can be ef-
ficiently learned with provable guarantees using convex optimization techniques. However, recent
research has highlighted a limitation: as they do not learn a representation, these methods are in-
herently less powerful than neural networks. There are learning scenarios where neural networks
demonstrate efficient learning, while fixed representation methods falter (e.g. Yehudai and Shamir
(2019); Kamath et al. (2020); Malach et al. (2021b); Ghorbani et al. (2019); Daniely and Malach
(2020)). Different approaches that do facilitate efficient and provable representation learning of-
ten rely on overly simplistic models (e.g. Yehudai and Shamir (2020); Vardi et al. (2021); Bietti
et al. (2022)) or necessitate stringent assumptions about the data and employ specialized algorithms
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tailored to specific learning contexts (e.g. Ge et al. (2017); Allen-Zhu and Li (2020); Abbe et al.
(2021)).

A natural question that arises is whether there exists a model-class which benefits from the ”best
of all worlds”, namely:

Is there a model class that can be learned efficiently without making assumptions about
the input distribution, matches the expressiveness of neural networks, and is capable of
learning meaningful representations rather than relying on fixed ones?

In this paper, we provide an affirmative answer to this question by introducing the Reduced
Extractor Expander (RedEx) architecture. We demonstrate that RedEx is as expressive as neu-
ral networks and can be learned using a convex program without any assumptions on the input
data. Moreover, we establish that RedEx learns non-trivial representations, as evidenced by a novel
learning problem we introduce that RedEx can efficiently learn, while fixed representation methods
cannot. In more details, our main contributions are:

1. We introduce the RedEx architecture and show that it can efficiently express any Boolean
circuit (Thm. 2).

2. We present an efficient polynomial-time algorithm for training RedEx, based on convex
Semidefinite Programming (SDP) (Thm. 3 and Algorithm 2).

3. We introduce a learning problem, based on a variation of the sparse-parity task which RedEx
can learn efficiently, while any fixed-representation methods cannot (Thm. 7 and Thm. 8).

Furthermore, we demonstrate that if the output is one-dimensional, RedEx can be trained using
standard gradient-based methods like gradient descent, without the need for SDP. Finally we extend
the RedEx architecture to the convolutional setting.

1.1. Related Works

Fixed representation methods and NTK. Fixed representation methods are models which can
be viewed as a feature mapping which is non-linear and fixed followed by a learned linear mapping.
This includes kernel methods, random features (Rahimi and Recht, 2007), and others. In recent
years, neural networks under certain assumptions were analyzed in the so called ”kernel regime”
(Woodworth et al., 2020). In this approach, it is assumed that the training takes place near the
initial weights. This allows to analyse neural networks as if it is a fixed representation method. This
approach was popularized through the Neural Tangent Kernel (NTK) model (Jacot et al., 2018).
Many similar works have shown positive results where neural networks can provably learn under
different assumptions, e.g. Daniely (2020); Andoni et al. (2014); Du et al. (2017); Daniely (2017);
Allen-Zhu et al. (2019); Li and Liang (2018); Cao and Gu (2019).

Limitations of fixed representation methods. Several works in recent years have focused on the
limitations of fixed representation methods, NTK and learning under the ”kernel regime”. Yehudai
and Shamir (2019) and Kamath et al. (2020) have shown that fixed representation methods cannot
learn even a single ReLU neuron under Gaussian distribution, unless the number of features is
exponential in the input dimension. On the other hand, neural networks were shown to be able to
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efficiently learn single neurons (Yehudai and Shamir, 2020; Vardi et al., 2021). Several other works
have shown that under certain distributional assumptions fixed representation methods cannot learn
parity functions while neural networks can (see e.g. Malach et al. (2021b); Daniely and Malach
(2020); Malach et al. (2021a)). Finally, Ghorbani et al. (2019, 2021) have shown that the NTK and
random features methods can essentially learn efficiently only low degree polynomials.

Provable optimization beyond fixed representations. Several works consider model-classes
which go beyond fixed representations, but can be efficiently and provably learned. These works
usually consider either overly-simplistic models, or have strong assumptions on the input data.
Yehudai and Shamir (2020); Vardi et al. (2021); Bietti et al. (2022); Bruna et al. (2023); Frei et al.
(2020) consider learning single neurons or single index neurons with provable optimization guaran-
tees. However these models are overly-simplistic and have very limited expressiveness. Abbe et al.
(2021); Allen-Zhu and Li (2020) consider a certain hierarchical model resembling RedEx and show
a family of functions that these models can learn. However the guarantees are for a specific family
of input distributions, with a training algorithm that is tailored for these specific learning problems.
Ge et al. (2017); Tian (2017) consider learning a one-hidden layer neural network with gradient
descent for Gaussian inputs using a specific analytic formula relying on the distribution of the data.
Our model also share similarity to phase retrieval methods (e.g. Candes et al. (2013, 2015)), al-
though these works mostly consider Gaussian data or data distributed uniformly on a sphere.

Livni et al. (2014) consider the problem of learning a one-hidden layer network with square
activation under trace norm constraints. They prove learnability using a reduction to a convex
program relying on the GECO algorithm (Shalev-Shwartz et al., 2011). Our work is similar to that in
nature, however we provide several extensions: (1) A separation result between fixed representation
methods and RedEx, which do not appear in Livni et al. (2014); (2) Extensions to multivariate
output and a convolutional structure, which is not possible using the convex reduction in Livni et al.
(2014); and (3) A multilayer version of RedEx which enables to express any Boolean circuit, and
thus match the expressive power of neural networks.

2. Notations and Settings

We denote vectors in bold-face: x. We will assume the input space is Rd. The output space will be
denoted Y . We will consider algorithms that learn functions from Rd to Rk and are evaluated by a
convex loss function ℓ : Rk × Y → [0,∞). Given a distribution D on Rd × Y and h : Rd → Rk

we denote ℓD(h) = E(x,y)∼Dℓ(h(x), y). Likewise, for a dataset S = {(x1, y1), . . . , (xm, ym)} we
denote ℓS(h) =

1
m

∑m
i=1 ℓ(h(xi), yi).

For x ∈ Rd we denote by x⊗2 := xx⊤ ∈ Rd×d the outer product. For a vector, x ∈ Rd

we will use ∥x∥ =
√∑

i x
2
i to denote the Euclidean norm. Given I ⊂ [d] we denote x(I) =∑

i∈I xi. For a matrix A, we will use ∥A∥fr =
√∑

ij A
2
ij to denote the Frobenius norm, ∥A∥sp =

max∥x∥=1 ∥Ax∥ to denote the spectral norm, and ∥A∥Tr to denote the trace norm which is the sum
of A’s singular values. For a diagonal matrix D we denote by |D| the diagonal matrix whose i-th
diagonal coordinate is equal to |Di,i|. If D is also Positive Semi-Definite (PSD) we define by

√
D

the matrix whose i-th diagonal coordinate is equal to
√

Di,i. We will use A to denote a tuple of

matrices A = (A1, . . . , Ak) ∈
(
Rd×n

)k. We will let ∥A∥2fr =
∑k

i=1 ∥Ai∥2fr. For B ∈ Rm×d
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and C ∈ Rn×m we denote BA = (BA1, . . . , BAk) and AC = (A1C, . . . , AkC). We denote by
Bd

M ⊂ Rd the Euclidean ball of radius M centered at 0.
For a symmetric matrix A ∈ Rd×d, we say that A = U⊤DU is a compact orthogonal diago-

nalization if U ∈ Rd′×d is a matrix with d′ ≤ d orthonormal rows and D ∈ Rd′×d′ is a diagonal
matrix with non-zero diagonal entries, or the 0 matrix in R1×1. Note that any symmetric matrix
has a compact orthogonal diagonalization. For a linear subspace V ⊂ Rm, we denote by PV the
projection on V and say that A is V -supported if A = P⊤

V APV .
For an embedding Ψ : X → Rn we denote by HΨ the space of all function for which there

is v ∈ Rn such that ∀x ∈ X , h(x) = ⟨v,Ψ(x)⟩. We also define a norm on HΨ by ∥h∥Ψ =
min{∥v∥ : ∀x ∈ X , h(x) = ⟨v,Ψ(x)⟩}. We note that ∥ · ∥Ψ turn HΨ into a Hilbert space. We also
define kΨ(x,y) = ⟨Ψ(x),Ψ(y)⟩. For two matrices A,B ∈ Rn×m we define ⟨A,B⟩ := Tr(B⊤A).

