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Abstract

Designing computationally efficient algorithms in the agnostic learning model (Haussler, 1992;
Kearns et al., 1994) is notoriously difficult. In this work, we consider agnostic learning with mem-
bership queries for touchstone classes at the frontier of agnostic learning, with a focus on how much
computation can be saved over the trivial run-time of 2". This approach is inspired by and continues
the study of “learning with nontrivial savings” (Servedio and Tan, 2017). To this end, we establish
multiple agnostic learning algorithms, highlighted by:

* An agnostic learning algorithm for circuits consisting of a sublinear number of gates, which
can each be any function computable by a sublogarithmic degree k polynomial threshold
function (the depth of the circuit is bounded only by size). This algorithm runs in time 2"~(*)
for s(n) =~ n/(k+ 1), and learns over the uniform distribution over unlabelled examples on

{0, 1}".

* An agnostic learning algorithm for circuits consisting of a sublinear number of gates, where
each can be any function computable by a SYM™ circuit of subexponential size and sublog-
arithmic degree k. This algorithm runs in time 2"~*(") for s(n) ~ n/(k+ 1), and learns over
distributions of unlabelled examples that are products of k + 1 arbitrary and unknown distri-
butions, each over {0, 1}”/ (+1) (assume without loss of generality that k + 1 divides 7).

Furthermore, we apply our new agnostic learning algorithms for these classes to also obtain algo-
rithms for randomized compression, exact learning with membership and equivalence queries, and
distribution-independent PAC-learning with membership queries.

Our core technique, which may be of independent interest, remixes the learning from natural
proofs paradigm (Carmosino et al. 2016, 2017), so that we can tolerate concept classes fundamen-
tally different than AC° [p], and achieve fully agnostic learning. We make use of communication-
complexity-based natural proofs (Nisan, 1993), rather than natural proofs of Razborov (1987) and
Smolensky (1987) for AC’[p].

Keywords: Agnostic PAC-Learning, Nontrivial Savings, Membership Queries, Natural Proofs,
Threshold Functions, Communication Complexity

1. Introduction

Agnostic learning Haussler (1992); Kearns et al. (1992) is an important generalization of PAC-
learning Valiant (1984). Agnostic learning is meant to more accurately capture a common approach
to machine learning, where a predefined set of functions is explored in order to find the one achieving
the least error on a set of data produced by some totally unknown process. Thus, roughly speaking,
the objective of an agnostic learning algorithm for a complexity class A is to output a hypothesis
h whose error in approximating an arbitrary concept is nearly as small as that of the best possible
hypothesis within A. The class A is referred to as the fouchstone class.

© 2024 A. Karchmer.
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Designing computationally efficient (i.e., polynomial time) agnostic learning algorithms for
expressive touchstone classes has historically been relatively hard. Even extremely simple touchstone
classes such as parity functions are believed to be computationally hard to learn in the agnostic model
Blum et al. (1993). Some positive results exist, however, including for piecewise functions Kearns
et al. (1992), restricted fan-in two-layer neural nets Lee (1996), geometric patterns Goldman et al.
(1997), decision trees, Gopalan et al. (2008), and halfspaces Kalai et al. (2008a).

If we take some combination of the common relaxations considered in computational learning
theory, such as access to membership queries, distribution-specific learning, or super-polynomial
runtime, more positive results become known. For instance, the famed polynomial time agnostic
learning algorithm for parity functions due to Goldreich and Levin (1989) (also referred to some-
times as the KM algorithm after Kushilevitz and Mansour (1991)), uses membership queries and
requires a uniform distribution over unlabelled examples. On the other hand, Blum et al. (2003) and
Lyubashevsky (2005) show agnostic learning for parities using only random examples, but restricting
to the uniform distribution and allowing slightly subexponential runtime.

In this work, we study agnostic learning under all three relaxations: access to membership queries,
a varying degree of distribution-specificity, and super-polynomial runtime. Throughout the paper, we
refer to agnostic learning algorithms that use membership queries as AMQ-learners, and the learning
model as AMQ-learning. Distributional assumptions and/or super-polynomial runtimes are stated
explicitly.

More specifically, the goal of this work is to increase the complexity of the touchstone classes
that are known to be agnostically learnable. Thus, with respect to the runtime relaxation, we will
focus merely on how much computation can be saved over the trivial runtime of 2" (here n is the
number of binary “inputs” to the target concept). To summarize, we will try to design AMQ-learners
that assume some knowledge about the distribution over unlabelled examples, and which run in
time 2" (") for a savings function s(n). Clearly, when s(n) = n — O(log(n)), runtime is polynomial.
Generally speaking, we aim for s(n) € w(log(n)). Throughout the paper, we refer to a learning
algorithm in a specified model that runs in time 2"~*(") as s(n)-nontrivial, or simply nontrivial, if
s(n) € w(log(n)).

This perspective is heavily inspired by the idea of Servedio and Tan (2017), who first explicitly
considered learning with nontrivial savings. However, our learning model differs significantly, as
Servedio and Tan (2017) did not consider agnostic learning, but also did not make use of membership
queries. Additionally, for technical reasons, they considered an online mistake-bound model of
learning Littlestone (1988), which is actually stronger than distribution-independent PAC-learning
Littlestone (1988); Blum (1994) and equivalent to exact learning with equivalence queries only
Angluin (1988). In the online mistake-bound model, they obtained nontrivial learning algorithms
for AC? circuits with a few LTF-gates, or augmented with mod p-gates, in addition to full-basis
formulas, branching programs, and span programs of some fixed polynomial size (all less than n?).

Understanding how much computation can be saved is a relatively new goal in computational
learning theory, which, on the other hand, has a longer, fruitful history in complexity theory. For
instance, there exist many examples of non-trivial upper bounds slightly better than 2" for count-
ing or satisfiability algorithms for CNFs, and other NP-hard or #P-hard problems (see Paturi et al.
(1997); Schoning (1999); Paturi et al. (2005); Schuler (2005); Fomin and Kaski (2013); Impagliazzo
et al. (2012)). Thus, as Servedio and Tan (2017) pointed out, finding out the extent of what can
be learned with nontrivial savings is worthwhile to pursue in order to push computational learning
theory forward. Additionally, as we will discuss later, a direct implication from nontrivial learning
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algorithms to compression algorithms for Boolean circuit classes provides a concrete application for
our study.

1.1. Our Results

We present a variety of new nontrivial AMQ-learning algorithms. For the sake of clarity, we now
present somewhat weaker and slightly informal statements that still convey the main results of this
work. The formal and more technically precise statements proved in the body of the paper are easily
seen to imply them. An extended technical overview follows in Section 2, which includes a precise
definition of AMQ-learning.

AMQ-learning over the uniform distribution. First, we obtain nontrivial AMQ-learners, with

respect to a uniform distribution over unlabelled examples on {0,1}", for functions of degree k

polynomial threshold functions (PTFs). Specifically, the following touchstone classes:

* Class 1: Circuits of at most n°%° gates, where each gate computes any function computable
by a PTF of degree k < log(n)*%?, in time 2" ") for s(n) ~ n/(k+1).

» Class 2: Decision trees of at most n°%° depth, where each node is allowed to make a query
computed by a PTF of degree k < log(n)%%, in time 2"~*(") for s(n) ~ n/(k+1).

We use = to suppress additive factors that are sublinear in #n, and an unavoidable logarithmic depen-
dency on the reciprocal of the error rate of the optimal hypothesis in the touchstone class.

AMQ-learning over 7-product distributions. We also obtain nontrivial AMQ-learners when the
distribution over unlabelled examples on {0, 1}" is a z-product. A t-product is a distribution that is
defined by ¢ € Z arbitrary distributions, each over {0,1}"/" (assume without loss of generality that
divides n). The ¢-product distribution is sampled by taking independent samples from each of the ¢
distributions, and concatenating them to form an element of {0, 1}". The ability to handle z-product
distributions over unlabelled examples is a significant upgrade over the uniform distribution, for at
least two reasons. First, this class of distributions allows for intricate dependencies between some
of the bits of the unlabelled examples. Second, the ¢ distributions need not even be known to the
algorithm. That is, the algorithm is not specific to the choice of the ¢ distributions that make up the
t-product.’