3. Reduced Extractor-Expanders (RedEx)

In this section we present the main architecture that we analyse throughout the paper. This ar-
chitecture is aimed at being analogous to 2-layer neural networks with a quadratic activation. Its
base component consists of two layers: The first layer ”extracts” the most informative directions of
the data using a matrix with orthogonal rows, and bounded Frobenius norm, and then “expands” it
quadratically by increasing the dimension. The second layer is a linear transformation with bounded
norm over the extracted features.

Definition 1 (RedEx - Reduced Extractor-Expander) A function Λ : Rd → Rk is called a Re-
dEx (Reduced Expander Extractor) of width M if it is of the form: Λ = ΨP ◦ΨV where:

1. The function ΨV : Rd → Rd′×d′ is of the form:

ΨV (x) = (V x)⊗2

for V ∈ Rd′×d with d′ ≤ d, orthogonal rows, and ∥V ∥2fr ≤ M . We call the matrix V
extractor.

2. The function ΨP : Rd′×d′ → Rk is of the form:

ΨP (X) = (⟨P1, X⟩ , . . . , ⟨Pk, X⟩)

for Pi ∈ Rd′×d′ with ∥Pi∥sp ≤ 1.

The function ΨV is called an extractor-expander.

To have some intuition, the width of an extractor V can be thought of as a continuous surrogate
to the number of orthogonal directions V extracts. Indeed, in order to extract d′ orthogonal dimen-
sions defined by unit vectors e1, . . . , ed′ we can use the extractor V ∈ Rd′×d whose i’th row is e⊤i .
In this case, the width of V is d′. Definition 1 generalizes such extractor matrices, and allows to give
larger weights to directions which are “more important”. The width M controls the expressivity of
the architecture. Allowing large width will result with more functions that can be expressed, but on
the other hand will require more examples to learn them. Alternatively, small width will result with
a less expressive class of function, but with better generalization capabilities.
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Given a data set (x1,y1), . . . (xm,ym) ∈ Rd × Rk our algorithm will seek a RedEx ΨP ◦ ΨV

that minimizes the loss subject to a width constraint. We will also allow for an additional small
regularization term, that will be used to guarantee generalization. Specifically, given a loss function
ℓ, and for the regularization function

R(P , V ) = ∥V ⊤V ∥2fr +
k∑

i=1

∥V ⊤PiV ∥2fr (1)

our algorithm will minimize: ℓS(ΨP ◦ΨV )+λR(P , V ), subject to the constraint that the width of
V is at most M . We will later explain how this can be done in polynomial time, and will provide
guaranties on its performance. We first extend the above architecture to multi-layer RedEx in the
same manner that a 2-layer neural network is extended to multi-layer. The basic idea is to use several
extractor-expanders ΨV t in a sequential manner, and at the last layer use a linear transformation
ΨP . As with the basic depth-two RedEx architecture, the width of the extractors V t will control the
complexity of the functions computed by the architecture, and will be used to trade-off expressive
power and sample complexity.

There are two issues that arise when doing such a generalization: (1) The representation dimen-
sion grows exponentially with the number of layers. This is because the function ΨV (x) = (V x)⊗2

expands the dimension quadratically. (2) Training all the layers simultaneously is computationally
hard (as we show later, poly-sized deep RedEx architectures can express any poly-sized Boolean
circuit, which implies that they are hard to learn Kearns and Valiant (1994)), whereas one of our
main goals is to obtain provable guarantees for the optimization process.

To deal with the first issue, we allow extractors whose output dimension is at most the number
of examples m. This limits the representation dimension to m2. This is a convenient way to deal
with this issue theoretically, however in practice alternative approaches might be favourable. For
instance, we can simply delete all the rows in the extractors V whose norm is ≤ ϵ for some tunable
parameter ϵ. For a sufficiently small ϵ, this will not alter the solution by much. We note that the
number of rows with norm that is larger than ϵ is at most the width of the extractor, divided by
ϵ2. It is also possible to use the kernel trick. Lastly, a more practically oriented way, is to apply a
dimension reduction method, such as PCA, after every extractor-expander layer.

To address the second issue, instead of training all the layers simultaneously, we train them
sequentially. This is analogous to layer-wise training in neural networks Bengio et al. (2006). The
idea is that for t-th layer, we find functions ΨV t and ΨP t which minimizes the target loss. Af-
ter training is finished we only keep the representation function ΨV t , while discarding the linear
transformations. The input for the next layer t+ 1 is the output of the extractor-expander ΨV t .

Another small issue that arises for extractor-expanders is that they only allow to compute degree-
2 polynomials which are even (i.e. satisfy p(x) = p(−x)). More generally, multi-layer RedEx
would only allow to compute even high degree polynomials. This issue can be easily fixed by
adding an extra fixed coordinate to the inputs. We summarize all the above in Algorithm 1.

The heart of the above algorithm is to minimize Eq. (2) in step 5. On one hand, it can be done
using standard gradient methods such as GD or SGD. The problem with this approach is that the
function being optimized is not convex, even without the norm and orthogonality constraints. Thus,
it is not clear that it converges to a global optimum. In the next section we provide an efficient
algorithm for finding this optimum, thus providing an efficient and provable algorithm for layer-
wise learning of multi-layer RedEx.
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Algorithm 1 Training multi-layer RedEx
1: Parameters: A loss ℓ : Rk×Y → [0,∞), number of layers L, width parameters M1, . . . ,ML,

regularization parameters λ1, . . . , λL, and constant parametr c.
2: Input: A dataset (x1, y1), . . . (xm, ym) ∈ Rd × Y .

3: Define x0
1 =

(
c
x1

)
, . . . ,x0

m =

(
c
xm

)
and d0 := d+ 1

4: for t=1,. . . ,L do
5: Find V t and P t =

(
P t
1, . . . , P

t
k

)
that minimizes:

1

m

m∑
i=1

ℓ
(
ΨP t ◦ΨV t(xt−1

i ), yi
)
+ λtR(P t, V t) (2)

where:

1. ΨP t ◦ΨV t(x) :=
(〈
P t
1, (V

tx)⊗2
〉
, . . . ,

〈
P t
k, (V

tx)⊗2
〉)

.

2. V t has nt ≤ m orthogonal rows. Each row is a vector in Rdt−1 , and ∥V t∥2F ≤ Mt

3. For each j ∈ [k], Pj ∈ Rnt×nt and ∥P t
j ∥sp ≤ 1.

6: Define dt = n2
t and xt

i = ΨV t

(
xt−1
i

)
for i ∈ [m]. We will view xt

i as a vector in Rdt

7: end for
8: Output: Output the hypothesis ΨPL ◦ΨV L ◦ΨV L−1 ◦ . . . ◦ΨV 1

We emphasize that one caveat of the layer-wise optimization approach is that a global minimizer
for all the layers simultaneously might achieve better performance than a global minimizer for each
layer separately. It can be viewed as a greedy algorithm, where at each step we optimize the current
layer which is locally the best possible step, but it may not be the best step globally (i.e. for all
layers simultaneously). The main advantage of this sequential approach is that it will allow us to use
convex optimization and give provable guarantees for optimizing our model, while also providing
separation between this model and fixed representation methods. Note that there are no layer-wise
training guarantees for neural networks in general.

We now show an expressivity result, namely that the RedEx architecture can approximate any
Boolean circuit with only a quadratic increase of the size of the circuit. This shows that like neural
networks, our architecture can express a very large class of functions – virtually any function of
interest. Indeed, any function that can be computed efficiently has a small circuit that computes it
Vollmer (1999).

Theorem 2 Let B : {0, 1}d → {0, 1} be a function computed by a Boolean circuit of size T . Then
we can define a RedEx with depth O(T ) and intermediate feature dimension at most O(T 2) that
computes B.

The proof can be found in Appendix A. Thm. 2 implies that the RedEx architecture is as expressive
as neural networks. This can be seen using the following simple argument: Any neural network
(with inputs in {0, 1}d and output in {0, 1}) can be simulated by a boolean circuit, where the number
of nodes in the circuit is at most polynomial in the number of parameters (see Maass (1997)). Thm. 2
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shows that any Boolean circuit can be simulated by a multilayer RedEx architecture with at most
polynomial blow-up in the size of the circuit. Thus, given a neural network, it can be simulated by
a multilayer RedEx architecture with at most polynomial blow-up in the number of parameters.

4. Efficient and Provable Learnability of RedEx

In this section we present an efficient algorithm for learning a single layer RedEx, and present
generalization guaranties for it. This algorithm can be used to minimize objective Eq. (2), thus
leading to an efficient implementation of algorithm 1.

Our approach is to reduce the problem of minimizing Eq. (2) under the norm and orthogonality
constraints to a convex semi-definite program, which contains PSD constraints. Such a problem can
be solved using convex SDP algorithms in polynomial time.

In order to do so, we present a different parametrization of RedEx functions. Let

PM = {(P , V ) : ∥V ∥2fr ≤ M and ∀i, ∥Pi∥sp ≤ 1}

A RedEx function of width M is defined by (P , V ) ∈ PM . Now, let

PM = {(A, R) : Tr(R) ≤ M and ∀i,−R ⪯ Ai ⪯ R}

As the following lemma shows, we can alternatively define width M RedEx functions via (A, R) ∈
PM . We then show that under this alternative parameterization of RedEx functions, objective Eq. (2)
becomes convex. Furthermore, we can efficiently convert the alternative parameterization to the
original. These two facts enable us to efficiently implement algorithm 2.

Theorem 3 Let HM be the class of functions of the form:

hV,P (x) =
(〈
P1, (V x)⊗2

〉
, . . . ,

〈
Pk, (V x)⊗2

〉)
For (P , V ) ∈ PM . Let HM be the class of functions of the form:

hR,A(x) = (⟨x, A1x⟩ , . . . , ⟨x, Akx⟩)

For (A, R) ∈ PM . We have:

1. HM = HM .

2. Fix (A, R) ∈ PM . Diagonalize R = U⊤DU for unitary U and diagonal D and let

V =
√
DU, Pi = (V †)⊤Ai(V

†)

then (P , V ) ∈ PM and hV,P = hR,A. Furthermore, Tr(R) = ∥V ∥2fr and R(P , V ) =
∥R∥2fr + ∥A∥2fr

The proof can be found in Appendix B. Theorem 3 suggests the following algorithm for training
a single RedEx layer, and to optimize objective Eq. (2) in algorithm 1.
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Algorithm 2 Training 1 -layer RedEx
1: Parameters: Loss ℓ : Rk × Y → [0,∞), width parameter M and regularization parameter λ
2: Input: A dataset (x1, y1), . . . , (xm, ym) ∈ Rd × Y
3: Find symmetric d× d matrices A1, . . . , Ak, R by solving the semi-definite program:

min
1

m

m∑
i=1

ℓyi

(
x⊤
i A1xi, . . . ,x

⊤
i Akxi

)
+ λ(∥R∥2fr + ∥A∥2fr) (3)

s.t. −R ⪯ Ai ⪯ R

R ⪰ 0

Tr(R) ≤ M (4)

4: Compute an orthogonal diagonalization R = U⊤DU
5: Output V =

√
DU and Pi = (V †)⊤AiV

†.

Remark 4 We note that Algorithm 2 can be performed in polynomial time, although we don’t spec-
ify the exact training time for the algorithm. The reason is that there are different convex program
solvers with different pros and cons, and the training time depends on which solver is chosen.
The minimization objective in Eq. (3) is a general strongly convex function under semi-definite con-
straints. It can be solved using general interior point method (Potra and Wright, 2000), the ellipsoid
algorithm (see e.g. Ch.2 in Bubeck et al. (2015)), conic optimization (e.g. Auslender and Teboulle
(2006); Dahl and Andersen (2022)) or any other method which solves convex SDP problems.

Remark 5 We have that rank(R) ≤ m, and hence V has at most m non-zero rows, that is the
number of ”improtant features” is bounded by the size of the dataset. Indeed, let P : Rd → Rd

be the projection on span{x1, . . . ,xm}, and let (A, R) be an optimal solution to program Eq. (3).
Note that there is a single optimal solution, as program Eq. (3) is strongly convex. It is not hard to
see that the objective value of (P⊤AP, P⊤RP ) is as good as the objective value of (A, R), this
is because projection on the data samples produces the same class of functions, while it does not
increase both the trace and Frobenius norms. As the optimal solution is unique, we conclude that
R = P⊤RP .

We next state a generalization result for algorithm 2. The result follows directly from Corollary
13.6 in Shalev-Shwartz and Ben-David (2014), by noticing that the objective is convex with an
appropriate regularization term. To this end, we define

ValD(A, R) := E(x,y)∼Dℓy

(
x⊤Ax

)
(5)

and
ValD,M := inf

−R⪯Ai⪯R and Tr(R)≤M
ValD(A, R)

Theorem 6 Assume that the dataset is an i.i.d. sample from a distribution D on Bd
M1

×Y and that
the loss is L-Lipschitz. Let (A, R) be the output of algorithm 2. Then

ESValD(A, R) ≤ ValD,M + λ(k + 1)M2 +
M4

1L
2

λm
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Thm. 6 shows a trade-off in generalization capabilities by choosing the parameter M , similar
to the well known bias-variance trade-off. Namely, larger value of M allows for better expressive
power but requires more samples to achieve good generalization capabilities. We note that our
generalization result scales at a rate of O

(
1√
m

)
by choosing an appropriate λ. It is an interesting

question whether this rate can be improved to O
(
1
m

)
, similarly to what is done in Wang and Lin

(2021), but for non-smooth regularizers.

5. Layerwise RedEx surpasses Kernel Methods

In this section we will provide a learning problem which demonstrates a separation between RedEx
and fixed representation methods. The problem we choose is inspired by Daniely and Malach (2020)
where they show that neural networks can learn the sparse parity function under a certain distribution
which ”leaks” the coordinates of the parity. In more details, given an input space {±1}d, the sparse
parity function on the k coordinates xi1 , . . . ,xik is defined as:

∏k
j=1 xij . Since RedEx is learned in

a layer-wise fashion, we consider a slightly different learning problem which better aligns with the
RedEx architecture and still cannot be learned by fixed representation methods.

Namely, we consider the problem of learning the following family of models: The input space

is {±1}d, the output space is R(1+k/2) for even k = Θ

( √
log(d)

(log log(d))2

)
, and the input distribution is

uniform on {±1}d. Denote by p0, . . . , pk, the set of orthogonal polynomials w.r.t. the distribution
of
∑k

i=1Xi for i.i.d. Radamacher r.v. X1, . . . , Xk ∈ {±1}. These polynomials are called Kravchuk
Polynomials Nikiforov et al. (1991) and are given by the recursion formula

p0(x) = 1, p1(x) =
x√
k
, xpi(x) =

√
(i+ 1)(k − i)pi+1(x) +

√
i(k − i+ 1)pi−1(x) (6)

We consider the problem of learning a function of the form

hI(x) =

(
p0

(∑
i∈I

xi

)
, p2

(∑
i∈I

xi

)
, p4

(∑
i∈I

xi

)
, . . . , pk

(∑
i∈I

xi

))

for an unknown set of coordinates I ⊂ [d] with |I| = k and w.r.t. the square loss ℓ(ŷ,y) =
∥ŷ − y∥2. Our first result shows that algorithm 1 learns a function with loss of o(1). Note that the
coordinates of hI are polynomials of increasing degree, while its last coordinate is the sparse parity
function x 7→

∏
i∈I xi. To see that this is indeed the sparse parity function, note that by definition

it is orthogonal to any Kravchuk polynomial of degree i ≤ k, and the k-th Kravchuk polynomial
is the unique polynomial with this property, hence it must be the sparse parity function. Thus, our
function can be seen as learning the parity function, but using a kind of ”staircase property” (Abbe
et al., 2021) which the RedEx architecture exploits due to its layer-wise training.