We give AMQ-learners for functions of SYM™ circuits of subexponential size and degree k
(see touchstone classes 3 and 4), where the distribution over unlabelled examples is an unknown
(k+ 1)-product. A SYM™ circuit of size s and degree k is defined by a pair (p, ), where p is an
n-variable degree-k multilinear polynomial over the integers. Size s means that the magnitude of the
coefficients of p is at most s. On the other hand, 0 : Z — {—1,1} is an arbitrary function. The SYM™
circuit (p, 6) evaluates by computing the function s : {0,1}" — {—1,1} defined as s(x) = 0(p(x)).

» Class 3: Circuits of at most n! ¢ gates, where each gate computes any function computable
by a SYM™ circuit of size ot ({ < &) and degree k < log(n)*%, in time 2"~*(") for s(n) ~
n/(k+1).

1. If we could upgrade further to arbitrary distributions, then we could remove the need for membership queries (see
Feldman (2009b)). This is an interesting goal for future research.
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* Class 4: Decision trees of at most n' ~¢ depth, where each node is allowed to make a query
computed by a size ont (§ < &) and degree k < log(n)®* SYM™ circuit, in time 2" ") for
s(n)=n/(k+1).

Note, degree k PTFs with sum of coefficients less than s are a subclass of size s, degree k SYM™
circuits. So, to expand the class of distributions over unlabelled examples handled by the AMQ-
learner for touchstone classes 1 and 2, we have to modify the touchstone class by bounding the
weights of each PTF-gate slightly. However, size s, degree k SYM™ circuits are still more general
than degree k PTFs with total weight bounded by s. Because of this, touchstone classes 3 and 4 are
not necessarily supersets of touchstone classes 1 and 2.

1.2. Some Applications of Our Results

Several applications of the nontrivial AMQ-learners for classes 1-4 in are in order. We refer to
Section 6 for precise statements and further discussion of these applications.

Compression Algorithms for Classes 1-4. Randomized compression algorithms for Boolean
functions (Chen et al., 2015) are obtained in a simple and generic way from membership query
learning over the uniform distribution (this was noticed already in Carmosino et al. (2016); Servedio
and Tan (2017)). Even though our results are AMQ-learners, they can be used in the realizable
setting as membership query learning algorithms as needed. Therefore, we also obtain randomized
compression algorithms for touchstone classes 1-4, which were not known before.

Nontrivial Exact Learning and Distribution-Independent PAC-Learning for Classes 1-4. In a
similar fashion, randomized learning algorithms in the exact learning with membership and equiv-
alence queries model (Angluin, 1988) are obtained from membership query learning over the uni-
form distribution. Additionally, it is also known (by standard arguments — see Section 2.4 of An-
gluin (1988)) that algorithms for exact learning with membership and equivalence queries imply
distribution-independent membership query learning algorithms in the realizable PAC model. Hence,
we also obtain nontrivial exact learning and distribution-independent PAC learning algorithms for
classes 1-4, which were not known prior.

1.3. Our Approach

The approach of Servedio and Tan (2017) was to convert circuit lower bound methods (random
restrictions, Neciporuk’s method) into nontrivial learning algorithms in the online mistake bound
model. Because of this, they asked (see section 5 of Servedio and Tan (2017) for exact quotations):

1. Can other proof techniques from computational complexity be used to obtain other nontrivial
learning algorithms?

2. Many circuit classes have known lower bounds, but not nontrivial learning algorithms (in any
model); can we design nontrivial learning algorithms for such classes?

The approach we take is led by this line of questioning. Specifically, we translate circuit lower
bounds proved by a communication complexity based method due to Nisan (1993) into nontrivial
AMQ-learners. This goes to answer question 1 above. It also means that we obtain answers to
question 2, because, fixing a degree k, none of touchstone classes 1-4 can compute the generalized
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inner product function of degree k£ + 1 Nisan (1993), but prior to this work no nontrivial learning
algorithms were known for these classes (in any learning model). The essential details and definitions
of communication complexity in the relevant communication models will be explained in sufficient
depth in the technical overview (Section 2); we point to Kushilevitz and Nisan (1996) for further
reference.

At a very high level, the method of Nisan (1993) is the following. First, identify a function
¢ :{0,1}" — {0,1} that requires high communication complexity (e.g., Q(n)). This can be in any
communication model, such as k-party number-on-forehead (NOF), two-party randomized, or two-
party deterministic. Then, identify a circuit class ¢ (with an associated size parameter s(n)) such
that, for every function g computable by a circuit of type ¢ and size s(n), g is computable by a
low communication protocol in that communication model. Low communication cost indicates a
relatively small function of s(n) like log(s(n)). Finally, one can conclude that f requires large circuits
of type €.

At the core of Nisan’s method is the upper bound on communication complexity for the circuit
class 4. Thus, by specifically showing that communication complexity upper bounds in the k-
party NOF model imply, in a general sense, approximately n/k-nontrivial AMQ-learners, we end
up translating Nisan’s general lower bound method into nontrivial AMQ-learners. Since circuit
lower bounds for explicit functions can be proved for each of touchstone classes 1-4 using Nisan’s
method, this suffices to derive our AMQ-learners. In Section 2, we give an in-depth explanation of
the construction of the AMQ-learner for deterministic NOF protocols.

AMQ-learner for
randomized NOF
protocols

AMQ-learners
for touchstone 1,2

Section 4 .. \

"' AMQ-learner for
. deterministic NOF

protocols

AMQ-learners
for touchstone 3,4

Main technical contribution ) ..

Figure 1: The progression of our constructions.

1.4. Related Results and Discussion

Not many touchstone classes that resemble ours are known to be nontrivially learnable, whether in
AMQ-learning or the exact learning model. The most related results are the learning algorithms of
Servedio and Tan (2017) and Carmosino et al. (2017). We now compare our results to each.
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For comparison with Servedio and Tan (2017), let us focus on our results in the nontrivial exact
learning model (see Section 1.2), which is the focus of their work. Classes 1 and 2 are possibly
more interesting than the classes shown to be nontrivially learnable in the exact learning with (only)
equivalence queries by (Servedio and Tan, 2017). For example, LTF-of-AC® and Parity-of-AC® —
these circuit classes cannot compute the parity function or an LTF, respectively, while touchstone
classes 1 and 2 can compute both. Additionally, our AMQ-learners for classes 1 and 2 are n/O(1)-
nontrivial (when fixing a constant degree k for the PTFs), while (Servedio and Tan, 2017) only
obtain n/polylog(n)-nontrivial learners for LTF-of-AC® and Parity-of-AC®. However, it is important
to note that our results are not necessarily formally stronger than Servedio and Tan (2017) because
we require membership queries, while Servedio and Tan (2017) do not.

For comparison to Carmosino et al. (2017), let us focus on our results in the AMQ-learning
model, which is their focus as well. Carmosino et al. (2017) obtain a uniform-distribution-specific
algorithm with some relatively mild agnostic guarantees for AC°[p] circuits, for any prime p. More
specifically, the AMQ learner for AC” [p] finds a hypothesis with error as much as polylog(n) times
the optimal hypothesis in ACO[p}. In contrast, our AMQ-learner for classes 3 and 4 is fully agnostic
(i.e., it does not have the polylog(n) loss factor). Additionally, our AMQ-learner works over k-product
distributions, rather than just the uniform distribution. In these two respects, our algorithm compares
favorably. Plus, touchstone classes 3 and 4 are not contained in AC? [p] for any prime p. However,
their algorithm is much faster — quasi-polynomial time — while ours is approximately n/2-nontrivial.

Could we improve our results? An interesting note regarding touchstone classes 3 and 4 is that
seemingly small improvements would be a breakthrough in computational learning theory (indeed
classes 3 and 4 reach the AMQ-learning frontier). To see this, recall that touchstone classes 3 and
4 are classes of functions of subexponential size but sublogarithmic degree SYM™ circuits. Now
observe that a quasipolynomial size SYM™ circuit with polylogarithmic degree can compute all of
ACCY (Beigel and Tarui, 1994). Nontrivial AMQ-learning of ACC? is an open problem, even when
the distribution over unlabelled examples is fixed to be uniform, and the learning algorithm is not
even agnostic. Thus, extending our AMQ-learner to handle a circuit with even one single gate that
computes a quasi-polynomial size, polylogarithmic degree SYM™ function would be a breakthrough
in learning theory. In fact, since nontrivial learning algorithms for ACC® can be “sped-up” (by a
result of Oliveira and Santhanam (2016)), we would obtain a learning algorithm in time 2" for
any € > 0. On the other hand, pseudorandom functions with exponential security computable by
ACC? circuits are conjectured Boneh et al. (2018). These conjectures preclude 7/O(1)-nontrivial
AMQ-learners for ACCY.