Theorem 7 Assume we run algorithm 1 on m i.i.d. examples, L = ⌈log2(k)⌉ layers, regularization
parameters λ1 = λ2 = . . . = λL = 1√

m
, width parameters M1 =

1
2+

1√
2−2/k

, M2 = . . . = ML =

M = 23k(3k)k, and constant parameter c =
√
2. Assume furthermore that each layer is trained

using a fresh sample. Then, w.p. 1−δ, for the output hypothesis h, ℓD(h) = d42O(k2 log2(k))

δm1/4 = O(d5)

δm1/4
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The reason for sampling a batch of fresh samples when training each layer is a technical artifact
of the proof, aimed at eliminating the dependence between the training of each layer. It can be seen
alternatively as if the original dataset is larger by a factor of log(k) := O(log log(d)), and we only
use a part of it for training each layer.

We compliment the above result by showing that polynomial-time fixed-representation methods,
such as kernels and random features, cannot achieve the guarantee in Theorem 7. The reason is
that the last coordinate of hI is the parity function x 7→

∏
i∈I xi. This implies that any fixed-

representation method that is guaranteed to find a function h with Ex ∥hI(x)− h(x)∥22 = o(1)
has super-polynomial complexity of dΩ(k). Specifically, Corollary 13 from Ben-David et al. (2002)
implies:

Theorem 8 Let Ψ : {±1}d → Bm
M1

be any, possibly random, embedding. Assume that for any
I ⊂ [d] with |I| = k, w.p. ≥ 1/2 over the choice of Ψ, there are vectors w0, . . . ,wk ∈ Bm

M2
such

that

Ex

k/2∑
j=0

(
p2j

(∑
i∈I

xi

)
− ⟨wj ,Ψ(x)⟩

)2

≤ 0.99

Then M1M2 ≥ dΩ(k)

5.1. On the proof of theorem 7

Theorem 7 is proved in Appendix C. In section C.1 it is shown that V 1, the first layer’s extractor,
”reveal” the important coordinates, in the sense that V 1 ≈ V 1PI , where PI is the projection on
the coordinates in I. It is also shown that the representation Ψ1 computed by the first layer, is
expressive enough so that p0

(∑
i∈I xi

)
and p2

(∑
i∈I xi

)
can be well approximated by functions

x 7→ ⟨v0,Ψ1(x)⟩ and x 7→ ⟨v2,Ψ1(x)⟩ for vectors v0,v2 with a norm bound that do not depend on
d, but only on |I|. In section C.2 it is then shown by induction that Ψt is expressive enough so that
p0
(∑

i∈I xi
)
, . . . , and p2t

(∑
i∈I xi

)
can be well approximated by functions x 7→ ⟨vi,Ψt(x)⟩ for

vectors vi with a norm bound that depend only on |I|. The reason is that each pi can be represented
as a quadratic polynomial of pj for j ≤ ⌈ i

2⌉, with bounded coefficents, together with the fact that
by the induction hypothesis these pj’s can be expressed as a linear function on top of Ψt−1

6. Extensions and Discussion

In the following section we will show two extensions of the RedEx architecture – using a norm for-
mulation of the objective and extension to a convolutional structure. Importantly, the norm formula-
tion of RedEx for a one-dimensional output can be trained without the semi-definite constraints, and
thus be trained using standard gradient descent or any other non-constrained convex optimization
methods.

6.1. Norm Formulation of RedEx and Relation to Trace norm

In Algorithm 2 we gave a constrained optimization problem which can be solved using SDPs. In
this section we show how to reformulate this problem as an unconstrained optimization via a new
norm we define:

10
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Definition 9 For A1:k = (A1, . . . , Ak) ∈ Rd×d where each Ai is symmetric we define the RedEx
norm as:

∥A1:k∥Rx := min {Tr(R) : R ⪰ 0, and ∀i, −R ⪯ Ai ⪯ R} (7)

We first show that the above defined norm satisfies several properties:

Lemma 10 Properties of ∥ · ∥Rx

1. ∥ · ∥Rx is a norm on k-tuples of symmetric matrices.

2. If k = 1, then ∥ · ∥Rx is equivalent to the trace norm. Additionally, if we write A = U⊤DU
for an orthogonal U and diagonal D, then R = U⊤|D|U .

The proof can be found in Appendix D. Item (3) gives a very simple expression for the RedEx norm
in the case for k = 1, however we are not aware of a simple expression for ∥ · ∥Rx where k ≥ 2. We
can now optimize Eq. (2) using the RedEx norm. For that we replace the minimization problem in
Algorithm 2 by:

min
1

m

m∑
i=1

ℓyi

(
x⊤
i A1xi, . . . ,x

⊤
i Akxi

)
+ λ1∥A∥Rx + λ2∥A∥2fr (8)

We give the full algorithm in Appendix D. Note that we don’t need to minimize over the Frobenius
norm of R, as it is already done by minimizing the RedEx norm. The caveat of Eq. (8) is that
we currently don’t know how to calculate the gradient of the RedEx norm directly (i.e. without
calculating R), or the projection on norm-induced balls unless we resort to general convex SDP
solvers. Hence, at the moment we don’t know how to utilize the norm formulation in order to
design faster algorithms.

One major practical improvement on the training of RedEx that we can make is in the case
where our goal is to learn a function f : Rd → R (i.e. the output dimension k = 1). For this case,
we can use the characterization in Lemma 10 (3), where for k = 1 the RedEx norm is equivalent to
the trace norm. In this case, we can replace the minimization problem in Algorithm 2 by:

min
1

m

m∑
i=1

ℓyi

(
x⊤
i Axi

)
+ λ1∥A∥Tr + 2λ2∥A∥2fr

This problem is substantially easier than minimizing Eq. (3), since it is an unconstrained convex
optimization problem that can be solved by standard GD or SGD. Note that to find V we don’t need
to find R, since by Lemma 10 (3) we can compute a diagonalization A = U⊤DU , and then output
V =

√
|D|U and P = (V †)⊤AV †. We give the full algorithm in Appendix D.

6.2. Convolutions

One of the advantages of neural networks is that it allows to choose an architecture according to
the structure of the data. A central example is convolutional networks for data which is translation
invariant such as images. The input vector for a convolutional layer is divided into patches. In
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other words, it is a vector (x1, . . . ,xp) ∈
(
Rd
)p. A convolutional layer applies on each patch

the same linear function followed by a non-linearity. That is, it computes a mapping of the form
(x1, . . . ,xp) 7→ (σ(Wx1), . . . , σ(Wxp))

For a matrix W ∈ Rd′×d and some non-linearity σ. A convolutional extractor-expander works
in a similar fashion. It applies the same extractor V to all patches, and then expand each patch
quadratically. This is detailed in the following definition.

Definition 11 (Convolutional RedEx) A function Λ :
(
Rd
)p → Rk is called a Convolutional

RedEx of width M if it is of the form: Λ = ΨP ◦ΨV where:

1. The function ΨV :
(
Rd
)p → (

Rd′×d′
)p

is of the form:

ΨV (x1, . . . ,xp) =
(
(V x1)

⊗2, . . . , (V xp)
⊗2
)

for V ∈ Rd′×d with d′ ≤ d, orthogonal rows, and ∥V ∥2fr ≤ M .

2. The function ΨP :
(
Rd′×d′

)p
→ Rk is of the form:

ΨP (X1, . . . , Xp) =

 p∑
j=1

⟨P1,j , Xj⟩ , . . . ,
p∑

j=1

⟨Pk,j , Xj⟩


for Pi,j ∈ Rd′×d′ with ∥Pi,j∥ ≤ 1.

The function ΨV is called a convolutional extractor-expander.

As with the basic version of RedEx, we can extend the basic convolutional RedEx architecture to a
multilayer architecture. Likewise, a single layer of convolutional RedEx s can be trained efficiently,
similarly to a single layer of RedEx. A multilayer convolutional RedEx can be trained efficiently in a
layerwise manner, as basic RedEx. We outline next the algorithm for learning a single convolutional
RedEx layer. The extension to multilayer is straight forward.

Algorithm 3 Training 1 -layer convolutional RedEx
1: Parameters: A loss ℓ : Rk ×Y → [0,∞), width parameter λ1 and a regularization parameter

λ2

2: Input: A dataset (x1, y1), . . . , (xm, ym) ∈
(
Rd
)p × Y

3: Find symmetric d×d matrices Ai,j , R for 1 ≤ i ≤ k and 1 ≤ j ≤ p by solving the semi-definite
program:

min
1

m

m∑
i=1

ℓyi

 p∑
j=1

x⊤
i,jA1,jxi,j , . . . ,

p∑
j=1

x⊤
i,jAk,jxi,j

+ λ1Tr(R) + λ2(∥R∥2fr + ∥A∥2fr)

s.t. −R ⪯ Ai,j ⪯ R

R ⪰ 0

4: Compute an orthogonal diagonalization R = U⊤DU
5: Output V =

√
DU and Pi,j = (V †)⊤Ai,jV

†.
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6.3. Conclusions and Future Work

In this work we presented the novel RedEx architecture. This architecture is as expressive as neu-
ral networks, and can be trained in a layer-wise fashion using convex programs with semi-definite
constraints. We also provided a separation result between RedEx and fixed representation methods
based on a variation of the sparse-parity problem. Finally, we have shown several extensions of
RedEx to the convolutional setting and replacing the semi-definite constraints to adding norm regu-
larizers based on the newly introduced RedEx norm. Notably, for a one-dimensional input, it allows
training of RedEx using non-constrained convex optimization algorithms such as gradient descent.

We believe our work can lead to more efficient representation learning methods based on con-
vex optimization. This can include better and richer architectures, which may allow more efficient
implementations that can be provably learned without the use of heavy convex SDP algorithms. Fi-
nally, it is interesting to provide stronger separation results between RedEx and fixed representation
methods under milder assumptions, e.g. in the case where the output is one-dimensional.
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Appendix A. Proofs from Sec. 3

Proof [Proof of Thm. 2] We first show that we can implement AND,OR,NEG and Id using a
RedEx with O(1) layers and feature dimension of O(d2). Recall that by definition, we added a
coordinate to the data which is constant 1. To implement Id of the i-th coordinate, we can use a
matrix V where the i-th row is equal to ei, and the last row (which corresponds to the constant 1)
equal to ed+1, this way

(
(V x)(V x)⊤

)
i,d+1

= xi
NEG can be implemented by x 7→ 1− x. This can be implemented for coordinate i by having

the i-th row of V equal to −ei + ed+1. We also need the last row of V to be ed+1, this way(
(V x)(V x)⊤

)
i,d+1

= 1− xi.
Now, AND(xi, xj) = xi ·xj can be implemented by having V with i-th row equal to ei, and j-th

row equal to ej , this way
(
(V x)(V x)⊤

)
i,j

= xi·xj . Finally, we have OR(x1, x2) = x1+x2−x1·x2.
This can be implemented by applying Id and AND on x1, x2, If the output of the above operations
are in rows i, j, k correspondingly, then we need some row of V to be equal to ei + ej − ek and the
last row of V to be equal to ed+1.

Note that if in the process of the quadratic expansion of RedEx we added extra coordinates
which are not needed, in the next layer we can use zero rows for the unnecessary coordinates to
zero them out. This way, the application of the dimension reduction method would delete those
unnecessary coordinates since their output is constant zero. Note that each operation above was
implemented using at most 2-layer RedEx, hence the feature dimension is at most d2 where d is the
dimension of the input. For a general intermediate layer, we can bound its input by the total size of
the target binary circuit, hence we can bound the feature dimension by O(T 2). In addition, since
each operation can be implemented by a RedEx of depth O(1), the total depth of the RedEx which
implements the Boolean circuit is O(T ).

Appendix B. Proofs from Sec. 4

B.1. Proof of Thm. 3

We first need the following lemma:

Lemma 12 If −R ⪯ A ⪯ R then ker(R) ⊂ ker(A)

Proof Since A is symmetric and by the assumption of the lemma, it has a (non-unique) decom-
position as A = A+ + A− where A+ is positive semi-definite with A+ ⪯ R and A− is negative
semi-definite with −R ⪯ A−. Let 0 ̸= x ∈ ker(R), then 0 ≤ ⟨x, A+x⟩ ≤ ⟨x, Rx⟩ = 0. Since A+

is PSD it has an orthogonal diagonalization with orthonormal eigenvectors vi and corresponding
eigenvalues λi > 0. We can exapnd x in this basis x =

∑
i αivi. Now we have that:

0 = ⟨x, A+x⟩ =

〈∑
i

αivi, A+

∑
i

αivi

〉
=

〈∑
i

αivi,
∑
i

λiαivi

〉
=
∑
i

α2
iλi .

Hence, for every i either αi = 0 or λi = 0, in particular, x is in the kernel of A+. Using a similar
argument we get that x is in the kernel of A−, hence it is in the kernel of A.
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We are now ready to prove the main theorem:
Proof [Thm. 3] In the proof, for ease of notations we use the notion of RedEx norm, see Definition
9. We begin with the first item. Let hV,P ∈ HM , we can write:

hV,P (x) =
(

Tr
(
P1(V x)(V x)⊤

)
, . . . ,Tr

(
Pk(V x)(V x)⊤

))
=
(

Tr
(
(V x)(V x)⊤P⊤

1

)
, . . . ,Tr

(
(V x)(V x)⊤P⊤

k

))
=
(

Tr
(
(V x)(P1V x)⊤

)
, . . . ,Tr

(
(V x)(PkV x)⊤

))
= (⟨V x, P1V x⟩ , . . . , ⟨V x, PkV x⟩)

=
(〈

x, V ⊤P1V x
〉
, . . . ,

〈
x, V ⊤PkV x

〉)
It is therefore enough to show that for Ai := V ⊤PiV we have ∥A∥Rx ≤ M . Since ∥P1∥sp ≤ 1 we
have −I ⪯ Pi ⪯ I . Hence, also −V ⊤V ⪯ V ⊤PiV ⪯ V ⊤V . This implies that

∥A∥Rx ≤ Tr(V ⊤V ) = Tr(V V ⊤) ≤ M .

For the other direction, let hR,A ∈ HM with ∥A∥Rx ≤ M . Let R ⪰ 0 be a matrix which
satisfies −R ⪯ Ai ⪯ R for every i ∈ [k], and Tr(R) ≤ M . By diagonalizing R we can write
R = U⊤DU , where U is unitary and D is PSD. Define:

V =
√
DU, Pi = (V †)⊤Ai(V

†)

Here
√
D is the diagonal matrix equal to

√
Di,i =

√
Di,i, and V † is the pseudo-inverse of V . By

its definition, R has orthogonal rows. We also have that:

∥Pi∥ = ∥(V †)⊤Ai(V
†)∥

= ∥
(
(
√
DU)†

)⊤
Ai(

√
DU)†∥

≤ ∥D†Ai∥ ≤ 1

where we used that U is orthogonal and Ai ⪯ R. Now, we have that:

∥V ∥2fr = Tr(V ⊤V ) = Tr((
√
DU)⊤

√
DU) = Tr(DU⊤U) = Tr(D) = Tr(R) ≤ M

where we used that U is orthogonal. We have shown that for our definitions of V and P we have
that hV,P ∈ HM , it is left to show that for every x ∈ Rd we have hR,A(x) = hV,P (x).