2. Extended Technical Overview

In this section, we provide an in-depth overview of the technique behind our main technical contri-
bution, from which all the AMQ-learners for touchstone classes 1-4 are derived. The main technical
contribution constructs the AMQ-learner over k-product distributions for the touchstone class of
functions admitting k-party NOF communication protocols of cost ¢ (we will set ¢ as a function of n
and k later; for now, think of k as a constant and ¢ := @(n%%)).

We begin by defining k-party NOF communication, then define nontrivial AMQ-learning pre-
cisely, and finally walk through the main technical contribution.
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k-party NOF communication. The k-party NOF communication model is the following. There
are k parties, each having unbounded computational power, who try to collectively compute a func-
tion. The input to the function is separated into k parts, each containing n/k of the inputs (assume
without loss of generality that n is a multiple of k), and the i party sees all parts except the i"”". The
communication between the parties is by broadcast: any party can send a bit to all others simultane-
ously.

All parties may transmit messages according to a fixed protocol. The protocol determines, for
every sequence of bits transmitted up to that point (the transcript), whether the protocol is finished
(as a function of the transcript), or if (and which) party writes next (as a function of the transcript)
and what that party transmits (as a function of the transcript and the input of that party). Finally,
the last bit transmitted is the output of the protocol, which is a value in {—1,1}. The complexity
measure of the protocol is the total number of bits transmitted by the parties.

Definition 1 (IT[k, c] class) II[k,c]| is defined to be the class of functions f : {0,1}" — {—1,1} that,
for any partition of the n variables into k length n/k parts, can be computed by a k-party communi-
cation protocol with complexity c.

Again, for now, one can think of n as being a multiple of k without loss of generality. Within this
extended technical overview, we will use the notation [xj,---x; to denote the concatenation of
the k parts xp,- - -xx, according to the appropriate partition, which is implicit. For simplicity, it is
appropriate to think of the partition as contiguous blocks of n/k bits, from “left to right” (depicted
later in Figure 2).

AMQ-learning. Valiant’s PAC-learning model operates in the realizable setting, where the concept
f:{0,1}" — {—1,1} is assumed to be part of a fixed class. In agnostic learning, the concept is
modelled instead as an arbitrary distribution 2 over {0,1}"* x {—1,1}. For (x,y) ~ Z, x is called the
example, and y is called the label. Note that the label for one example may be randomized. We refer
to the marginal distribution p over x for (x,y) ~ Z as the distribution over unlabelled examples, or
example distribution for short.

The goal of agnostic learning for a touchstone class A is to find a hypothesis 2: {0,1}" — {—1,1}
such that, with probability 1 — &, & satisfies

E |h(x)-y] > opt(A) —¢€
(x,y)Ng[ (x)-y] > g( )

where the learning algorithm is given €, 6 as input, and opt(A) is defined as
9

ogt(/\) = max (X’j)EN )]
Throughout this paper, we will make assumptions about p, the distribution over unlabelled exam-
ples. We specify that we obtain agnostic learning when p is restricted to be part of some class of
distributions (e.g., k-product distributions). In AMQ-learning, we allow the learning algorithm to
have access to a membership query oracle, which works as follows. The AMQ-learner can submit
an example z, of its choice, and receive back the label y with probability Pr|(x,y) ~ Z|x = z].
In nontrivial AMQ-learning, the two notions of complexity that we consider are:

* Query complexity: The total number of membership queries made by the AMQ-learner, in the
worst-case.
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* Time complexity: The worst-case run-time complexity of the AMQ-learner.

Normally, query and time complexity are measured as functions of n, €, 8. This can make state-
ments about complexity a bit messy in the nontrivial learning setting; we will fix 6 :=2/3, and
£:= 2_”0'99, and thus bound complexity purely as a function of n. Recall, an AMQ-learner is s(n)-
nontrivial if time complexity is at most 2"—5(%),

Towards the AMQ-learner. Towards the full AMQ-learner, we construct a weak AMQ-learner.
A weak AMQ-learner essentially preserves a small portion of the correlation between the optimal
hypothesis in the touchstone, and the target concept. We use a standard notion due to Feldman
(2009a); Kanade and Kalai (2009).

Definition 2 (Weak agnostic learning) For 0 < a <y <1, a (Y, a)-weak agnostic learner for € is
an algorithm of that (when receiving some oracle access to a target concept 9) outputs a hypothesis
h:{0,1}" — {—1,1} such that

opi(#) =max E le(ey] >y = Pr| E_[(xh]> 0 >2/3

We construct a weak AMQ-learner of this kind, because Feldman (2009a); Kanade and Kalai
(2009) show that it can be boosted, using distribution-specific boosting algorithms, into a full-blown
agnostic learning algorithm. This means that the boosting algorithm only ever invokes the weak
AMQ-learner on a single distribution over unlabelled examples. This is important for us, because
our initial result does not handle arbitrary distributions over unlabelled examples.

For the sake of simplicity in exposition, the main technical contribution is stated below with
respect to the uniform distribution over unlabelled examples, and the concept is considered an arbi-
trary function, rather than distribution. The corresponding theorem proved in the body of the paper
extends this to k-product distributions over unlabelled examples (as discussed previously), as well
as concepts that are arbitrary distributions.

Define Cor(f, A) = maxger B o1} [8(2) - £(2)].

Theorem 3 (Main technical contribution) Ler f:{0,1}" — {—1,1}. There exists an oracle algo-
rithm of with the guarantee that if Cor(f,I1[k,c]) > v, then <7/ outputs h : {0,1}" — {—1,1} such
that

l;r z~{}())f1}" h(z)=f(z)] >1/2+a| >2/3
with:
o =0y 272,
« query complexity q :=2"*"), for s(n) = n/k —log(k) +4(log(y) — c2* +k))
* time complexity t := O(q).

Here, 7 ~ {0,1}" denotes sampling over the uniform distribution.

The main tool we use towards this theorem is the “k-party norm” of a function f : {0,1}" —
{—1,1}, denoted R(f), defined as:
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Definition 4 (k-party norm) For f: {0,1}" — {—1,1}, the k-party norm of f is defined as

Ri(f) := E IT 722 (1)

A ex e b { 0,1}/ e1,66{0,1}
Again, we assume without loss of generality that k divides n.

The main insight towards a weak AMQ-learner for IT[k, c] is that R (f) upper bounds the correla-
tion of f with functions computable by deterministic k-party NOF communication protocols. Proved
in all three of Chung and Tetali (1993); Raz (2000); Viola and Wigderson (2007), is the following
bound:

Theorem 5 (k-party correlation bound) For every function f:{0,1}" — {—1,1},

Cor(f,Mlk,c)) = max [E[f(x)-m(x)]| <2° Ri()'* @)
welllk,c) | x

for x uniformly distributed over {0, 1}".

This correlation bound can be used to obtain a natural proof, in the sense of Razborov and Rudich
(1997), against IT[k, c]. This has observed for many years as folklore, but explicitly shown by Karch-
mer (2023).

On first thought, it seems we should then be able to obtain learning algorithms using the technique
of Carmosino et al. (2016, 2017), but this does not work. To see this, we can observe that the method
of Carmosino et al. (2016, 2017) requires the concept class to contain AC?[p]—and AC®[p] contains
functions that have Q(n/exp(k)) communication complexity (e.g. generalized inner-product Viola
and Wigderson (2007)). Thus, we cannot in general apply their method with a natural proof against
[k, c|, since this trivializes the bound in (2). To get a little more specific, Carmosino et al. (2016,
2017) requires the concept class to contain AC° [p] because the “combinatorial designs” within the
Nisan-Wigderson PRG, used at the heart of their construction, require AC° [p]-circuits to locally
compute.