Define Q := V †V , this is the projection on the range of V ⊤, which contains the range of R.
Hence, I −Q is the projection on the orthogonal complement of the range of V , which is contained
in the orthogonal complement of the range of R, which is the kernel of R. By Lemma 12 we have
that ker(R) ⊆ ker(Ai) for every i ∈ [k]. Hence, Ai(I −Q) = (I −Q)Ai = 0, this implies that:

Ai = (I −Q+Q)Ai(I −Q+Q)

= (I −Q)Ai(I −Q) + (I −Q)AiQ+QAi(I −Q) +QAiQ

= QAiQ
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Finally, using that Pi = (V †)⊤AiV
† we have for every x ∈ Rd:

hV,P (x) =
(〈

x, V ⊤P1V x
〉
, . . . ,

〈
x, V ⊤PkV x

〉)
=
(〈

x, V ⊤(V †)⊤A1V
†V x

〉
, . . . ,

〈
x, V ⊤(V †)⊤AkV

†V x
〉)

=
(〈

x, Q⊤A1Qx
〉
, . . . ,

〈
x, Q⊤AkQx

〉)
= (⟨x, A1x⟩ , . . . , ⟨x, Akx⟩)
= hR,A(x)

This finishes the first part of the proof. For the second part of the theorem, we use the following
algorithm to compute V and P given A:

1. Find R ⪰ 0 such that ∥A∥Rx = Tr(R) and R ⪯ Ai ⪯ R.

2. Compute an orthogonal diagonalization R = U⊤DU .

3. Output V =
√
DU and Pi = (V †)⊤AiV

†.

The first step can be completed in polynomial time using SDP solvers since this is a convex problem
with linearly many constraints, see e.g. Jiang et al. (2020). The second step can also be done in
polynomial time as it only consists of diagonlizing a symmetric matrix.

Appendix C. Proof of Theorem 7

We first introduce some notation. For x ∈ {±1}d denote x(I) =
∑

i∈I xi and Pi(x) = pi(x(I)).
Denote At

i = (V t)⊤P t
i V

t, Rt = (V t)⊤V t, Ψt = ΨV t ◦ . . . ◦ΨV (1) and hti(x) = Ψt(x)
⊤At

iΨt(x).
Denote also Ψ0(x) = (c,x) ∈ Rd+1 and will refer to the first coordinate in Ψ0(x) (the constant
coordinate) as the 0’th coordinate (instead of 1’th). We note that Ψt computes a polynomial of
degree ≤ 2t. Hence, hti is orthogonal to p2i (x(I)) for 2i > 2t+1. Thus, for i ≥ 2t, the optimal
solution to the i’th coordinate of the t’th layer is 0. This observation motivated the definition of the
t-truncated loss given by

ValtΨt−1
(A, R) =

2t−1∑
j=0

Ex

(
p2j(x(I))−Ψt−1(x)

⊤AjΨt−1(x)
)2

We also denote
ValtΨt−1

= inf
(A,R)

ValtΨt−1
(A, R)

We denote by PI : Rd+1 → Rd+1 the projection on the coordinate in I and the first (constant)

coordinate. That is, (PIx)j =

{
xj j ∈ I or j = 0

0 otherwise
.

Before proceedeing to the main body of the proof, we specialize theorem 6 for the square loss
ℓy(ŷ) = ∥ŷ − y∥2. While the square loss is not globally Lipschitz, it is Lipschitz on any bounded
domain. Specifically, we have ∇ŷℓy(ŷ) = 2(ŷ − y). We also have that ∥x⊤Ax∥ ≤

√
kM∥x∥2.

Hence, if Pr(x,y)∼D(∥y∥ ≤ M2) = 1 then we have the the square loss is (2M2 + 2
√
kM2

1M)-
Lipchitz in the relevant domain. Hence,
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Corollary 13 Assume that the dataset is an i.i.d. sample from a distribution D on Bd
M1

×Bk
M2

and
that the loss is the square loss. Let (A, R) be the output of algorithm 2. Then

ESValD(A, R) ≤ ValD,M + λ(k + 1)M2 +
M4

1 (2M2 + 2
√
kM2

1M)2

λm

In our case, Eq. (6) implies that |pi(x)| ≤ ki. Hence, the output of the learned function is in B
1+k/2

kk
.

Since λ = 1√
m

we get

ESValD(A, R) ≤ ValD,M +
(k + 1)M2 +M4

1 (2k
k + 2

√
kM2

1M)2√
m

C.1. First layer

Let 1I , 10 ∈ Rd+1 be the indicator vectors of I and {0} . Denote by J, II and I0 the (d+1)×(d+1)
matrices given by

J =
1

k
1I1

⊤
I , I0 = 101

⊤
0 , II =

1

k
(PI − I0)

We note that

A0 =
1

2
I0, A1 =

1√
2− 2/k

J − 1

2
√

2− 2/k
I0, R =

1

2
√

2− 2/k
J +

1

2
I0

Is a solution to the first layer with zero 1-truncated loss. Thus, by corollary 13 we will have
Val1Ψ0

(A1, R1) ≤ 2(k+1)+(d+1)2(2kk+4
√
k(d+1))2

δ
√
m

=: ϵ1 w.p. 1−δ. The following lemma shows that

in this case it holds that ∥V 1(I − PI)∥sp ≤ (8dϵ1)
1
4 =: ϵ.

Lemma 14 If Val1Ψ0
(A1, R1) ≤ ϵ2 then ∥V 1(I − PI)∥sp ≤ (8d)1/4

√
ϵ

Proof We have that ∥h10 − P0∥22 + ∥h11 − P2∥22 ≤ ϵ2. Hence, there are (d+ 1)× (d+ 1) matrices
A′

0, A
′
1 with ∥A1

0 − A′
0∥2F + ∥A1

1 − A′
1∥2F ≤ ϵ2 such that P0(x) = Ψ0(x)

⊤A′
0Ψ0(x) and P2(x) =

Ψ0(x)
⊤A′

1Ψ0(x). Since ∥A′
i − A1

i ∥Tr ≤
√
d∥A′

i − A1
i ∥F ≤

√
dϵ, there is a PSD matrix R′ such

that −R′ ⪯ A′
i ⪯ R′ and Tr(R′) ≤ Tr(R1) +

√
2dϵ ≤ 1

2 + 1√
2−2/k

+
√
2dϵ.