The way we get around this is as follows: we use the combinatorial design that arises naturally
from the k-party norm itself, and then use the k-party correlation bounds as a distinguisher. Observe:
Ri(f) is the expectation of the product of f computed on all combinations of a list of 2k, n/k-bit
“slices.” So, we view the 2n bits in this list as a “seed,” and each of the 2¥ combinations as the designs
over slices of this seed. See Figure 2 for a graphical depiction.

ol ol 0ol .0l 0.0 ol ol 0ol .0l 0.0
Ty [ Tg | T3 [Ty | T | Tg Ty [ Zo | T3 [Ty | T | Tg
11 1| 1] 1], 1. 1. 1. 111
Ty | Xy | T3 [Ty | Ts | Tg Ty [Za | T3 [Ty | Ts | Tg

Figure 2: Two examples of designs naturally arising from Re(f). Each x} is a n/k bit slice of the
2n bit seed. Design indices ‘011000’ and ‘110101 are highlighted on the left and right
images respectively.

In other words, if we generate a random seed x, and then query the concept f at every point
z; indicated by the seed projected to design i € {0,1}* (see Figure 3), then the distribution over
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the labels (f(zi));c0,1}+ can be distinguished from a uniformly random string in {—1, 1321 The
distinguisher simply takes the product of the bits. By design, this product has expectation at least
(}/Z*C)Zk, which follows directly from Theorem 5 (if we assume that the concept f has ¥ correlation
with IT[k, c]). For a random string, the expectation is zero. Therefore the distinguishing advantage is

(7).

ol ol 0o 0f 0], 0 ol o0 0] 0], 0
Ty | Ty T3 | Ty |Ts | Tg Ty |Zy | T3 [Ty |Ts | Tg
1| 1| 1| 1], 1].1 1| 1| [ 1], 1].1
Ty | Xy (T3 | Ty |Ts | Tg Ty | &g T3 | Ty |Ts | Tg

Query |  / seaan Query \
projection of seed

on design '110101"

- )

Labels

Figure 3: Example of projected designs to form queries. The claim is that the sequence of 2¥ labels
can be distinguished from a uniformly random string in the set {—1, l}zk, whenever the
concept has a large k-party norm.

Distinguishing labels queried in this randomized manner from a random string is sufficient to
obtain a randomized prediction algorithm for f with weak accuracy approximately 1/2 + (}Q*C)zk,
using a (rather involved) hybrid argument. Then, we can proceed as Carmosino et al. (2016) does:
we use a randomized pre-processing stage to “derandomize” the randomized predictor. That is, we
convert the randomized predictor to a randomized process that generates deterministic hypotheses
with a weaker (but similar) prediction accuracy, with some non-negligible probability. Finally, we
use a constructive averaging argument to obtain a deterministic hypothesis with weak accuracy, with
very high probability.

Giving an upper bound on the queries required to implement this method is argued by bounding
the number of subcubes that are queried in their entirety. The maximum number of subcubes is
roughly k, and each is of size 2/, Hence we can bound the total number of queries roughly by 27/%.
We refer to Lemma 15 for details.

3. Preliminaries

We cover basics of circuits. Other important definitions used in the paper are defined as needed
throughout.

Complexity classes, circuits, gates, etc. 'We consider various circuit classes with different bases
(all being defined previously in the literature). AC® is the class of constant depth, polynomial size,
unbounded fan-in AND/OR/NOT circuits. AC°[p] is the class of constant depth, polynomial size,

10
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unbounded fan-in AND/OR/NOT/MODp circuits, where p € N is a prime number. An XOR gate
takes the sum modulo 2 of its inputs.

An linear threshold function (LTF) gate computes an LTF defined by 7(x1, - - - x,) := Y7 wix; >
6, which outputs 1 if and only if the sum of the inputs weighted by real coefficients wy,---w,
exceeds a threshold 6. When the weights are fixed to be 1 and 8 = m/2, we call it a majority gate.
A polynomial threshold function (PTF) is defined by a polynomial p(xy,--- ,x,) with real number
coefficients. The p(x) for input x € {0,1}" is 1 if p(xy,---,x,) > 0 and -1 otherwise. Note, the
domain of the PTF is {0, 1}", so different polynomials can define identical PTFs. The degree of a
PTF is the degree of the polynomial p. We use PT-Ckt[k,m] to denote the class of circuits consisting
of at most m gates, which can each compute a PTF of degree k, and PT-Dt[k,d] to denote the class
of decision trees consisting of at most depth d, with internal nodes computing PTFs of degree k.

A SYMT circuit of size s and degree d is a pair (p, 8), where p is an n-variable degree-d multi-
linear polynomial over the integers. Size s means that the magnitude of the coefficients of p is at most
5. On the other hand, 0 : Z — {—1,1} is any function. The SYM™ circuit (p, 8) evaluates by comput-
ing the function s : {0,1}" — {—1,1} defined as s(x) = 6(p(x)). We also consider circuits, where
each gate computes any function computable by a SYM™ circuit. We denote by SYM™-Cktlk,,m]
the class of circuits consisting of at most m gates, which can each compute any function computable
by a SYM™ circuit of degree k and size . We denote by SYM™-Dt[k,,d] the class of decision trees
of depth d, with node queries computable by any SYM™ circuit of degree k and size .

4. Learning Efficient k-Party NOF Communication Protocols

In this section, we will construct an agnostic learning algorithm for any touchstone class that has an
efficient k-party deterministic number-on-forehead (NOF) communication protocol (defined previ-
ously but repeated below for the reader’s convenience).

The k-party NOF communication model is the following. There are k parties, each having un-
bounded computational power, who try to collectively compute a function. The input to the function
is separated into k parts, each containing n/k of the inputs (assume without loss of generality that
n is a multiple of k), and the i’ party sees all parts except the i"”. The communication between the
parties is by broadcast: any party can send a bit to all others simultaneously.

All parties may transmit messages according to a fixed protocol. The protocol determines, for
every sequence of bits transmitted up to that point (the transcript), whether the protocol is finished
(as a function of the transcript), or if (and which) party writes next (as a function of the transcript)
and what that party transmits (as a function of the transcript and the input of that party). Finally,
the last bit transmitted is the output of the protocol, which is a value in {—1,1}. The complexity
measure of the protocol is the total number of bits transmitted by the parties.

Definition 6 (IT[k, ] class) Il[k,c]| is defined to be the class of functions f : {0,1}" — {—1,1} that,
for any partition of the n variables into k length n/k parts, can be computed by a k-party communi-
cation protocol with complexity c.

Again, for now, one can think of n as being a multiple of k without loss of generality. We will obtain
AMQ-learners that do not require this.

To construct the learning algorithm, we will use a two-step process: first, we will construct a
weak agnostic learner, and then we will apply a distribution-specific agnostic boosting techniques,
such as by Feldman (2009a) or Kanade and Kalai (2009).

11
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4.1. Weak Learning

For weak agnostic learning, we use a standard notion introduced by Kalai et al. (2008b) , because this
type of weak learner can be subsequently used as an oracle in the boosting algorithms of Feldman
(2009a); Kanade and Kalai (2009). Basically, the weak agnostic learner is required to recover some
of the advantage that exists for the optimal concept ¢ € €.

Definition 7 (Weak agnostic learning) For0 < a <y <1, a (¥, a)-weak agnostic learner for € is
an algorithm of that (when receiving some oracle access to a target concept 9) outputs a hypothesis

h:{0,1}" — {—1,1} such that

max E [c(x)y|>y = Pr| E |h(x)y|>a| >2/3
max By 27 = Pr| E_[h(oy] > a| 22/

Our AMQ-learner works for the following class of distributions, which we term ¢-products. We
use the notation al|b to denote string concatenation of a and b.

Definition 8 (z-product distribution) Assume that t € Z divides n € Z. A t-product distribution
p = ((Wi)ic, O) is defined by t distributions (1;);c|) each over {0, 1Y/' and a permutation & over
[n]. For z € {0,1}", let 6(z) := z5(1)lIzo@) |l * 1|25 (n)- T sample p,

1. Foreach i € [t], sample x; ~ U;.
2. Output o (x1|---||x).

Observe that a t-product distribution is defined to sample from {0,1}", since we assume that t divides
n. We denote by AL the class of t-product distributions that apply the permutation ©.

The assumption that ¢ divides 7 in the definition of #-products will also not sacrifice any generality
in the ensuing AMQ-learner. Rephrased now more formally, the end-goal of this subsection is to
prove the following theorem.

Theorem 9 There exists a (7,7 - Z*CZk*k)-weak agnostic learner for Ik, c|. The learner uses mem-
bership queries and learns over any p € AX (for some fixed o), and has

* query complexity q := 2", for s(n) = n/k —log(k) +4(log(y) — c2* +k))
* time complexity t := O(q).
First, we will prove an easier version, and then extend it via simple lemmas proved after.

Definition 10 (Boolean function correlation) Define Cor(f,A) := maxpen [E[f(x) - h(x)]|, where
x is sampled uniformly at random from the domain. Define Cor, (f,A) := maxuen |E[f(x) - h(x)]
where x ~ p.

>

Theorem 11 Let f:{0,1}" — {—1,1}. Given the permutation o, there exists an oracle algorithm
o/ with the guarantee that if Cor, (f,I1[k,c]) > v, then for any p € Ak, /7P (with query access to
f and sampling access to p) outputs h : {0,1}" — {—1,1} such that

Pri Pria(z) =f(2)] 21/2+a) >22/3

with:

12
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« ai=Qy 272,
« query complexity q :=2"""), for s(n) = n/k —log(k) +4(log(y) — c2* +k))
* time complexity t := O(q).

Proof
To prove the theorem, we will:

1. Present an algorithm 22/ that nearly witnesses the statement.

2. We will then argue that establishing advantage, query and time complexity parameters for
1P similar to those desired by Theorem 11 suffices to prove Theorem 11 (Lemma 12).

3. Finally, we will prove that 22/P does satisfy those parameters (Lemmas 14, 15 and 16).

Lemmas 12, 14, 15 and 16 suffice to prove Theorem 11. |

Notation. For any string z € {0, 1}* denote the bit-wise negation of z by Z. For the 2 x n table

B with entries x9,x} - -x9,x} € {0,1}™, use B|, € {0,1}"™ to denote the concatenation of strings

n'’n

x'x5? - - x%. For a “lookup” table T, let T[i] (for i € {0,1}") denote the value stored at location i of
T. For shorthand, let k := k(n),c := c(n).

Algorithm 1 /P
1: Input: k,n € N. A description of 6. Query access to f, sample access to p.
> Begin preprocessing. N
Sample x°, x! ~ p.
Apply x¥ +— 671 (x) and x' <~ o1 (x!)
Split x, x! into x9,x} - --x? x} € {0, 1}"/%, which are k n/k-bit blocks so that each x?, x! is sam-
pled according to the i distribution that makes up p.
Choose uniformly random string b € {0, 1}*.
7: Choose uniformly random string r € {—1,1}%". Partially fill a 2 x k table B, such that B[b;, i] =
xﬁ”'. Fill other entries with {x}".
8: For every string a < b

a

Viewing B|, as a partial assignment z* of n bits, query f on all n-bit points consis-
tent with o (z").
Place the query-label pairs in a lookup table T.
9: > End preprocessing. N
10: Generate and output a circuit 4 (with the random string r € {—1, 1}2k hard-wired), according
to the following template:

On input z € {0, 1}",
Place the i out of k, n/k-bit blocks of z inside B[b;, i].

Compute the values
v=[]TBl] and vV =]]r

a<b a21_7

Output v-v' -1y,

13
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Lemma 12 Suppose that &7 makes at most q := q(n) queries while running in time t :=t(n), and
that whenever Corp (f,I1[k,c]) > v, it holds that

Pr [ha) = 1) :h e 27%) > %+Q(a) 3)

R.z~p

for randomness R = (r,b,x?,x},-'-xg,x,i) of &. Then there exists a randomized oracle algorithm

/TP with the guarantee that if Cory (f,I1[k,c]) > v, then /7P outputs h: {0,1}" — {—1,1} such
that

+QUU}22&

N =

Pr [Pr [h(z) = f(x)] >

o |z~p
with:

« a:i=Q(y-27¥h,
o query complexity ¢ := O(a™*) - q,
* time complexity t' := O(q').

Lemma 13 (Chernoff Bound, cf. Theorem 2.1 Janson et al. (2011)) Ler X ~ Bin(m,p) and A =
m-p. Foranyt > 0,
—£2
Pri X -E[X]|| >t < B ——
X~ EX] 21 < exp (56775
Proof [Sketch.] The statement follows by a constructive averaging argument. First, consider that (3)
implies that

l?er [I;r [h(z) =f(z):h+ L@f’p} > ;+Q(Oﬂ):| >Q(a) 4)

by standard averaging (see Arora and Barak (2009) for reference).

Therefore, viewing 2/ as a distribution over hypotheses #, it follows that o7/ exists by
efficiently constructing a “good” hypothesis by randomized trial-and-error. We may sample O(a;~2)
candidate hypotheses in parallel using £/ and then compare each to the concept by checking
random examples. By application of Lemma 13, there will be a “good” hypothesis with constant
probability, and O(a~?) examples will be enough to check that each circuit with good enough
accuracy is indeed good enough, with constant probability. In total, with O(cr=*) random samples,
1P uses 2P to output h: {0,1}"* — {—1,1} such that

Pr| P (o) =700 > 5 +0(a)| 223
|
We will now establish that the properties of &2/ are as desired.
Lemma 14 (Advantage) It holds that
11:,5 h(z):f(z):he,@f’p] Z%—FQ(O!) %)

for randomness R = (r,b,x{,x1,-- 'x,?,x,l) of Z.

14
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Proof To prove the lemma, we will use the fact that the k-party norm can help distinguish random
functions from functions that correlate with k-party protocols, together with a hybrid argument.
We will define the following distributions.

* Let Q, be the distribution over the value at location B|, inside lookup table T inside 2

This distribution is over the randomness of z, b,x(f,x% yoe -xg,xli.

* Let O =(Qu4)ue {0,1}+ denote the joint distribution over @, for all possible strings a € {0, 1},

* For b* € {0, 1}* (representing an integer in [2¥]), define the distribution H, ;- as

Q, when a < b*
Ha b* = .
U, otherwise

« Define the distribution Hy- over {—1,1}2" as the joint distribution over (Hap*)acio,1}t

Now, observe that for H {1}k We have that

— - F
iF
01
A

~E o

i€[2¥]

[T TB]

ac{0,1}*

ERhE

ic[2k

0.1
XX

Let z(!) denote the i" (out of k) block of n bits of z, in order from most significant bit to least. Then,

E [ [] mm| =2 | 1 s x%)z@:x}vie{k]] ©
x(l):x’} ac{0,1}* 01 Lap,are{0,1}

(0 (0

% Nk

Thus, when z ~ p, the quantity on the right-hand-side of (6) is, by definition, equivalent to Ry(fop).
That is, the k-party norm of the composition of f with a sampler for the distribution p € AX. Therefore,
since p has the k-product structure, our assumption implies that

E
O'NH{I}/(

H Gi] :Rk(fop) :Rk(f) > '}/.2*02’(
i€[2¥]

Again, the equality between Ri(f o p) = Ri(f) holds because p is a k-product distribution, so if
Corp (f,I1[k,c]) > 7, then Cor(f o p,II[k,c]) > 7, because computation of each of the k components
of p before f can be done by the appropriate party by with no added communication between
the parties, or loss in success probability. Additionally, we are using the fact that we have defined
I[k, c] so that for each function in the class, and every partition of the inputs, there is a protocol that
transmits at most c bits.