Now, consider the matrices A′′
i , R

′′ obtained by zeroing (A′
i)jj , R

′
jj , R

′
jl and R′

lj for any j ∈ [d]\
I and 0 ≤ l ≤ d, and adding 1

2

∑
j∈[d]\I(A

′
i)jj to (A′

i)00 as well as 1
2

∑
j∈[d]\I R

′
jj to R′

00. We have
Ψ0(x)

⊤A′′
iΨ0(x) = Ψ0(x)

⊤A′
iΨ0(x), −R′′ ⪯ A′′

i ⪯ R′′ and Tr(R′′) = Tr(R′)− 1
2

∑
j∈[d]\I R

′
jj .

lemma 15 now implies that

1

2
+

1√
2− 2/k

≤ Tr(R′′) = Tr(R′)− 1

2

∑
j∈[d]\I

R′
jj ≤

1

2
+

1√
2− 2/k

+
√
2dϵ− 1

2

∑
j∈[d]\I

R′
jj

Hence, ∑
j∈[d]\I

R1
jj ≤

∑
j∈[d]\I

R′
jj ≤

√
8dϵ
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Finally, we have

∥V 1(I − PI)∥2sp = ∥(I − PI)(V
1)⊤V 1(I − PI)∥sp

= ∥(I − PI)R
1(I − PI)∥sp

≤ ∥(I − PI)R
1(I − PI)∥Tr

=
∑

j∈[d]\I

R1
jj

≤
√
8dϵ

Lemma 15 Let A0, A1, R be (d + 1) × (d + 1) matrices such that −R ⪯ Ai ⪯ R and P2i(x) =
(Ψ0(x))

⊤AiΨ0(x). Then, Tr(R) ≥ 1
2 + 1√

2+2/k

Proof We assume w.l.o.g. that A0, A1, R minimizes Tr(R) under the above constraints. It is not
hard to verify that A0 and A1 are linear combination of the PSD matrices J, I0, ĨI := k

k−1(II−
1
kJ)

and IIc := 1
d−k (I − PI). Write

Ai = a1i J + a2i I0 + a3i ĨI + a4i IIc

Since the the matrices J, I0, ĨI and IIc are supported on orthogonal spaces, the minimal trace of a
PSD matrix R with −R ⪯ Ai ⪯ R is

∑4
j=1max(|aj0|, |a

j
1|). Now, zeroing a40 and a41 while adding

1
2a

4
0 and 1

2a
4
1 to a10 and a11 will not alter the functions computed by A0 and A1 and will not increase∑4

j=1max(|aj0|, |a
j
1|). Thus, we can assume that a40 = a41 = 0.

Likewise, zeroing a30 and a31 while adding − a3i
k−1 to a1i , and k

k−1
a3i
2 to a2i will not alter the

functions computed by A0 and A1 and will not increase
∑4

j=1max(|aj0|, |a
j
1|). Thus, we can assume

that a30 = a31 = 0. This implies that A0 =
1
2I0 and A1 =

1√
2−2/k

J − 1

2
√

2−2/k
I0

C.2. Remaining Layers and conclusion of the proof

Suppose that the t’th layer has t-truncated error at most ϵt and that ∥V 1(I − PI)∥sp ≤ ϵ. Lemma
16 below implies that there is a solution for the t’th layer with Frobenius norm at most 2k/2 and
t-truncated error at most ϵt + dkO(k2)ϵ2. Lemma 18 below now implies that there is a solution
for the (t + 1)’th layer with (t + 1)-truncated error at most kO(k2)ϵt + dkO(k2)ϵ2. By lemma 16
and corollary 13 we have that w.p. 1 − δ, the (t + 1)’th layer has (t + 1)-truncated error at most
kO(k2)ϵt + dkO(k2)(ϵ2 + 1/δ

√
m). By induction, we conclude that w.p. 1− tδ, the truncated error

of the t’th layer is ktO(k2)ϵ1 + dktO(k2)(ϵ2 + 1/δ
√
m). Hence, w.p. 1 − log(k)δ, the error of the

final layer is

kO(k2 log(k))ϵ1 + dkO(k2 log(k))(ϵ2 + 1/δ
√
m) =

d42O(k2 log2(k))

δm1/4

which concludes the proof.

21



DANIELY SCHAIN YEHUDAI

Lemma 16 If ∥V 1(I − PI)∥sp ≤ ϵ then, for any x ∈ [−1, 1]d we have,

1. ∥Ψt(x)∥F ≤ M2t−2(M |I|+ ϵd)2
t ≤ M3·2t

2. ∥Ψt(x)−Ψt(PIx)∥F ≤ d2tM2t+3·(2t−1)ϵ

3. For the projection P on span
(
V tΨt−1(PI{±1}d)

)
and any symmetric A with ∥A∥sp ≤ 1

and x ∈ {±1}d we have

|⟨A,Ψt(x)⟩ − ⟨PAP,Ψt(x)⟩| ≤ d2tM2t+3·(2t−1)ϵ and ∥PAP∥F ≤ 2|I|/2

Proof We first prove item 1. by induction on t. For t = 1 we have

∥Ψ1(x)∥F = ∥V 1x∥2

≤
(
∥V 1(I − PI)∥sp∥x∥+ ∥V 1∥sp∥PIx∥

)2
≤

(
ϵ
√
d+M

√
|I|
)2

For t > 1 we have by the induction hypothesis

∥Ψt(x)∥F = ∥V tΨt−1(x)∥2

≤ M2
(
M2t−1−2(M |I|+ ϵd)2

t−1
)2

= M2t−2(M |I|+ ϵd)2
t

We next prove item 2. by induction on t. For t = 1 we have

∥Ψ1(x)−Ψ1(PIx)∥F = ∥(V 1x)⊗ (V 1x)− (V 1PIx)⊗ (V 1PIx)∥
≤ ∥(V 1x)⊗ (V 1(I − PI)x)∥+ ∥(V 1(I − PI)x)⊗ (V 1PIx)∥
≤ 2dMϵ

For t > 1 we have by the induction hypothesis and item 1.

∥Ψt(x)−Ψt(PIx)∥F = ∥(V tΨt−1(x))⊗ (V tΨt−1(x))− (V tΨt−1(PIx))⊗ (V tΨt−1(PIx))∥
≤ ∥(V tΨt−1(x))⊗ (V tΨt−1(x)− V tΨt−1(PIx))∥

+∥(V tΨt−1(x)− V tΨt−1(PIx))⊗ (V tΨt−1(PIx))∥
≤ M2 · ∥Ψt−1(x))∥ · ∥Ψt−1(x)−Ψt−1(PIx))∥

+M2 · ∥Ψt−1(PIx))∥ · ∥Ψt−1(x)−Ψt−1(PIx))∥
≤ 2M2M3·2t−1

2t−1dM2(t−1)+3·(2t−1−1)ϵ

= 2tdM2t+3·(2t−1)ϵ

We now prove item 3.

⟨A,Ψt(x)⟩ − ⟨PAP,Ψt(x)⟩ = (V tΨt−1(x))
⊤A(V tΨt−1(x))

−(PV tΨt−1(x))
⊤A(PV tΨt−1(x))

= (V tΨt−1(x))
⊤A(V tΨt−1(x)− PV tΨt−1(x))

+(V tΨt−1(x)− PV tΨt−1(x))
⊤A(PV tΨt−1(x))
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Hence, by the previous items,

|⟨A,Ψt(x)⟩ − ⟨PAP,Ψt(x)⟩∥ ≤ ∥A∥sp · ∥V tΨt−1(x)− PV tΨt−1(x)∥ · (∥V tΨt−1(x)∥+ ∥PV tΨt−1(x)∥)
≤ 2M1+3·2t−1∥V tΨt−1(x)− PV tΨt−1(x)∥
≤ 2M1+3·2t−1∥V tΨt−1(x)− V tΨt−1(PIx)∥
≤ 2M2+3·2t−1

d2t−1M2(t−1)+3·(2t−1−1)ϵ

≤ d2tM2t+3·(2t−1)ϵ

Finally,
∥PAP∥F ≤ ∥PAP∥sp

√
rank(PAP ) ≤ 1 ·

√
rank(P ) ≤ 2|I|/2

Lemma 17 For even i ≥ 0 denote

Ti =
{
(j, l) : 0 ≤ j ≤ l ≤ max(2, 2⌈log2(i/2)⌉) and j + l ≤ i and j, l are even

}
for odd i ≥ 0 denote

Ti =
{
(j, l) : 0 ≤ j, l ≤ max(2, 2⌈log2(i/2)⌉) and j + l ≤ i and j is odd and l is even

}
There are coefficients

{
αi
j,l

}
(j,l∈Ti)

such that

pi =
∑

(j,l)∈Ti

αi
j,lpjpl

furthermore, |αi
j,l| ≤ (3k)i

Proof By induction on i. For i = 0 we have p0 = p0p0 and of i = 1 we have p1 = p0p1. For any
i+ 1 ≥ 1 we have by Eq. (6)

pi+1(x) =
1√

(i+ 1)(k − i)
xpi(x)−

√
i(k − i+ 1)√
(i+ 1)(k − i)

pi−1(x)