On the other hand,

E
GNH{O}k

HG,‘ = E HG[ =0
ie[2t) ] on{—1,1}* L[zk] ]
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Proceeding by a hybrid argument, it is then the case that for random hybrid neighbors H;, H;
(j € {0,1}*, with + indicating integer addition),

[[o=1]|-

i€[2¥]

[1o= 1” >y27% 27k @

GNH] ! i€[2%]

]N{O 1}k o~ H]

Observe that, for z ~ p, the circuit & output by &2/, by definition, outputs the value

hz)=vv rp=r; [ &

i€[24]

where 6 ~ Hj and b ~ Uy. Hence, we 1nterpret h(z) as a prediction, where rj, is the “guess bit.”
To ease notation, let R = (z,r,b x1 ,xl xk,x}c Conditioning on correctness of the guess bit,

)-
Prh(z) = f(2) [ 1, = £(2)] = Pr[h(z) = £(2) | r = £(2)] - Prlry = f(2)]
+Pr [h(z) = f(2) |5 # f(2)] - Prlry # f(2)]

Then by making the appropriate substitution, we obtain

Pr[h(z):f(z)|r5=f( ] Pr[rbHGl_ |I"b—f(Z)]

R
ic[2k

+1P
r
2R

rp [ oi=1(2) | # f( )]

i€[24]

Indeed, when [];cp4 0; = 1 (0 ~ Hjp), this means that /(z) = r;. The case analysis then follows:

Pr[n(z) = f(2)] = 2<Pr[Hal_1|rb_ +Pr HGl:—1|rl;7éf(z)]>
ic2k i€[24]
1
=3 2( Il’er[lel_zlqu——lh,;— +Pr lel[_[zqc,— lr[;;éf(z)])

By conditioning we know that:

[Hq_ ] [Hol_—lyrl—,:f(z) +%1;r [To=-11rn#f

i€[2¥] i€[2¥] Li€[2K]

rearranging the terms, we get:

I;r[HG,:—llrb#f ] [HG,—— —%1? HGz:_Hrb— f(2)

i€[2¥] i€2¥] Li€[2K]

N —

We thus conclude that:

l;’er[h( 2) = f(2) *+Pr

Ho,_—] [I‘[ oi=—1]ry=f(z)

i€[2¥] i€[2¥]

(1) (2)
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The term (1) corresponds the the case of taking the probability of the parity of a sample from Hj,
and the result being -1, while the term (2) corresponds analagously to the case of taking the parity
of a sample from Hj_ ;.

gr[h<z>=f<z>]:;+<1—grln o,:l]) - (1—1;411 oi=1|r;=f<z>]>

i€[2] i€[2]

:;—}I’Qr[HGI—l HGI—H’”b— (Z)]

i€[2%] i€[2]

+Pr

Therefore, by equation (7),

Pr(h(e) = f(2)] > 5 + 7272 2D

We will now prove that the query complexity of 22/ is as needed.
Lemma 15 (Query complexity of 22/P) 22/'P makes at most 2k - 2"~"/* queries.

Proof We can (roughly) bound the number of queries ¢ as a function of 7, k as follows. Observe that,
for any random choices X = x(l),x%, . -x,?,x,l ,b of 2/'P_the queries by 2/ are a subset of union of

the k “block restrictions”

{xx- *xk}U{** *xk kU U{xl** -}

k 1 times k—2 times k 1 times

Here, {#x*---x xk} is notation for the k" block restriction which is the set of n-bit points that are
consistent with the k" block set to xk. We call xk the representative of {xx - x xk} It is easy to see
that the size of the union set of these k “block” restrictions is upper bounded by k2"="/k Now, since
1P is supposed to repeat the queries for all a < b, actually we can see that we need the union set

b1
ke ok XV U Lk U U %
U {ex s b ufes s U Ufaf x5}
be{0,1}+ k 1 times k—2 times k 1 times
This amounts to at most 2k - 2"~"/¥ queries. |

Finally, we bound the time complexity of 22/,
Lemma 16 (Time complexity) 2/ runs in time O(2k-2"~"/%).
Proof It suffices to observe that the complexity of &2/ is dominated by the generation and mem-

orization of the queries, as well as the construction of the hypothesis circuit. Each of these tasks is
completed in time O(2k - 2"~"/¥), so the lemma follows. [ |
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Towards Theorem 9. In order to get a (7, 7- 2% %)-weak agnostic learner for Ik, c], we need
to generalize the oracle algorithm .7/P we got by Theorem 11 to work for arbitrary (probabilistic)
concepts.

To do this, we first show that .<7/P queries f entirely at distinct points. In most time complexity
regimes this would be trivial, since f is a function and no new information is gained by making a
duplicate query. However, when time complexity is just barely nontrivial, we need to take care that
we can actually efficiently build a lookup table with no duplicates.

Lemma 17 &7/ need not make any duplicate queries.

Proof Let us first inspect the queries made by the first run of £/, We observe that, when querying
the union of block restrictions

be{0,1}* k—1 times k—2 times k—1 times

it is possible to avoid duplicate queries in an online way: start with {x*---%x} and {s*---xx}},
and then, for {sx---x)_ x} and {*x---x]_ *} skip any element that has postfix x| or x{ (for each
element, this can be checked in time O(kn)). Repeat this process for each remaining pair of block
restrictions to avoid duplicates, while maintaining time complexity O(2""/k+log(k))

We need to consider what happens in each subsequent run of 2/ executed by .27/P. Again,
by tracking the list of representatives chosen in previous runs, duplicates can be efficiently avoided.
There are O(o™*) runs, so at most the complexity of scanning the list of previous representatives
is O(a™* - kn). Therefore time complexity of <7/ remains asymptotically the same even after
incorporating the duplicate-scanning procedure. |

We are finally in position to argue that we have a weak agnostic learner for I1[k,c]. The main
point is that the learning algorithm we have so far considered, .<7/?, does not consider probabilistic
concepts. Probabilistic concepts are not functions, as they may label the same point differently
depending on some internal randomness.

Theorem 18 (Theorem 9 restated) There exists a (y,7- 2> *)-weak agnostic learner for TI[k, c].
The learner uses membership queries and learns over any p € AL (for some fixed &), and has

e query complexity q :=2""), for s(n) = n/k —log(k) +4(log(y) — c2* +k))

* time complexity t := O(q).
Proof For weak agnostic learning, the target concept is an arbitrary distribution over {0, 1}" x
{—1,1}. This is more general than the idea of a concept being an arbitrary Boolean function that
labels points, because now the concept may be probabilistic (i.e., not the same label at each point,

every time). We need to argue that, for 0 < y < 1, a there is an algorithm that outputs a hypothesis
h:{0,1}" — {—1,1} such that

max E T(Xx > — Pr E hix > ,2—02k—k 913
nelk,c] (x7y)N9[ x)y] =y > (x7y)~@[ xy] =y >2/

The algorithm from Theorem 11 suffices. This is because, by Lemma 17, the target concept might
as well have been deterministic — there are no duplicate queries. Hence, Theorem 11, in combination
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with Lemma 17, implies that for 0 < 7 < 1, we get an algorithm <77 that uses membership query
and random example access to Z to simulate both f and the marginal distribution p, and outputs
h:{0,1}" — {—1,1} such that

max E [z(x)y|>y = Pr| E [h(x)y]> ,Z—cz"—k >2/3
ﬂEH[k,c](x,y)rv@[ ( )y] =Y o (x,y)fv@[ ( )y] =Y = /

Now that we have a weak agnostic learning algorithm, we can use distribution-specific agnostic
boosting algorithms to obtain fully agnostic learning (Theorem 9). Distribution-specific boosting
algorithms convert weak AMQ-learners into strong AMQ-learners, by deliberately modifying the
labels of queries. This contrasts with other types of boosting algorithms, which instead modify the
distribution over unlabelled examples. In our case, we need to use a distribution-specific boosting
algorithm, because our weak learning algorithm does not work over all distributions.

The following theorem is a restatement of distribution-specific boosting, due to Feldman (2009a)
and Kanade and Kalai (2009).

Theorem 19 (Distribution-specific agnostic boosting) There exists an algorithm boost that for
every concept class € and distribution p over {0,1}", given an (Y, a)-weak agnostic learning
algorithm < for € over p, agnostically learns € over p. Further, boost invokes o/ O(a™?) times
and runs in time T -poly(o.=', &), where T is the running time of </

We combine this theorem with Theorem 9, to obtain the strong learning algorithm:

Theorem 20 There exists an agnostic membership query learning algorithm for I1[k,c]. The algo-
rithm learns over any p € AX_ (for some fixed &), and has

e query complexity q :=2""), for s(n) = n/k —log(k) +4(log(y) — c2* +k))
* time complexity t :== O(q) - poly(e~").
Here, v := opt(I1[k,c]).
9
Proof The theorem statement follows immediately from Theorem 19 and 9. To remove the assump-
tion that k dives n, simply consider that if it does not, then k — (n mod k) meaningless variables can
be added to the input of the function so that k divides n, but the functionality is unchanged. Therefore

this will not affect the functionality of the learning algorithm, and the complexity is increased by at
most a constant factor. |

From here, we derive as immediate corollaries:
Theorem 21 There exists an agnostic membership query learning algorithm for circuits consisting

of t1 gates, where each gate can compute a SYM™ circuit of size t», and degree k — 1 (i.e., the class
SYM™-Cktlk — 1,t2,11]). The algorithm learns over any p € A, (for some fixed o), and has

e query complexity q :=2""), for s(n) = n/k —log(k) +4(log(y) — 21, log(t) +k))
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o time complexity t := O(q) - poly(e~1).

Here, 'y := opt(SYMT-Ckt[k — 1,13,]).
9

Proof SYM™ circuits of size t, and degree k — 1 are well-known to be a subset of IT[k, log(z,)] (see e.g.
Lemma 4 of Hastad and Goldmann (1991)). Then, by simulating a circuit of #; gates, each computing
SYM™ circuits of size 7, and degree k — 1, we can still get a protocol in the class I1[k,; log(,)] (see
also Nisan (1993), section 4). Recall, this means that there is a k-party deterministic protocol that
communicates # log(#,) bits for any partition of the input into k parts. Then, the statement follows
immediately from Theorem 20.

|

Theorem 22 There exists an agnostic membership query learning algorithm for decision trees of
depth d, with node queries computed by SYM™ circuits of size t, and degree k—1 > 1 (i.e., the class
SYM™-Dt[k — 1,t,d]). The algorithm learns over any p € A, (for some fixed &), and has

* query complexity q := 2", for s(n) = n/k —log(k) +4(log(y) — 2*dlog(t) +k))
s time complexity t :== O(q) - poly(e~").

Here, v := opt(SYM ™ -Dt[k — 1,1,d)).
9

Proof SYM™ circuits of size t, and degree k— 1 are well-known to be a subset of [k, log(t,)] (see
e.g. Lemma 4 of Hastad and Goldmann (1991)). Then, by simulating the decision tree of depth d,
with SYM™ queries of size t and degree k — 1, we can still get a protocol in the class I1[k,dlog(t)]
(see also Nisan (1993), section 4). Then, the statement follows immediately from Theorem 20.

|

5. Learning Efficient Randomized k-Party NOF Communication Protocols

In this section, we will convert the agnostic learning algorithm for IT[k, c] into an agnostic learning
algorithm for the class of functions computable by randomized k-party communication protocols of
cost ¢, rI1[k, c|. The set rI1[k, c] trivially contains IT[k,c], and may be more powerful. As a case in
point, PTFs of degree k are not known to be computed by IT[k, |, but can be computed by rI1[k, c|.

Definition 23 (Randomized I1[k,c|) The randomized k-party communication model is the same as
the deterministic model, except we now allow the protocol to depend on random bits. Therefore, we
allow the protocol to err in its output. The probability of error of a randomized protocol is € if for
every input to the function f, the protocol errs in outputs with probability at most €. We denote by
tI1[k, ¢, ] the class of k-party randomized protocols that, for any partition of the n variables into k
length n/k parts, transmit at most c bits and err with probability at most 1/2 — o. Additionally, we
define [k, c,1/6] := rI1[k,c] for shorthand.
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For the sake of simplicity, this paper uses only the “public coin” version of randomized communi-
cation complexity. Namely, the parties all share a string of random bits. Again, we assume for now
that k divides n.

To get started, we prove the following lemma which converts correlation with randomized proto-
cols to correlation with deterministic protocols.

Lemma 24 Let f:{0,1}" — {—1,1}. If Cor(f,T[k,c]) > «, then Cor(f,T1[k,O(clog(a~"))]) >
o/2.

Proof Guaranteed by the condition of the lemma is the existence of g : {0,1}" — {—1,1} such that
g € rI[k,c] and Cor(f,g) > a. Without loss of generality assume g is the lexicographically first of
all functions that satisfy g € rII[k,c] and Cor(f,g) > a. Let w be the protocol that witnesses the
inclusion g € rTI[k, c], and let 7™ be the direct-majority protocol of 7 so as to reduce error to 1 — /2.
We thus have that g € rTI[k,O(clog(a~!)), @/2] and Cor(f,g) > a.

Now, here is a deterministic protocol 7£* that witnesses Cor( f,II[k,O(clog(ac™1))]) > /2. First,
both parties find g, and compute the set T of inputs that f and g agree on. Then, they convert
™ to a distributional protocol & for the uniform distribution over 7' (possible by an averaging
argument), and run & and output the result. Because 27"|T| > 1/2+ /2, we get that Cor(f, ") >
212+ a/2)(1—a/2)—1>(1+0)(1 —a/2)— 1> a/2. [

Now we can obtain a weak agnostic learning algorithm for rI1[k, c], as long as the distribution
over unlabelled examples is uniform. Then boosting gives us a strong agnostic learning algorithm.

Theorem 25 There exists an agnostic membership query learning algorithm for tI1[k,c]. The algo-
rithm learns over the uniform distribution, and has

e query complexity q := 2", for s(n) = n/k —k— O(log(o.~") + ¢2¥))
* time complexity t := O(q).
Here, v := opt(rI1[k,c]).
9
Proof We need to prove that there is a membership query algorithm <7 that outputs a hypothesis

h:{0,1}" — {—1,1} such that, for any Z such that the distribution over unlabelled examples, p, is
uniform, we have that

max E [cV>a = Pr| E  [h(x)y] >yl >2/3
cerllk,c (x,y)wﬁ[ ( )y] - of |:(x7y)~,@[ ( )y] = ’}/:| = /

If we do so, then we can invoke boosting (Theorem 19) to get an agnostic learning algorithm for
rII[k, c]. Thus, we prove the following:

Lemma 26 There exists a (y,y- 2010 D2k yeqk agnostic learner for r[k,c]. The learner
uses membership queries and learns over the uniform distribution over unlabelled examples, and
has

« query complexity q :=2"", for s(n) = n/k —k— O(log(y~") + ¢2¥))
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* time complexity t :== O(q).

Proof By lemma 24, if
max E [c(x)y] >
cerllk,c] (x,y)w?ﬂ[ ( ))’} =7
then we know that
max E J|ex)y] >v/2
ce[k,0(clog(y1))] (x,y)NQ[ ( ))’] - }//
Then, by Theorem 9, we know that there is a (7,7 - 262k*k)—weak agnostic learning algorithm for
[k, c]. Therefore, we conclude that there is an (y,7- 2_0(“l°g(771))2k_k)—weak agnostic learner .7,
for rIT[k, c]:
(Lemma 24)
max E |e(x)y] > ==
cerllk,c| (x,y)fv@[ ( )y] =7
(Theorem 9)
=

max E lelxv] > v/2
cell[k,0(clog(y"))] (x,y)w_@[ ( )y] = Y/

P E |h >v| >2/3
AR B

Finally, Theorem 19 and Lemma 26 combine to indicate that .7, can be boosted to a strong
agnostic learning algorithm, that has query complexity ¢ :=2"~*(") for s(n) =n/k—k—O(log(y~") +
¢2%)) and time complexity 7 := O(q). Recall, from Theorem 19, the weak learner is invoked O(y 2
times), so that is where the —O(log(y~!) 4 ¢2*) additive term comes from. [ |

5.1. Learning Circuits with Threshold Gates

In this section, we will derive AMQ-learners for circuits with threshold gates, and decision trees that
are allowed threshold queries. To do this, we use the following randomized communication protocols
for such function representations, due to Nisan (1993).

Theorem 27 (Nisan (1993)) Let f: {0,1}" — {—1,1} be a function.

1. If f can be computed by a circuit consisting of s gates, each computing a polynomial threshold
function of degree k, then f € tT1[k+ 1,0(sk*>log(n)log(sn))]

2. If f can be computed by a decision tree of depth d, with each node computing a polynomial
threshold function of degree k, then f € rTI[k+ 1,0(dk*1log(n)log(dn))].

From this theorem, combined with Theorem 25, we obtain the following as corollaries. Recall
PT-Ckt[k,m] is the class of circuits consisting of at most m polynomial threshold gates of degree
k, and PT-Dt[k,d] is the class of decision trees consisting of at most depth d, with internal nodes
computing polynomial threshold gates of degree k.

Theorem 28 There exists an agnostic membership query learning algorithm for PT-Cktlk, m|. The
algorithm learns over the uniform distribution, and has
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« query complexity q :=2"*"), for s(n) = n/(k+1) — O(log(y~") 4 2% - mlog(n) log(mn))
* time complexity t :== O(q).