By the induction hypothesis and Eq. (6)

pi+1(x) =
1√

(i+ 1)(k − i)

∑
(j,l)∈Ti

αi
j,lxpj(x)pl(x) +

√
i(k − i+ 1)√
(i+ 1)(k − i)

∑
(j,l)∈Ti−1

αi−1
j,l pj(x)pl(x)

=
∑

(j,l)∈Ti

αi
j,l

(√
(j + 1)(k − j)√
(i+ 1)(k − i)

pj+1(x) +

√
j(k − j + 1)√
(i+ 1)(k − i)

pj−1(x)

)
pl(x)

+

√
i(k − i+ 1)√
(i+ 1)(k − i)

∑
(j,l)∈Ti−1

αi−1
j,l pj(x)pl(x)
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The lemma follows from the fact that√
(j + 1)(k − j)√
(i+ 1)(k − i)

+

√
j(k − j + 1)√
(i+ 1)(k − i)

+

√
i(k − i+ 1)√
(i+ 1)(k − i)

≤ 3
√
k ≤ 3k

Lemma 18 Let Ψ : {±1}d → Bn
M1

. Assume that for any 0 ≤ i ≤ 2t−1 there is a vector vi ∈ Bn
M2

such that for P̃i(x) := ⟨vi,Ψ(x)⟩ we have
∥∥∥Pi − P̃i

∥∥∥
2
≤ ϵ. Then, there are matrices Ai for

0 ≤ i ≤ 2t such that for P̂i(x) := Ψ(x)⊤AiΨ(x) we have
∥∥∥Pi − P̂i

∥∥∥
2
≤ 2M1M2(3|I|)|I||I|2ϵ

and ∥Ai∥Tr ≤ 2t(3k)2
t
M2

2

Proof Fix 0 ≤ i ≤ 2t and consider the matrix

Ai =
∑
j,l∈Ti

αi
j,lvjv

⊤
l

We have ∥Ai∥Tr ≤ 2t(3k)2
t
M2

2 and

P̂i(x) = Ψ(x)⊤AiΨ(x) =
∑
j,l∈Ti

αi
j,lP̃j(x)P̃l(x)

Hence, ∥∥∥Pi − P̂i

∥∥∥
2

=

∥∥∥∥∥∥
∑
j,l∈Ti

αi
j,l

(
PjPl − P̃jP̃l

)∥∥∥∥∥∥
2

≤ (3|I|)|I|
∑
j,l∈Ti

∥∥∥PjPl − P̃jP̃l

∥∥∥
2

≤ (3|I|)|I|
∑
j,l∈Ti

∥∥∥PjPl − PjP̃l

∥∥∥
2
+
∥∥∥PjP̃l − P̃jP̃l

∥∥∥
2

≤ (3|I|)|I|
∑
j,l∈Ti

∥Pj∥∞
∥∥∥Pl − P̃l

∥∥∥
2
+ ∥P̃l∥∞

∥∥∥Pj − P̃j

∥∥∥
2

≤ 2M1M2(3|I|)|I||I|2ϵ

Appendix D. Proofs and Additional Algorithms from Sec. 6

D.1. Proof of Lemma 10

It is clear that ∥ · ∥Rx is homogeneous and non-negative. It remains to show that the triangle in-
equality is satisfied and that ∥A∥Rx > 0 for A ̸= 0. For the triangle inequality we have:

∥A+B∥Rx = min{Tr(R) : R ⪰ 0 and ∀i,−R ⪯ Bi +Ai ⪯ R}
≤ min{Tr(R1) + Tr(R2) : R1, R2 ⪰ 0 and ∀i,−R2 ⪯ Ai ⪯ Ri and −R2 ⪯ Bi ⪯ R2}
= ∥A∥Rx + ∥B∥Rx
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Let A ̸= 0, then there is j ∈ [k] with Aj ̸= 0 which also means that ∥Aj∥Tr > 0. Note that

∥A∥Rx ≥ max
i∈[k]

∥Ai∥Tr ≥ ∥Aj∥Tr > 0

For the second part, we need to find R which minimizes:

minTr(R) s.t. −R ⪯ A ⪯ R, 0 ⪯ R .

First, assume that A is a diagonal matrix. For every unit vector ei we have that −e⊤i Rei ≤ eiAei ≤
eiRei, which means that −ri,i ≤ ai,i ≤ ri,i. In other words, we get that ri,i ≥ |ai,i|, and the
minimum on the trace of R is achieved when ri,i = ai,i for every i. Consider some R that achieves
the minimum, and assume it is not a diagonal matrix. Then, there are indices i ̸= j with ri,j ̸= 0
(and also ri,j ̸= 0 since R is symmetric). Assume that ri,j > 0 and let v be the vector with 1 in
the i-th and j-th coordinates and 0 in every other coordinate. By the condition of R we get that
v⊤(R−A)v ≥ 0. But we have that:

v⊤(R−A)v = −2ri,j < 0

which is a contradiction. In case ri,j < 0 we can take v to be equal 1 in the i-th coordinate, −1 in
the j-th coordinate and 0 in every other coordinate. This shows that if A is diagonal, then there is a
single solution for the minimization problem with a diagonal R such that ri,i = |ai,i| for every i.

Assume now that A is some symmetric matrix, and write A = U⊤DU where U is orthogonal
and D is diagonal. Let R be some solution to the minimization problem, then U⊤RU is a solution
to the same minimization problem where we replace A with D. But since D is diagonal, then there
is a single solution where U⊤RU is diagonal with (U⊤RU) = |D|. Hence R = U⊤|D|U is the
single solution to the minimization problem for A. Finally, we have:

∥A∥Tr =
∑
i

|Di,i| = Tr(R) = ∥A∥Rx .

D.2. Additional Algorithms

In Sec. 6 we provided several additional algorithms for training RedEx using norm constraints
instead of semi-definite constrains. Here we provide the full algorithms. In Algorithm 4 we provide
the 1-layer RedEx algorithm where we use the RedEx norm instead of the semi-definite constraints
on R. Note that the optimization algorithm does not include R, although it does require finding R
to output V . In Algorithm 5 we show how to train a 1-layer RedEx where k = 1. In this case, the
RedEx norm is equivalent to the trace norm, hence this algorithm requires solving an unconstrained
optimization problem. This can be solved using standard gradient methods such as GD or SGD.
Note that it is also not needed to explicitly find R, since by Lemma 10 it can be calculated directly
from A.
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Algorithm 4 Training 1 -layer RedEx with the RedEx norm
1: Parameters: A loss ℓ : R × Y → [0,∞), width parameter λ1 and a regularization parameter

λ2

2: Input: A dataset (x1, y1), . . . , (xm, ym) ∈ Rd × Y
3: Find symmetric d× d matrices A1, . . . , Ak by solving the program:

min
1

m

m∑
i=1

ℓyi

(
x⊤
i Axi

)
+ λ1∥A∥Rx + λ2∥A∥2fr (9)

4: Find R that minimizes Eq. (7)
5: Compute an orthogonal diagonalization R = U⊤DU
6: Output V =

√
DU and Pi = (V †)⊤AiV

†.

Algorithm 5 Training 1 -layer RedEx with output dimension 1

1: Parameters: A loss ℓ : R × Y → [0,∞), width parameter λ1 and a regularization parameter
λ2

2: Input: A dataset (x1, y1), . . . , (xm, ym) ∈ Rd × Y
3: Find symmetric d× d matrix A by solving the program:

min
1

m

m∑
i=1

ℓyi

(
x⊤
i Axi

)
+ λ1∥A∥Tr + 2λ2∥A∥2fr (10)

4: Compute an orthogonal diagonalization A = U⊤DU
5: Output V =

√
|D|U and P = (V †)⊤AV †.
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