Here, v := opt(PT-Ckt[k,m]).
9

Proof Immediate, from Theorem 25 and 27. |

Theorem 29 There exists an agnostic membership query learning algorithm for PT-Dt[k,d). The
algorithm learns over the uniform distribution, and has

« query complexity q :=2"*"), for s(n) = n/(k-+1) — O(log(y ") 4 2* - dlog(n) log(dn))
* time complexity t := O(q).

Here, v := opt(PT-Dt[k,d]).
9
Proof Immediate, from Theorem 25 and 27. [ |

Remark. By setting m :=n%%,d :=n% k:=0(1),and y:= 0(2"0'99), we recover the statements
of the AMQ-learners for touchstone class 1 and 2, respectively, which were presented in Section 1.1.

6. Randomized Compression, Exact Learning, Distribution-Independent Learning
6.1. Randomized Boolean Function Compression

In this section, we show how the AMQ-learners we have obtained so far can be converted into
randomized Boolean function compression algorithms. This is done via a simple technique of
Carmosino et al. (2016), where a PAC-learning algorithm (optionally using membership queries)
which learns over the uniform distribution is used to obtain a lossy compression algorithm, and then
a linear scanning procedure is used to fix the mistakes.

Definition 30 (Compression — written essentially as in Oliveira and Santhanam (2016)) Given a
circuit class €, a compression algorithm for € is an algorithm <f for which the following hold:

e Given an input z € {0,1}*", o outputs a circuit C of size 0(2" /n) such that if the function f,
represented by the truth table 7 is such that f, € €, then C computes f,.

* o/ runs in time poly(2").

We say € is compressible if there is a (polynomial time) compression algorithm for €. If the algo-
rithm <7 is probabilistic, and produces a correct circuit with probability at least 2 /3 over its random
choices, then € is probabilistically compressible.
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Remark. One note about the above definition: The constant 2/3 as the desired success probability
is not particularly important. Since the run-time needs to be 2000 je., polynomial in the input length
of 2", a randomized algorithm can check for success in linear time. Hence, one could change 2/3 to
be 1 —27" if desired.

Theorem 31 There exists a sufficiently large constant K such that the following complexity classes
are probabilistically compressible:

1. PT-Ckt[k,m], whenever mlog(m)log(mn)-2F <n/K(k+1)
2. PT-Dt[k,d], whenever dlog(d)log(dn)-2* <n/K(k+1)

3. SYM™-Ckt[k,t,m], whenever mlog(t)-2F < n/K(k+1)

4. SYM™-Dt[k,t,d), whenever dlog(t) -2 < n/K(k+1)

Proof Given an AMQ-learner for a touchstone class €', which runs in time 7'(n,£~',8~!), we can
transform it to a randomized compression algorithm for ¢’. The randomized compression algorithm
is as follows. Given the truth table 7 € {0,1}*" as input, use it to simulate a membership query
oracle in order to run the AMQ-learner, with € := 1/ 2" §:=2 /3, on the concept defined by 7.
Let i be the output of the AMQ-learner. Now, compare the truth table indicated by % to T, and, on
whatever points they disagree, hard-wire that input/output pair into 4. Output the amended /.

Let us analyze this algorithm. We upper bound the runtime of the learner and the size of the
output circuit. Since we are aiming for a randomized compression, we only need to consider the case
that the AMQ-learner outputs a hypothesis with the desired error, which happens with probability
at least 2/3. The circuit size of the hypothesis is at most the running time of the AMQ-learner, so at
most T (n,€~',871). Then, after the amendment procedure, the circuit adds O(£2") size. Hence,
overall, the runtime and size of the output circuit of the randomized compression algorithm is
T(n,e~ ', 671 +0(e2").

Finally, we can can invoke this transformation with a correct setting of € as a function of n, using
the AMQ-learners for each of the classes 1-4. By Theorems 28, 29, 21 and 29, setting € := 2_"0’99,
we obtain randomized compression algorithms for 1-4, respectively. The compressed circuit has size
0(2”_”0'99) in all cases, because the AMQ-learner for each class has run-time bounded above by
21/C ¢ 0(2”*"0'99) for some constant C > 1, depending only on & and K, and using the conditions
stated for each class in the theorem. |

6.2. Exact Learning with Membership and Equivalence Queries

In the final section, we explain that our AMQ-learners can be converted into learning algorithms
in the exact learning with membership and equivalence queries model Angluin (1988), as well as
learning algorithms in the distribution independent PAC model, with membership queries.

Let us start with a description of the exact learning with membership and equivalence queries
model. Let f: {0,1}" — {—1, 1} be an unknown concept. Let € be a fixed concept class, and assume
f € €. The learning algorithm aims to output a hypothesis % : {0, 1}" — {—1,1} such that for every
x € {0,1}", h(x) = f(x). The learning algorithm does this by frequently updating the hypothesis
through a number of timesteps, where at each timestep, the learning algorithm makes one of two
types of oracle queries:
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* A membership query: the learning algorithm selects ¢ € {0, 1}" and obtains f(g).

* An equivalence query: the learning algorithm presents the current hypothesis /', and receives
either “success” (when //(x) = f(x) for all x), or a counterexample z such that #'(z) # f(z).

The running time of the algorithm is the number of timesteps until the algorithm obtains the “success”
response, in the worst case. In the randomized version, which we now consider exclusively, the
running time of the algorithm is considered 7T (n) if it the algorithm succeeds with probability 1 — 0
and runs in time no more than 7' (n) -log(5~").

Theorem 32 There exists a sufficiently large constant K such that the following complexity classes

are learnable in the randomized exact learning with membership and equivalence queries model, in
.99

time poly(n) - on=n%,

1. PT-Ckt[k,m], whenever mlog(m)log(mn)-2F <n/K(k+1)
2. PT-Dt[k,d), whenever dlog(d)log(dn)-2* <n/K(k+1)

3. SYM™-Ckt[k,t,m], whenever mlog(t)-2F <n/K(k+1)

4. SYM™-Dt[k,t,d], whenever dlog(t)- 28 < n/K(k+1)

Proof The proof flows identically to the proof of Theorem 31, except instead of doing a linear scan
of the input truth table to amend mistakes, we invoke the equivalence query oracle to obtain a point
z that needs to be amended (by negating the existing value). It takes at most poly(n) time to amend
each mistake. One can reduce the failure property at an exponential rate via testing and repeating, so
the randomized algorithm incurs only a multiplicative factor of log(6~!) in runtime. |

6.3. Distribution Independent PAC-Learning with Membership Queries

It is well known since Angluin (1988) that a learning algorithm in the exact learning with membership
and equivalence queries model implies a distribution independent PAC-learning algorithm, which
also uses membership queries. The basic idea is that equivalence queries can be simulated, up to
some small probability of an incorrect answer, with random queries. One can do this by choosing
sufficiently many random queries, and realizing that if the current hypothesis is more than €-far from
the unknown concept, then the random sample should contain a counterexample with high probability
(on the other hand, if the current hypothesis is more than €-far from the unknown concept, then the
algorithm can terminate since we are in the PAC model of learning).

Quantitatively, one can transform an exact learning with membership and equivalence queries
algorithm for a concept class % that runs in time 7' (n) and uses Q(n) queries into a distribution-
independent PAC-learning with membership queries algorithm that runs in time O(T (n) /e -InT (n)/d)
and uses O(Q(n)/€-InQ(n)/6) queries (where PAC-identification occurs with accuracy 1 — € and
confidence 1 — ). We refer the reader to Servedio and Tan (2017) and Section 2.4 of Angluin (1988)
for further details.

We present the following without formal proof.

Theorem 33 There exists a sufficiently large constant K such that the following complexity classes

are learnable, to accuracy 1 — € and confidence 1 — J, in the distribution-independent PAC-learning
0.99

with membership queries model, in time poly(n)-2"~""" /(€0):
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1. PT-Ckt[k,m], whenever mlog(m)log(mn)-2F <n/K(k+1)
2. PT-Dt[k,d], whenever dlog(d)log(dn)-2% <n/K(k+1)
3. SYM*-Ckt[k,t,m], whenever mlog(t)-2F <n/K(k+1)

4. SYM™-Dt[k,t,d], whenever dlog(t) - 28 < n/K(k+1)
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